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ABSTRACf

The goal of this article is to review the present status of
the Interacting Boson Model (IBM) for describing the collective proper-
ties of medium and heavy mass nuclei, with particUlar emphasis being
given to the work on the IBM at the University of Arizona. First, a
concise review of the basic phenornenological 18M, as developed by Arima
and lachello for only one kind of boson, is presented. Next, the exten-
sion of the IBM to both proton and neutron bosons is outlined. This
latter model is known as the lBM-2. The application of the la~-2 to the
tungsten isotopes by the University of Arizona group is discussed, fol-
lowed by their calculations fer the mercury isotopes. In the case of
the mercury isotopes an extended form of the lBM-2 is develeped in order
to treat the configuration mixing of two entirely different structures
which occur in the same energy region. The relationship between the
bosons and the underlying fermionic structure of the nucleus is discussed
using the generalizcd seniority scherne of Talmi. Work by the Arizona
group to calculate the phenomenological parameters of the IBM-2 using
these generalized seniority ideas is described, along with their.results,
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534
which agree quite well with the empírical values. Efforts by the Univer-
sity oi Arizona group to determine the influence of terms left out cf
the basie 18M, such as the 9 bosao, using second-order perturbation
theory are described. In conclusion, a discussion of the limitations
as well as the usefulness oE the IBM i5 given a100g with its exciting
possibilities for the future of nuclear structure physics.

RESI~IEN

El propósito del presente trabajo es el de hacer una revisión
del estado actual del Modelo de Bosones en Interacción (MBI) utilizado
hoy en día para describir' las propiedades colectivas de núcleos pesados
y semi-pesados. Se hace énfasis, en particular, al trabajo que sobre
el MB! se viene realizando en la Universidad de Arizona. Primeramente
se presenta una revisión concisa de las bases fenomenológicas del MB!
con un solo tipo de bosones tal y como fueron desarrolladas por Arima
y Iachello. Posteriormente se hace una presentación esquemática de la
generalización del MEI que incluye tanto bosones de protón como de neu-
trón. Este último modelo se conoce como el MBI-2. Después se discuten
las aplicaciones que el grupo de la Universidad de Arizona ha realizado
a isótopos de tungsteno presentando en seguida los cálculos realizados
para isótopos del mercurio. Para el caso de isótopos del mercurio se
desarrolla una forma más general del MBI-2 que hace posible tratar la
mezcla de configuraciones de dos estructuras completamente distintas que
aparecen en la misma región de energías. Se discute también la relación
entre los bosones y la estructura fermiónica nuclear subyacente utili-
zando el esquema de antigüedad (seniority) generalizado propuesto por
Talmi. Se describe el trabajo realizado por el grupo de Arizona sobre
el cálculo de los parámetros fenomenológicos del MBI-2 utilizando las
ideas de antigüedad generalizada mencionadas anteriormente y se presen-
tan los resultados obtenidos, los cuales concuerdan bastante bien con
los valores empíricos. Se describen también los esfuerzos del grupo de
la Universidad de Arizona para determinar, utilizando teoría de pertur-
baciones a segundo orden, la influencia de los términos no incluidos en
el MB! básico, tales como el bosón g. Se discuten, en conclusión, tan-
to las limitaciones como la utilidad del MBI así como sus estimulantes
posibilidades para el futuro de la física de la estructura nuclear.

l. I~TROWCrro.\

One of the oost intcrcst ing features of rrediurn and he,]vy mass

nuc1ci i5 the presence of 10w-lying collective states. Huch effort has

hecn JTk'1dein the previous thirty yC'ars to tmderstanu thc nature of

thcsc collective propcrtic5 in !luclci, mainly fol1owing the pioneering
work of Rajm,,'ater( 1) and Rohr anu t-lottr:'lson(Z) in ternl<; of geomctrical

modc1s. 'fhe problcm with thesp gconctrical models is that thcrc 1S no

wel1-dcfined plucedurc for JTk'1kingtransitions between the Jiffercnt

ooup15, e.g .• thc transition from a sphcrical vibrator to a dcfonrcrl
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rotor. Attempts have a150 hecn marle to describe these collcctive prop-
erties in terms cf boson degrces cf freedom(3) J instead oí ferrrrion de-
grecs oí freedom. lhtforttmately roost oí these boson methods involve
infinite expansions. i.c.,boson operators cf ever-increasing ordcr(4).

Recently two boson mcthods have beco dcveloped which contain
boson operators of finite arder. One is the method cf Janssen Jolos
d n" (S) h. h . 'an ~Nnau W le con talOS quadrupole operators that obey the cornmuta-

tioo relations oE a U(6) Lie algebra. Since their mcthod utilizes ooly
quadrupolc operators, their cxpansion consists ooly oí quadrupole (J=2)

bosaos. The second approach is that oí Arima and Iachel1o(6.S). kno~n
as the Interacting Bason Model (I~I), which contains monopole (J=O)
s bosaos as wel1 as quadrupole d bosons. The rnarked diffcrence of the
I~l from earlier boson models is that the total number of bosons is
conserved, i.e., ns + nd = N = constant. This is an extremely important
feature, since it dircctly links thc IBM to thc number of valence fer-
mions and thereby to the tmderlying single-particle or shell-rrodel struc-
ture of the nucleus(9-11). Consequently, the l~f provides us with a
possible mcthod of simultaneously interpreting nuclear collective prop-
erties in terms of a very simple model, which contains only a few para-
meters in a model space much smaller than the usual shell-model space,
and Lmderstanding this rrodel and its parmreters in tcrms of the Lmder-
lying fermionic structure.

The purpose of this article is to describe the Interacting
Boson ~bdel (I~l), its application to explain the collcctive properties
of medium-to-heavy-mass nuclci and cfforts to tmderstand this model in
terms of the nuclear shell modelo Section 11 describes the I~1 as
originally developed by Arima and Iachel10 for even-evcn nuc1ei using
on1y one kind of basan. The model was later expanded to treat both
proton and neutron bosons by Otsuka et al. (9), as we a150 5how in Sec-
tion 11. In Section IJI the 1&'1 is applied to the isotopes o£ ttmgsten
(~1and mcrcury (Hg) and thc results are discussed in relationship to
other modcls and to othcr nuc1ei investigated in this mass region using
the IB}'l. The ca1culations [ar the Hg isatapes indicate an extension oí
the basic lEN to inelude configuration mixing. Section IV contains a des-
crirtion of hOh' the basans can be related to she1l-model states. From
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this connection h'C can understand the origin oE the parametcrs in the

IBN and ha",,' the}' should change as a fUlction of the mDTlber cf ocutron

and/or protao bosaos. ~c c::rnalso investigate how the values of the
moJel parmnetcrs are influcnccd by thc restrie! ion of rhe IflN to cnly s

and d hosaos by including the effects of a g boson, LL<;ing ordinary per-

turbatian theol)'. In Section \' we discuss the limitations of the IB'I,

the problcms ,",¡!lich still faec it, its extension to oJd A nuclei. includ-

ing the so-calleó supersymmetries, and its exciting possibilities [ay

the future of nuclear structurc thcol)'.

1l. THE 1NI'ERACn~G BOSO~moa

A. IBM-l: One kind of besan

The original IntcTélcting Bosan ftlodcl of Arima ::md Iachello(6-8)

did not distinguish betwecn proton .md neutron bosons; we ~ill refer to

this model as the IRM-l. Like the 5he11 JOOdel, the IB¡\f-) is a truncation

scherrc rOl' restríet ing the nuclear Wílve function to a few l..!!!P..ortant de-

grees of freedom. In the case of medilun-to-heavy-mass nuclei, the 10\"'-

lying co11ective propertics cannot be describcd in tenns of a fe\oo'shell.

model configurat ions but wouId regul re mill iOl1s01' bill ions of configura-

tions. 'nle coocep! of the IB.\l-l is that the bosoos represent collective
configurations, .•...hich contain the important dt.~grces of frecdom of these
low-Iying propcrties.

As in thc shell moJel, one starts wíth a numbcr of valence

particlcs outside closed major shclls ant1 assumcs tha! the structurc of

the low-Iying lcvels is uominated by excitations among thcse particlcs.

Sccondly, one assulflcs that the important part iele confi&rurations rOl' the

low.lying levels of even-even nuclci are those [01' identicaI partic1es

paired together in states with total angular momcntum J=O and J=2. The

final assLUrrption is that thcse pairs can be treated as bosons. Hence,

the nurnher of hosons is equal to the nUJTver of pai 1'5 of part ieles outside

the closed shell anu is a strictIy conserveu qu.mtity. Proton (ncutron)

hosons with angular momentlDn,]=0 are denoted hy sn(sv)' while those \oo'ith

~U1gular momentm .J=2 are denoted by un (d). In order to take into ac-

count the particle.hole conjugation in the particle space, the numher of

proton, NlI, and neutron, Nv' hosons is takcn as the munhcr of holC'
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i'airs, jf mor(' thém half of the shcll is fuU. FOT example, 568374 has

b protons outsiue 1'11('SO closeu shcl1 01' 3 proton-partic1c hosons and

8 Ilcutron hales in rhe 82 closC'd shel1 01' 4 Il('utTon-hole hosons. In

rhe IBM-l wc do no! Jistinguish hctwccn proton ,:lIlU neutron bosons, so

\,'C y.;i 11 drop rhe suhscripts 11 amI v in th" rest of this suhscction.
In arder to ""rite dOv.'1lthe appropri3tc ope1'ato1'5 for the

hosons j t is convcnient to use rhe sccond qwmtizcd fanual i5m, il1t1'o-

ducing rhe crearian (st, lit) ami annihilation (s, d ) ope1'ato1'5, for 5
~ "and d hosons, rcspectively, whcre v.=O, ~I, ~2. Thcse operators satisfy

the standard Base cornrnutation 1'('13tion5

[s, 'r [ s, s) O, 15 t t Os ¡ , s ¡

+ Idt dt ¡[ d~, d' ¡ é~~'[d~ ' d~, ¡ = O, O
~' ].1' \.1'

(1)

( s, dt ¡ O, t dt O. [s d~ ¡ O
~ [s • ~ ,

[ st, d~ ¡ O

The roost general two-body Hamiltonian for a systclIl of s and

d bosoos, which conserves the total oUlllber of bosons, can be \\'ritten in

tenns of these operators in the form(6)

ti = "s(st.s) • "d(dt.d)' L ~ (2L'1Y' CLlldtxdt ¡il,lx¡dxd¡ILI¡IOI
L=0,2,4

(2)

~ 2+" "whcrc d =(~1) •.. d =(-l)"'d which 15 a sphcric;Il tensor Ln1der rota-
\..1 - u -~I
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tioos, whilc d~ is al ready a spherical tensor. The [ 1 denote the tensor

product cf two tensor opcrators, c.g .• [dtxdt](~) I (2P12f-i211J.'}¡Jt d~ ,
~lU2 ¡JI U2

while the ( ) denote thc seaIar product oE two tensor opcrators, e.g.,
(dt'd) = (_1)' ISldtxdJ(~} = Ir I (2~12~,IOO) dt d = I dt d

U¡U2 UI U2 Wl UI U¡
Il
J

= the numbcr operatar for d bosans. The aboye Hamiltonian contains
nine parameters: the twa s ingle bosaos energies E anu Ed and the scvcns
two-body tenns C1(1,=0,2,4), \'¡,(1,=0,2) anJ U1,(1,=0,2). Sinee the total

number cf bosaos i5 conserved, N = Ils + 0rl' the Hamiltonian can be
rcwritten so that the excitation encrgies are indepcndent cf DS and
depend uroo ooly six parameters (see Refs.12, 13).

Another convenient fonm foy writing the Hamiltonian foy the
excitation encrgics on1y is

h'here

H

p

1,

E' n +" (pt. P) +" (L' 1,) + a (Q'Q) + a (1 .1 ) + a (1 0'1' ), (3 )d o _ _ 1 _ _ 2 _ _ 3 _3 _3 4 _4 _4

t (dod) - i (5'5)

:\ot(' th3t th15 H contains only six indepcndcnt pararncters. Th15 fonn of

H is oftcn convcnient, sincc cmpirically 0111y one 01' IroTe tcrms in thi5

Il are requircu in oruer to describe Tcasonahly \~'cl1 the lm,r-lying ('xcita-

tioo spcctrwn. Thc 1'c1<1tion5h1p hctKccn the pararretcrs in f:qs. (2) and

(3) is givell in Rcf. 12.
I\noth('1' Op(,1'3to1'of 10t('1'(,5t i5 the ene-hod)' tl'ansition opera-

tal' \\'hich has t11(' secand quanti:eu forn/12)



It should be ooted that no multipole higher than four is possible if
the operators TU) are assurrcd to be at mast one-booy. Equation (5)

yiclus transition oper3tors for EO, Ml, E2, M3 amI [4 transitions, with
appropriate values of the corresponding pararncters. The B(U) and B(f\.ti)

\'alucs are obtained in the usual Kay as

[[J. ) ['
1

(6)

Frem the transitlon operators one can aIso calculate qu...'ldrupolemomcnts,
magnetic moments and ¡sotope ano isomer shifts. Onc can a1so construct
tKo-partic1e transfer operators(6.13).

The Hami1tonian in the [onn of either Eq. (2) or (3) can be
directly applied to describe the low-lying spcctra of ¡rdiUJ11and heavy
mass nuclei a\o;3V from closed shells. Such studies have becn carded
out, [or examp'lc, [or the even samarium (Sm) isotopcs(7). It is
important to emphasi::c that the Hamiltonians in Eqs. (2) and (3) are
completely general ,md Gm he useu along .•.•.ith thC' transitlon operators
in a systematic mannC'rto stlJdy the co11cctivc properties of ~ appro-
priatc nuc1cLL<;.
i) U(6) Symrnetryami Dynamical SymJOC'tries

Therc are a nlOTt1ero[ nuc1ei h"hich exhihit specia1 col1ective
propertles, v..hich have already been exp1aincd and given specific names
".,"ithin the geometrical pictllfe, such as vibrationa1 propcrtics and rota-
tiona1 properties. 00(' of the' very interesting [('atures of the IB,\I-l
i5 that these georretrica1 cases fo110\...' direct1y as 1imiting cases of the

IBN-l which can be solved <Inaly!kall}'. This is truc since the second
1" 1" -quantized operators of the IBr-l-l (i.e., the s , op ;md the s, d~) e<m

be corrbined pain...-ise (i.c .• a creation operator with an aooihi1ation
operator) to fonn a set of 36 operators

( 7)
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fay t, ,t' = O, 2,

\<,'hich are c10sed tmdcr cornmutation, i .c. ,

i<" k"I Ckk, G
k"

(8)

k"Khere the Ckk r are nun:erical cocfficicnts, aml,consequcntly, fonn a Lie

algcbra(12, 14). Onc can verify that this 1S the Lie algebra cf thc

group U(6) oE tmitary transfonnations in six dimensions. Sincc thc

lIamiltonian [ Eq. (2) 1 i5 buil t out of thcsc operators, it follows that

it has the group structurc of lJ(6). In other ",'ords, it can be regarded

as a general rotatian \\'ith constan! nonn (os +nd = N = constant)in the

six dimensional space of the s ,md d bosons.

General1y it i5 possiblc to determine subgroups cf sorne

largcr group. such as U(6), where a subgroup is Jcfined hy a subset of
the gencrators of the larger group which a150 close under cornmutation.
In thc case of U(6) it has be en fOl.md that three subgroup chains exist,

,....hen cach chain i:;; restricted to contain the 3ngular morr,entumgroup,

0(:;) (14). These threc chains are

I.
!l.

!lI.

U(6) ~ U(5) ~ 0(5) ~ 0(3) ~ 0(2)
U(6) ~ 5U(3) ~ 0(3) ~ 0(2)
U(6) ~ 0(6) ~ 0(5) ~ 0(3) ~ 0(2) .

(9a)

(9b)

(ge)

If the Hamiltonian H can be hTittcn in te~~ of only the

Casimir operators of a complete chain of subgroups of U(6), then this H

is Jiagonal in the reprcsentation of this suhgroup chain and possesses

Khat is knOhTIas a d)11amical syrror.etry(12-14). A d)l1amical sym:netry is

a systematic breaking of the s}mnetry of the larger group [e.g., U(6) I

by thc tcrms proportional to thc Casimir operators of the subgroups.
For example, in Chain 1 [Eq. (9a) I , the U(6) symlfetry is broken by the

Casimir operators of U(S); in turn the U(S) symmetry is broken by the

0(5) Casimir operator, and the 0(5) S)~t~' is broken by the 0(3)
Casimir operator [scc Eq. (lOa)). Bu! the syrrnnetries of each subgroup
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ar(' nnint:Jincd in the sC'tlsC' that diffC'Tcnt repr(,sclltat ions of U(S) do

nat mix, etc. (sC'C' Fig.l). Sincc in the HN-l\<'(' have thrcC' suhgroup

chains, tlwn' ~rc thrce possihle dynamical s)lllll1(~tries. Thesc thrce
d}110mical s}lll1nctrics have bccn discussed extensivcly in prcvious

rapC'TS CRefs. b, 12-14), and the r~ader is rcfcrrco to these a1'ticlc5

[al' dctails oC th('ir construction and solutiOTl. fleTe \,;e IdI! onl}'

quotc th(' rcsults for the cTlcrgy in each 1imit.

l. U(S) 01' vibratíana! 1 imit

1:([N) ,J\!,v,n~,L,M) = cnd+and(nd+4)+2Bv(v'3)+2yl.(L.1)

( lOa)

11. SU(3) 01' rotatíanal limit

E( IN), (A,~),K,L,M) = (i K -K' )L(L+1)- K [A2+jJ2'AjJ+3(A+jJ))

(j Ob)

¡!I. 0(6) or y-unstable limit

E( INI o,v,n~,L,~l) = iA(N-o)(:\+0+4) + Bv(v+3) + eL(L'!) .

( lOe)

In the abo\'c cncrg)' fannulas the s}mbols in parenthescs an the lc[t-
hand sirle denote the quantum numbers ~hich are needed to 5pecify

uniquel}' the 5tate5 of each subgroup chain. For example, in thc U(S)

chain N i5 the total munber of bosons, whidl i5 the U(6) quantum

munber; nd is the nllllher of d-bosons, ¡.,'hich is the U(S) quantum nurrt:>er;

v 1S thc d-boson seniority, which is the 0(5) quantum mmt>er; L is thp

,mgular IllOmcntum[0(3) I ; and ~I is the z-projection of 1.10(2)). The

quantwn numbcr n~is no ext ra quantum nurrber requi red in arder to fuIl}'

descompose 0(5) in going to 0(3). Arima and Iachello chose this qwmtum

nunDer nó to be tIle number of boson triplets coupled to zera angular

norrcntum. The constants E,a,S,y; K,K'; and A,B,C label boson cncrgy

parancters appropriate for each of the three limiting cases and repre-

sent particular linear corminations of thc par;:uneters in Eqs. (2) and

(3) . Figures 1-3 i 11ustrate the energy spcctra which corrcspond to thc

V(5), 5U(3) , anu 0(6) limiting cases, respectively.

As "~ntioncd carlier, nuclei with vibrational U(S)-likc proper-
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Fig.l A typical spectrum with Uf:') syrmnetry and N=6. In parentheses
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Fig.2 A typical spectrum wi th SU(3) syrmnetry and N= 6. In parentheses
are the values oE ), and lJ •
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E (6,0) (6,1) (6,2) (4,0) (4,1) (2,0) (0,0)

( MeV)

12~~_ 6L~ ..-15>- ./\3

0.-10.- 2.-
2 8. • 4 -2+-

-7-6. • • 0.--5- 4+-i- 6-4"-3+_ 0.- 2.-
8.- .. 4~2._ 0.-

6-5+-4+_ 2:"-
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-3- 0.- 0-

4+-2+-
2.- 0(6)

O 0"-

Fig.3 A typical spectrum wi th 0(6) syrnmetry and N::::6. In parentheses

are the values of o and nI::.'

ties and rotatiooal SU(3)-like properties have already beco kn~n fay
sorne time and invcstigated using geometrical models. One of the
intcrcsting predictions oí the I&~-l i5 that a third limiting case
exists, namely the 0(6) limit, which appears to resemble the y-unstablc
model of Wilets and Jean(15) and has beco ob5er\~d experimentally among
sorne oí the Pt isotopcs(16). Figures 4-6 show examples oí experilncntal
speetra whieh exhihit the limiting cases U(5), SU(3) and 0(6), respee-
tivcly. In general, exa.mples o[ VeS) - likc nuelei are found at the bcgin-

ning and the ver)' end of shells, examples of SU(3) -like nuelei are found
in the middle of shells, anJ exarnples of 0(6) - like nuelei past the mid-

dIe of shells,As statcJ previously, mast nuclci do not belong to any of
these limiting cases but are some~here in bet~een t~o of them. For
example, the Sm isatapes 5tart out vibrational-like [VeS) 1 at the begin-
ning of the 82 ncutron shell and become rotational-likc (5U(3) 1 as the
ncutron number increases towards the middle of the shell, as secn in
Fig.7([xp.). Using the general 1sr-1-1 Hamiltonian, Eq, (3), Seholten
et Q!. (7) have becn able to reproduce this transition from V(5) to
SU(3) symmetry in the Sm isotopes [Fig. 7(Th.)]. The)' are also able to
reproduce the corree! trenJs with rcspect to Nv in the B(EZ) transi-
tion rates, t\\lo-neutron separation encrgics. quadrupolc lOOmcntsaod

isatape and iSOIOC'T shifts(7, 131.
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Fig.4 An example of a spectrum with U(5) symmetry:
N=6, N=7.
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Fig.5 An example of a spectrum with 5U(3) syrnmetry: l~~Gd92' N
l1
= 7,

Nv=5, N=12.
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Fig.6 196An example of a spectrum with 0(6) syrnrnetry: 78Pt1l81 N1f=2,
Nv ""4, N"" 6.
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Fig.7. Theoretical (Th) and experimental (~xp)energy spectra in the
samariurn isotopes.
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A computer program, called PHINT, has been ~ritten by Schol-
ten (17) and is available 011 request. TIle program PHlt'-.'T sol ves the ful1

IBM-l Hamiltonian (Eq. (3) 1.

B. IBM-2: Proton and Neutron Bosons

As Talmi has pointed out fay roany years(11), it is the proton-
neutron interaction which is mainly responsible £oy causing nuclei to

deformo As experimental evidence £or this faet, he observes that the
energy splitting betwecn the 0+ grOlU1d state and the first 2+ excited

state in the even tin (Sn) isatapes is more ay less constant throughout
the cntire SO to 82 ocutron shell (see Fig. 8). For the even isotones

with N = 82 one finds a similar resulto Hence, the interaction arnOllg
v

only va]ence neutrons ay on!y valence protons in semi-magic nuclei
(onl',' ene dosed shell) is not sufficient to cause nuclei to dcfonn.
On the other hand, nuclei such as barium (8a) and xenon (Xe). which

E2, I 'V Sn

(MeIV) o Cd Te
6 Pd • Xe
o Ro • 80

1.5

1.0

0.5

50 58 66 74
Neutron Number

82

Fig.8 +The eoergy of the 21 state of the So, Cd, Pd, Ru, Te, Xe
isotopes in the 50-82 neutron shell.

and Ba
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have both active valence protolls and valencc ocutTaos, sho .•.•, a strong
+ +dccrease in thc 2 - O encrgy spl itt ing .as the neutron hale nurrbcr in-

creases from the closcd 5hel1 value of 82, as seco in Fig.8 far the Ba
isatapes. As the nurrber of neutron holes increases, the protoo-neutron
interaction increases in strength, causing the Ha and Xc isatapes ncaT

thc middle oC thC' 50 to 82 neutron shcll to hecoTOC'strongly dcforned,

as secn from thcir rotational-likc spcctra in this mass region.
So one wants to distinguísh bet\\'ccn neutron and protan bosans

and ••.•.aot5 to introduce a term inta the basic Ilamiltonian involving an

interaction bctwccn the neutron .md the protan bosaos. A completel}"

general fonn foy such a Hamiltonian i5(8,9,13)

H H + H + V
1TTT VV lTV

(11 )

where H (p = 7T,V) i5 the Hamiltanian for identieal bosans and is of
pp

the form of Eq.(2), while V rcpresents the interaetion betwcen the
TIV

proton and ocutron bosons.
In thc 1&\1-2 the cigcnstates are dircet products oí proton-

boson statcs and ncutron-bosan states. In tcrms of group thcory they

represent thc dircet produet of U(6)( U(6), so that the eigenstates are

labeled by I ~7T l )(I Nv1, \o:here 1N1 denotes the completely syrrmetric repre-

sentation of U(ó} containing N bosans.

The problem nOh' is whieh, oí a11 possible protan-neutron

states, are the nl)st important ones. Based on previous caleulations

using thc IBJ.1_1(8,13}, we belicvc that the roost significant IBJ.1-2pro-

ton-neutron states are those whieh have the sarue strueture as the

equivalent IBM-l states, naruely the totally symmctrie states, labeled

by [ N1T• + Nv l. Another \-;ay o[ saying this i5 that as much as p055ible

v.'e would likc the 1&\1-2 Hamiltonian to be "invariant tmder rotations" in

the proton.ncutron spaee. Sinee this is a b'o-dimensional spaee. it

transfonns according to SU(2} and ean be describcd using a formal ism

kno.••.n as F_spin(13, l8}, .••..hich is similar to but not identieal to
:\ - N N N. 1

i505pin. wherc Fz:": 1T vano F = '2 ' T ' ... , Fz. In tenns of
2

F-spin, thc IBJ.1-1states corrcspond to the I~1-2 5tates oí maximum

F '. - - N _ N1T + Nv.spln,l.e .• l. - I - 2



548

Conscqucntly. the only differcncc beb:een the IBI'-l-l and the IBr-t-2 is that

in the IBr-I-2 one a1so has statcs oí lowcr (oy mixed) U(6) symrctry, such

(lS [:\TT + N'v - 1,' ], [NlT +:\\J - 2,2] • etc. A sufficient conditian [ay

the IBl>I-2 llarni1tonian te be F-spin invariant is fay Vrrn = Vvv = VTTV

Sincc thi5 i5 in general no! true, it will be necessary to separate the
totally sl~tric states from the states of mixed U(6) S)~try. as will
be describcd helow.

The general approach(S,9,11) i5 to include n.;o tenns in Vnv
The first is a quadrupole-quadrupole interaction betv.'een the protoo and

ncutron bosons of the fonn KQrr(2). Q,}2) , \-:heTe K is the interaction

strength parameter and

Q (2)
P

(P=lT,V) (12)

is the bosan quadrupole opcrator. The pararrcter Xp is the ratio of the
seniority conserving part of Qp to the seniority non-conserving parto
The second term in V is a l-lajorana force of the fonn

TIV

(s xd - d xs ) (2)
\JTl \J1T

( 13)

The purpose of the ~bjorana force is to remove states with mixed U(6)
S)~try, as discussed aboye, by shifting thern up in energy. A large
~bjorana force guarantees that the low-lying states in the I&~-2 are
nearly totally syrnmetric in the proton and neutron variables.

A quadrupole-quadrupole form is taken for the basic proton-
boson-neutron-boson interaction for two reasons. First, it is a mani-
festation of the strong quadrupole-quadrupole interaction between
protons and neutrons in the fenmion space. Second, it is the lowest-
arder multipole-multipole force which mixes seniority(11).

Thus, the general fonn taken for the IBf.1-2 Hamiltonian(8,9,13)
is

H E + £(n
dn
+n ) + KQ (2). Q (2) +~f +VVv+V

O d\) rr \) nv 7TTT
(~4)

where E:\)= E:n = E: for sirnplicity and Eo is a constant for a given nucleus,
depending at mast quadratically on Nv and Xn and contributing only to
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the binding energy. From the earlier discussion (e.g .• the So isatapes)

we expect the dominant term in Vpp to be thc d-boson conscrving term

1 [ t t (L) - - (L)] (O)V I el 2 IZl+l (d xd) (d xd ) , p=v,rr.
PP L:O,2,4 p p p p p

( 15)

Since the Hamiltonian (14) docs no! contain completely general
fonns far the interactions among the bosaos, both far identical and noo-

identical bosaos, it does no! possess the apl~alingsymmetry properties
and subgroup chaios, such as those fOl.mJ carlier far the IB!-l-lHamil-
tonian (2). However, there exist limits in which numerical solutions
similar to the previous three 1&'1-1cases, i.e .• U(S), SU(3) and 0(6),

are obtained(8, 13). For example, whcn the number of protoo and ocutran
bosaos i5 small and near thc beginning ay the very end of a shell, so
that E ( Ild ) is largc comparcd ..."ith K (Qn. Ov) , U (5) or vibrational-l ike
results are realized in the IBM- 2. Here we have used ( ) to denote the
expectation value of <ID operator. \\hen the number of protonandneutron
bosons is large (near the middle of a shell) and X, ~ X '~ -17i2, so,r v
that K (Orr • Q.} is large compared wi th £ ( nd) , the IBr-I-2 resul ts are
SU(3) or rotational-like in structure. Finally, ".'henthe mnnber of
pro ton and neutron bosoos is between the middle oí the shell and the
end of the shell and X. ' -Xv' O, the IBN-2 Hamiltonian yields an
0(6)-like spectrum. A direct relationship between the I~I-l and IBM-2
parameters can be derived using the F-spin formalism(13).

A computer program called NPBOS. ~7itten by Otsuka and
Scholten(19), determines the eigenenergies and eigenstates of the IBM-2
Hamiltonian (14) for different choices of the parameters. In general,
there could be ten variable parameters to be determined for each nucleus
studied. This mnnber is however usual1y reduced to six by asstnning that
only Vvv(Vnn) contributes to reIative splittings in isotopes (isotones)
and that the contribution oí C4pis negligible. The remaining six para-
meters are E, K, XV' Xn, COp and C2p (p = TI or v). After the first
isatape (isotone) is described, Xn(Xv) is dctermined and is then assumed
to be the same [or a11 the rema.ining isotopes (isotones), Ieaving only
five parameters per nucleus.

The goal is to use the program NPBOS to determine empirically
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the values oí these six parameters which yield the bes! description oí
the low-lying spectra oí medium- to heavy-mass nuclei and which at the
same time vary smoothly with changes in the neutron- and protoo-bosan
number. It is importan!, far example, that the se! oí pararneters fer
ene se! oí isatapes (constan! Z) be quite similar to the se! oí para-
rreters fay the neighboring series oí isatapes (Le., nuclei with Z :!: 2).
The values oí these parameters should no! vary in a random manner, ir
the I~1-2 is a truly rneaningful description oí the properties oí nuclei
in this mass region, since according to the I~1-2 these pararneters are
1 d h d l

. f . . (8-11,13,20)re ate to t e tm er Ylng ennlOnlC structure .
Therefore, it is definitely oí interest to determine empiri-

cally these six parameters as well 35 possible in the mass regions
SO ~ N or Z :::82, 82 S N S 126, Z > 82 and N> 126 and then to compare thei r
values with results obtained from calculations based on microscopic
theories involving the fennionic degrees of freedom. Work along this
line has been carried out and is continuing and will be discussed in
the next two sections.

IlI. APPL1CATla-JS OF lHE 113/>1-2

Numerous applications of the I~f-2 to different nuclei havc
already been carried out, and the reader is referred to References 8,
13 and 21 for the details regarding sorne of these calculations. Here
we present only the IBM-2 calculations perforrned at the University of
Arizona for the tungsten(22) and mercury(23,24) isotopes.
A. The tungsten (w) isotopes:

The proton muroer for W is Z = 74, so it has four proton-boson
holes, i.e., Nn = 4. The neutrons are in the 82-126 shell, so that
0< Nv ~ 11, \',;hereparticle bosons are counted from the beginning to the
middle of the shell and hole bosons from the middle to the end of the
shell.

As discussed in Section II-B, it is assumed that E = E = ETI V
for simplicity. This might seem an oversimplification, since the proten
bosens and neutren bosens are in different shells. Hewever, calcula-
tiens using this assumption have led to reasonable resu1t5, not only
fer W, but a150 [er other nuclides(8,13,21).
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The Ca and ~ tenns aTe ineluded in the V interactionv v vv
but no! at a11 in the Vnn interaction, since for mast of the region fit-
ted,Nv > N1T, 50 that the VUTI tenn is no! excepted to be very important.

In the ~Ejorana term ~2 = 0.04 ~~V and ~1 = ~3 = -0.02 ~~V
far the entire isotopic chain. The f.1ajorana tenn is used primari1y to
push up in energy those states with large non-symmetric paTts. Since
the low-lying collective states are largely symmetric, the influence oí
the Majorana term on these states is expected to be minimal(8,13).

With these simplifications, the Hamiltonian used in the fit
to the W isatapes becomes

H dn
d
• + n ) + K Q (2). Q (2) + ~I + V
,,~ TI V TI'V\N

(16)

so there are only six free pararneters: E, K, Xn. Xv •.Cov and l2v
After ane isatape is fitted, Xn is established and is kept constan! foy
the remaining lsotope fits, so there are only five free parameters
thereafter.

of the Duval- Barrett (22)
168
74 W94 to

The experimentally detennined energy levels for the even-even
W isotopes span the range in neutron number from N = 96 to 114, but pre-
dictions can be made beyand this regian by a smooth extrapolation of the
aboye parameters.

FigurE' 9 shows the resul ts
calculations of the energy levels foy the isotapic chain
192
74W118' Figure 10 gives a detailed comparison with the experimental

data(25-27) accorJing to the quasi-ground state rotational band and the
quasi-y and 8 vibrational bands. Figure 11 contains graphs of the para-
meters used.

Perhaps the mast striking feature of the energy spectra is
the sharp rise in the y and B bands at neutron number N = 108, which
may be due to a subshell clasure in the i'3/2 Nilsson level and/or a
reversal in the deformation. This is supported by such effects as (1)
a maxilT1lD1l in the quadrupole mamentum oí the 2,+ state for N = 108,

+(2) a minimlUTIin the 2t - 01 splitting for N = 108, and (3) a large
change in the two-neutron separatíon energy after N = 108. Fitting
this sharp rise has led to a dip in the value of Xv at ~: = 108.
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Fig.9 Calculated energy spectra af the tungsten isotopes showing the
low-lying 0+, 2+ and 4+ states, with respect to the 0+ ground
state.
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Fig.10 Comparison between the ealculated (solid lines) and experimental
(black dots) energy levels ef the tungsten isotopes in (1) the
graund state band, (2) the quasi-Y band, and (3) the quasi-s band,
respectivelY.The experimental points are from Refs. 25-27.
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Fig.l1. The IBM-2 parameter set used for the tungsten isotopes. The
value used for Xn was -1.6.

In general, the agreernent with experiment far the ground-
state-band and y-band energy levels is quite good. The agreement
with the B-band energies is not so successful, notably in 1~eWl12 and
1~~W¡04_The IBM-2predicts the B-band energy levels for these two
isotopes to be much farther apart than experirnent seems to indicate.
In the case oí 1~~Wl12 one should note that the experimental 6-band
energies are listed as questionable.

Duval and Barrett (22)also detennined the electromagnetic
transition Tates between the different energy states, using the wave
functions Obtained írom the previous calculation and the computer
program NPBEM(19~ The mast general single-bosan transition operator oí
angular JTK)]'Tentuml can be wri tten as

( 17)



554

"here T6£1 is of the fonn of Eq. (5). One can use the transition opera.

tar (17) to calculate a11 mrrents fTem £.=0 to l=4 but results onl)'

far £.=2 will be given heTeo The results of other IOOments, Le., p(EO)

and isotope and isomer shifts, are given in Ref. 22.
For i = 2 the E2 transition operator can be written in the form

( 18)

where Qp is given by Eq. (12). In principIe, the parameters Xn and Xv
in the quadrupolc opcrators Q may be difíerent from those used in the

quadrupolc opcrators in the Hamiltonian Eq. (16) ; however, Duva! ,md

Barrett h:IVC taken thcm to be the Sa.Jr"C in their calculations, so as to

reduce the nl.llTbcr of free paramcters. This also sccms a natural choice.

Thc paramctcrs en and Cv have lIDi ts of eb rmd indicate the proton-hasan

and ncutron-boson effective charges. respectively. As a furthcr simpl ¡-

fication, they use a constant en = c\J for a11 nuclei. The value of the

constant is detcnnine<1 by fitting one of the experimentall}' known

transition rates. Using en = e\J = 0.126 eb (determined by fitting the

21+"~ 01+ transition in InNloe), they obtain the results shown in thc

follOh'ing figures and in Ref. (22). Results are presented using thc more

convcntional rcduced transition rates, i.e., the B(E2) valucs given hy

Eq. (6). Figures 12 and 1-3 show the absolute B(E2) valucs for the

2,+--+-°,+,42++°,+, and 23+"" 0,+ transitions. These are typical cx:tm-

pIes of thc rcsul ts obtained. Many more such B(E2) values and also

branching ratios are rcportcd in Ref.(22). It should be noted that the

theory reproduces al! of the trends of the kn",,'Tl data (28-30). including

thc raet that the 23+ ..•.°,+ transition is 10-2 tiTres weaker than the

2,+-~0,+ transition. It should also be remerrbered than no attemp.l was

~lde to fit any of the B(E2) values while determining the paramctcrs in

the Hamiltonian.

SincC' thc E2 transition operator is, in fact, a quadrupole

opcrator, it is also possihle to calculate the quadrupole moment for a

nuc1elL" in a state of angular momcntlIDlJ, using

C~.]'h ( 1al
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Fig.12 Comparison between ealculated and experimental 8(E2) values fer

the 21+-+0,+ and 41+ ...•2,+ transitions. The experimental points
are froro Ref. 28 .
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Fig.13 Comparison between ealculated and experimental B(E2) values
for the 2)+ ..•.0,+ transition. The circles are froro Ref. 28

the squares frOID Ref. 29 and the diamond from Ref. 30 .
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Using the IBM-2waveftmctions and the E2 transition operator given by

Eq. (18). !luval and Barrett obtain the quadrupole momentsshown in Fig.14
far J = 2, + and J = 22+. Note that the parmooters en and ev in the T(E2)
operator have already been determined from fitting the B(E2) data and as
befare, Xv and Xn are the sarre nurrbers used in the Hamiltonian (16) J so
there are no new free pararneters in detennining the quadrupole rroments.
The IBt-I-2predicts the correet sign in both oí the aboye cases, and
the agreernent with experiment is very good far Q2+' But, in the case oí

1
Q2+ , the IBM-2values differ dramaticalIy from the recentIy determined
e~rimental numbers(31) far 1~~WI08 and l~~WIIO' Experiment indicates
a sharp deerease in Q22+ far these twa isatapes, which is not predicted
by the I~1-2. This deerease is, however, predicted by the pairing-plus-
quadrupole modeI of KtmJarand Baranger(32), but for other properties

+associated with the 22 state (i.e., energy and E2 transitions), the
IBM-2agrees muchbetter with experiment(22).

-2.0

<¡
1
•• -I~

&

i
-LO

96 100 10"1 108 112 1I6

Mul'on numbe'
96 100 10"1 108 112 '"

Fig.14 Comparison between ealeulated and experimental quadrupole mo-
rnents for the 21+ and 22+ states. The experimental points (the
eircles and squares) are froro Ref.31
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The program NPBOSa150 gives the grotmd-state energies oí the
01 + states, from which ane can detennine the two-neutron separatían
energies(22). Figure lS shows a comparison oí the theoretical results
with experimento The agreerent with experirrent isquite good.

To summarize this subsection, we have seen that the IBM-2
yields results far the tungsten isatapes which are in generally quite
good agreement wi th experiment, particularly far the energy levels and E2
transitions. The IBM-2 a150 allows us to make a large number oí theore-
tical predictions where data are no! now available. It would be worth-
while far experilOOntalists to perfonn further investigations oí the tlDlgS-
ten isatapes in arder to compare themwith the theoretical predictions.

As was stated in Section II, the goal oí the empirical IBM.2
is to determine sIOOothly varying values oí the parélITeters e:, K, XlT and
Xv which reproduce the experinental data for a11 even-even nuclei in a
given mass region. In Figure 16 we show the values of these paraneters
for the neighboring osmiumand platinum iso topes (33) and see that they
are, for the most part, consistent with the parameters for the tlDlgsten
iso topes , illustrated in Fig.11. Also the isotopes of xenon, barium and
cerium,whose valence bosons occupy the 50-82 she11, have been recently
fitted(34) with a consistent set of parameters. These parameter values
plus those for gadolinium, samarium, neodyrnium and thorium(35) are also
shO"TI in Fig.16. So the goal of obtaining self-consistent sets of the
IBM-2 parameters is borne out by the current research, but íurther inves-
tigations oí the isotopes of other nuclides need to be carried out in
the future.

B. The mercury (Hg) isotopes:

The Hg isotopes are particularly íascinating since their
experimental excitation spectra indicate the coexistence oí two different
structures in the same energy region(36). Generally there is caníigura-
tion mixing between these structures. Recent1y Duval and Barrett(23)have
developed an extension oí the IBM- 2, which allows them to describe in a
completely general and quantitative rnanner the mixing oí two different
configurations of any arbitrary structure.



sss

"

"
",
Jc
"

" \
" '" ".
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ration energies, 520, The experimental points (salid circles)
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Fig.16 Surnmary of the IBM-2 parameters e, ~, Xv and Xn appearing in
Eqs. (12) and (14), as detennined from phenomenological calcula-
tiaos as given in Refs. 33-35. The open circles denote valu~
for XTI"
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Thc Duval-Barrett method(23) consists of fiTst describing the
general features of the two differen! configurations in tcrms of two dif-
ferent IBr-l- 2 calculations and then mixing the rcsul ts of these two calcu-
lations using an appropriate IBM- 2 mixing Hamiltonian. Thcir technique is
TIüsteasily understood in tenas of a specific application, which they chose
t d f th . . h . 164 188o o ay e mercury lsatapes In t e reglon BoHgl04 to 80HgI08 . These
are particular!y interesting isatapes to study since they sirnultaneously
show ane se! of sta tes which are distine!!y rotational in character and
a second se! which are vibrational in structure. Such simultaneous rota-
tiarra! and vibrational structurcs are a cornmon feature of nuclei which
have cither their proton number or their neutron number near a elosed
shell valuc, another examplc bcing the tin isotopes(37). Although previ-
ous deseriptions of this phenomenon in thc Hg isotopes have becn givcn(36)~
in the Duval-Barrett teehnique the rotational and vibrational charaeters
of the different eonfigurations arise quite naturalIy through the I&~-2
fonnalism.

This effcet is iIlustrated in Fig. 17 which shows the encrgy
spcctra of the Hg isotopes(27). One elearly sees the two different eon-
figurations, namely the vibrational states, which ehange very littIe
from isotope to isotope, and the rotational levels which come very low
. 184

H1n energy at 80 g104.
Duval and Barrett eonsider the simultaneous vibrational and

rotational struetures in the Hg isotopes to arise from two different
boson configurations. The vibrational spcctrum is assumed to come from
the standard IB~I-2 pieture of the interaction of the one proton-hole
basan (Nn = 1) \<.'iththe valence neutron bosons (N.), as shm'oTIin Fig. 18(a).
In this case, the cffcct of the K QTfO Qv interaction is .small, since
NTI = 1, and the lB~I-2Hamiltonian (14) posses ses more or less a U(5) or
vibrational synunetI),,.C8,13). The rotational spectn.uTl is assllJTCd to arise
from the excitation of a proton boson (i.c., a proton pair) above the
82 shell gap, so as to produce a configuration of two proton-hole bosons
and one proton-partic1e hoson (Nn = 3). as shown in Fig. 18(h) .In this case
there are three active proton bosons to interaet with the active neutron
basan s through the K Qn • Qv tem. This interaction strongly mixes states
of diffcrent nuniwTs of s and d bosons and has beeo shm'oTIto lead to a
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Fig.17 Exper~mental energy levels for 1~ijH9I02 to lefiH91120 The salid
lines connect states of vibrational character. The dashed lines
connect states of rotational character. The data are from Ref.27.
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Fig.18(a) The single-particle proton and neutron configurations for the
even-even H9 isotopes.

(bl The single-particleproton and neutron configurations for the
even-even H9 isotopes when a proton pair has been excited
across the 82 shell gap.
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rotational spectrum when several active proton and several active neu-
tron bosons are presento So for N = 3 the IB.'I-2Hamiltonian (14) pos-TI
sesses more or les s a 5U(3) or rotational Symmetry(8, 13) .

Onewould a150 expect there to be sorre mixing between these
different configurations. There is evidence far such mixing in the ex-
perimental data(38). It can a150 be seeo in Fig.17, e.g., the 4+ states
far N = 106 and 108. To aCCOlD1t far this mixing, Duval and Barrett intro-
duce a boson mixing Hamiltonian between the Nn= 1 configuration and the
Nn= 3 configuration. In the specific case considered here, the ros!
general mixing Hamiltonian that is two body in the fermion space and
connects the two configurations is:

(20)

In the case oí the mixing oí configurations in other nucleiJ Hmixmay
have a difíerent fonn.

The complete I~I-2 calculation oí the Hg isotopes now involves
two separate calculations (ene fer Nn= 1, another fer Nn=3) plus a nuxmg
calculation. In the fonmer two independent calculations, the IBM-2
Hamiltonian (14) is diagonalized in the appropriate space. Each of
these calculations would appear to invo1ve severa1 different parameters.
The number of parameters is reduced by insisting that the neutron number
dependent parameters be the same for each isotope in both calculations.
The V term is not used since Nn is small. i.e., one or three. Also,TITI
the value for Xn in each ca1culation is kept fixed for a11 isotopes. The
parameters a and B are kept constant fer a11 iso topes. Another para.rre-
ter, which gives the amount of energy needed to excite a protan basan
into the next major shell, is also needed. This parameter, ca11ed A,
is a1so kept fixed at a value of 4 MeVfor al1 isotopes.

The results of the Duval-Barrett ca1culations are given in
Figs.19(a) and (b). Figure 19(a) shows an unmixed calculation, i.e.,
a = B = O. In this case two separate ca1culations were done and an
amJunt Awas added to the NlT= 3 eigenvalues. Figure 19(b) shows the
resu1t of including ndxing amongthe states in Fig.19(a). The ndxing
is seen to cause the sta tes to "move" in exact1y the manner described
by the experimental states.
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Fig.19. Comparison oE theoretical versus experimental energy levels (a)
for no configuration mixing, and (b) ior configuration mixing,
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0+ bands are shown. Experimental states are ordered in increasing
angular momentum. Opeo circles are vibrational levels. Solid
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Using the wave functions from the previous calculations, Duval
and Barrett a150 determined the B(E2) values by considering an E2 transi-
tion operator of the fom

T(E2} • (21)

.•"..he re el has units of e-barns and gives the effective charge of the
proton and neutron bosons in the Nn:: 1 configuration. The proton and
neutron bosons are treated as having the same effective charge for sim-
plicity. Similarly, e) is the effective boson charge in the Nn:: 3 con-
figuration. The Q operators are the same as those given in Eq. (12).
lne subscripts and 3 rcfer to the proton-boson space in which the
operator acts.



563

uau J.

CO,",PU1SON Of OP[RI"[NTAt ~ND HlfORETIC.l 8(E2) ~ALU[S

...,6.211.48

./0

t~. up. t~.

.6Z

.,"

t~. ..p.

.19 LIT' .88 Z.¡b 1.19

."
U~.

'"leMgl01

'" ,18'UllglO4

1:;119)0. .>1'

• ".toJ9 e a-f.4'

b Uf. 40

TabIe 1 compares the results of their theoretical calculations
far B(E2) transition Tates and branching Tatias with experimento For
absolute B(E2) vall~s they had only to determine the values of e, and eJ"
For the sake oí simplicity they assumed that the ratio e,/e) is given
by K,/K3' where K, and K3 are the strengths oí the quadrupole interaction
in the Nn= 1 and Nn= 3 configurations, respecti vely. This is a reason-
able asslDl1ption, since both the cffective charge and the quadrupole
interaction strength are proportional to the mean square protan radius.
Thus by fitting to only one of the experimental B(E2) values, they deter-
mined both el and e3 . For the branching Tat¡as. however. only the ratio
el/e3 is important, so there are no new free parameters in this case.

For the most part, the theoretical calculations oí energy
levels and 8(£2) values compare very well with experiment, with the

+ + / + + 186exception of the ratio B(E2j 22 ~ 21 ) B(E2; 22 ~ 01 ) for 80HgI06.
Since the amount of mixing between states depends upon the location of
the encrgy levels before thcy are mixed as well as the rnixing paraJreters,
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" and 8, improving the fit to the energy levels should improve the agree-
ment of the calculated B(E2) values with experimento Also, this expet-

iJrental resul t maybe in error.
These calculations were perfonned using an excited configura-

tion built on three identical proton boscns. A roTe realistic ealeula-
tian should make a distinctian between the two proton-bosan holes and
the excited proton-boscn particle. However, if ene considers only sym-
IOOtric conbinations oí these different proton hoscns, then the calcuIa-
tiOl1. can 5ti11 be perfonned treating them as id.entical. The argment
is the same as that given fer perfonning an IBM-l calcu1ation, where
neutron bosans and proton boscns are treated as identical(13).

Even though the spectrm for Nn= 3 is shifted up in energy by
4 MeVwi th respect to the Nn= 1 spectrum, sufficient energy is gained
through the attractive K Qrr. Qv interaction due to the inerease in the
nlll'ber oí active protons to overcOJreroS! oí this shift. This effect is
not present in the heavy Hg iso topes) since the nurrberof active neutron
bosons is small. The Nn= 3 spectnun Hes 'very high in energy for these
isotopes (43) .

Onemight expect that states formed by exciting two proton
bosons into the next majar shel1 are also irnportant. The ftmdamental
question is whether or not the K Qrr• Q" interaction increases sufficient-
ly in strength as the nurrberof proton bosons is increased so as to
overcome the excitation energy of each proton boson across the shell gap.
By empirically studying the energy of the 2p-2h and 4p-4h states in
heavy nuclei, ooe finds that the 4p-4h excited state Hes significant1y
higher than the 2p-2h state(23). Hence, ooly the 2p-2h excitatioo (i.e.,
the one proton boson excitation) should makean important contribution to
the excited-state configuration.

To sUllJllarize, Duval and Barrett(23) have developed an expanded
IBM-2teclmique, in which different configurations are described in teIlTlS
of separate IBM-2calculations, the results of which are then mixed
using the appropriate IBM-2mixing Hamiltonian. In the case of the Hg
iso topes the vibrational and rotational characters of the energy levels
arise naturally in their approach due to the U(S) symetry of the Nn' ,
configuration and the SU(3) symetry of the Nn= 3 configuratioo. More
extensive calculations are now being carried out for the entire chain of
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Hg isotOpeS(24). It should be ernphasized that the Duval-Barrett techo
nique is quite general and that it has a150 been applied to other nuclei,
such as the platintmI and rnolybdentmIisotopes, which also exhibit the
features of the mixing of two distinctly different configurations (44) .

IV. MICROSaJPIC TIlEORYOF TIIE IBM

As originally formulated by Arima and lachello(6), the IBMwas
a purely empírical model with no direct connection to the underlying mi.
croscopic fennion strocture. Since the trerrcndous success oí both the
IEJ'oI-l and IBM-2 in describing the properties oí even~evennedium-to-heavy
mass nuclei (8,13,21), considerable progress has beeo rnade in understanding
the structure of the IBMin tenns of the nuclear shell-lIDdel theory.

Like the nuclear shell roodel, the IPJ.fis first and forelOOst a
wave funetían truncatían procedure. lt reflects the standard problem
which exists in mast oí physics, namely that ene cannnot salve the dynanr
ies oí the prOblem, e.g., the SchrOdinger equation, in the ful! space
spanned by all the variables, since this space is too large or even infi-
nite. Consequently. one is forced to work in a truncated model space,
so as to have a finite and tractable number of degrees oí freedram
which can be treated n1lrrerically. The nuclear shell rodel is itself
such a tnmcation scheme; íor example. the low-lying spectnmt of 180 is
usually described as two neutrons interacting in the restricted model
space oí (OdS/2' 151/2, Od3/2). However. if one works in a truncated
nodel space instead oí the full space. one must then use effective
operators appropriate for this rodel spaee instead of the ful! space
operators; otherwise incorreet resul ts wiU be obtained. Wewill return
to this point latter.

In the case of medium-to-heavy rnass nuclei. which have several
valenee nucleons outside the nearest closed proton and neutron shells.
even the usual shell-rodel truncation, consisting oí the assumption that
these valence protons and neutrons interact only in the lowest-lying,
open major shells appropriate for each, is intractable. Such calcula-
tions aften involve millians or billians oí states oí each possible angu-
lar rromentum. Conseqtrntly. even a rore restrictive truncation oí the
full space is necessary in order to makemicroscopic calculations feasi-
ble for such nuclei. The boson degrees of freedom asslllTed in the I~
appear to be a reasonable truncation scheme for describing these nuclei
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as dcm::mstT.Jtcd by rhe success of the phcnorncnological IR¡\¡cxhihitctl in

Sectioll 111. 1n(' rcmaining qucstion is to cstablish the' link hct\\'ccn

these bosan dcgrces o[ frccdom ano the correspontling [('nnían dcgrecs of

[r('cdom.

The hosons of the 1&\1are clearly more conq)l icatcd in struc-

tUTe than a simple pair of idcntical nuclcons cour1eu to ,] = O ay J = 2.
We consider on1y pairs of iJentical nuclcons, hecause in hcavicr Huelei

the protons :md ncutrons, in general, occupy different majar 5hc115, so

that it would no! be possiblc to fom a pair with ..1=0 and positive par-

i!y fram a V3lcncc protoo and a valcnce ncutroll. The IB.\1hosons aln'ady

contain sorne oC the collcctivity of the interacting fcrmions. This
c[[ce! i5 similar to the 1TIimnerin which the nuclear rcaction 1TIiltrix

aIread)' cont:dns the influcnce of the strong, short-rangc repulsion in

the nucleon.nuclcon potcntial. ThllS, the IB~Ibosons represent correla-

ted pairs of identiczll nucleons, but .•...hat bod of correlateJ pai rs?

The recent ,,'Ork of Talmi(11) indicates that, at Ieast [ar the

J = O bosons, these corr('lated pairs are of the type descrihed by the

generalized seniorit)' approach(4S). This approach has the advantages

(1) of strictly consen'ing the mnnber of nucleons, and hencc the mmner

of correlated pairs or "bosons", (2) of treating the ,]=0 and .1=2 pairs

in the same m.1.Jmcr, and (3) of being arnenable to calculation •..'ith a •...ide

class of effcctive interactions, instead of onl)' the pairing interact iOll,

as in the case of BeS theo~'.
In the generalized seniorit)' approach(4S), one constructs the

creation operator of a correlated J = O pair for several j -arhi ts in the

sarne major shcll in the form

st l: e, st
j ) )

~hcrc

st 1 l:
. + +

1
(_I)J-m a' a'.

) m ) ,m J ,-ro

(22)

(23)

and the Qj are wcighting factors far each j orbit.

An example of such a correlated pair ,",ould he n.,'o identlcal
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nucleons in the 82 to 126 majar shell. This shell contains six j-orbits,
so \ole can construct six J = O, T = 1 states. If we diagonalize the 6 x 6
matrix reprcsenting the intcraction between these two nucleons in this
majar shcll fay any appropriatc effective interaction, we find that one
of the eigenstates líes considerably lrn~er in energy than the other five.
This lowest-Iying collective Jn=O'" state is the J=O correlated pair
defined in Eq. (22).

If all the Qj are equal in Eq.(22). then st is one component
oí a total quasi-spin operatoT, and the scniority scheme is easily ex-
tended to severa! j orbits. In real nuclei, oí course, the <Xj ••••'i11 be
unequal. and we will lose the appealing SU(2) properties of the quosi-
spin operator. In spite oí this, Talmi has shown that sorne important
properties oí the seniority scheme survive this generalizatíon.

In particular, Talrrü(11,4S) asked under what conditions will
a "condensate" of pairs created by (22) be an eigens'tate of a shell-
model Harrdltonian HF' containing only single-nucleon energies and two-
body effective interactions. In other words, what are the conditions
on HF' so that

(24)

where H¡: I O) F = O and lO) ¡: is the fermion vacuum state. Talmi (45)
showed that (24) holds for ~ value of n. provided that

(25)

and

•~(S')210)
F (26)

E
n

nVD + !!.C!!.:Jl ~
2 ' (27)

whcrc Vo and '" are simply c-nurrilcrs. Thc trends regarding binding
encrgies and scparation energics predicted by Eq.(27) agree very wcll
wi th the experimental trcnds. Hence, a correlated pair of the fonn (22)
is a likely candidatc for a .J:: O boson, since it leads to a condensate,



568

i.e., (st)n I O) F' which yields rcsults in agreement with experiment for
nearly spherical nuclei. Unfortunately, if we calculate the commutator
of ST with (st)t, wc find that it is not equal to one but is

1
L "2
j

(2j • 1),,'
)

(28 )

tSo the S do no! create real bosoos. We could neglect the second term
on the right hand side of Eq.(28), which is the cornmonlyused quasi-bo-
son approximation. This is, ho",,'ever, a good approximation only ,,"'hen the
mnmcr of valcncc nuc1eons is small compared with 1 (2j + 1). Weseek a
resul t that wi 11 be true fay any mnnber of valence jparticles.

At this point ""C recall that the IEJ.1corresponds to a wave
fLUlction tnmcation and no! to an operator expansiono Consequently. we
are no! intcrested in cxprcssing fcnnion pair operatoTs in tcnns oí bo-
son opcrators. ¡'!'ha!wc want is a corresponuence between the boson
states and thc fcrmion pair states. This is done by making a one-to-one
nupping of thc fcrmion rai r stJtcs, (st)n I O) F, onto the bosen states
(st)n I O) B, wherc 10) B of the hoson V3CUumstate(9,10,18,46). For

simplicity and convcnience we havc asslmed that the states in both
spaces are propcrly norrnalized.

Once SUdl a direct correspondcnce has beenestabIished between
the correlated fenmion pair states and thc boson states, one can deter-
mine the appropriate boson opcrators by constructing their "image" in
the boson spacc(9, 10). That is, one requires that the matrix eIernent of
the corresponding basan opcrator in thc basan space be the same as the
matrix clernent of the fcnnion opcrator in the fcnnion space. For exam-
pIe, ,,"'C ,,"'ouldrequirc that

(29)

or that

(30)
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This is the appropriate effective Hamiltonian in the boson space. It
should be noted that HBas given by Eq. (30) does not reproduce a11 pos-
sible eigenstates oí the ferrnion Hamiltonian but only the ane corrcs-
ponding to (st)n I O) B. Also, HBis not an expansion in powers of st
and (st) t. Hence. once we have established the appropriate correspon-
dence ar mappingbetween the correlated fennion pair states and the
boson states, we can detenmine the form oí a11 the boson operators
(Le., effective operators) using the "irnaging" teduüque.

So far we have discussed only the J = Ocorrelated pair with
generalized seniority v= Oand the "condensate"oí pairs fomed from it.
Let us now consider pair states with J = 2 which have generalized senio-
rity v = 2. The operator which creates a correlated J = 2 pair can be
wri Uen in the fonn

1

,t~
í (jrnj 'rn' I jj' 2~1)
mm'

(31 )

As befare we can ask under h'hat conditions on the shell-model
Harniltonian HFwi11 the states (st)n-l(D~) I O) F be eigenstates. Once
again Talmi(11,45) has established that such conditions exist, that the
eigenvalues obtained produce results in agreement with experiment and
that the corresponding boson Hamiltonian can be constructed by the
imaging procedure.

So far there has been an exact ane-to-one correspondence be-
tween the results in the correlated fermion pair space and in the boson
space. However, states constructed with two or more O~ operators may
not be orthogonal to states with smaller numbers of ~ operators, e¡g.,
the state (oi" • ot) 10) F is, in general, not orthogonal to t~e v:=.0 .
state (st)' I O) F. where the dot represents a scalar product of "the 0<0"

t •
ot. In order to ma~~ the correspondence between these higher DM st~tes
and the boson states, -,we must project out of the fennion states those
components which are s~?tes with lOh'er generalized seniority. Hence,
thc st3te (5t)n-2DtID~, 1(, ) 1 corrcsponds to the boson state
(st)n-'(dt)' I O) B, "he re )1 denotes that the part not orthogonal to
(st) n I O) F has been projected out.

There fore , the JTli:¡ppingprocedure of Ginocchio amI Talmi (46?
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¡rnJ rhe' gellerali:C'd seniorit)' rrcthod(.l5) pennit liS to establish <1DIle-to

ane correspondencC' hetl""C'encorrelated fennion pair states and states in
the s anJ d hogon spacc. I\'hethcr 01' not th('sc particular corrclatcd

f('miaD pair statcs, as constructed in the aboye m;:mncr, actualIy C01'1'e5-

pand to rhe s and d boson sta tes of the 18..'1mus! ~I\.:ait futurc iO\'(,5ti-

gation.
So far we have discussed on}y configurations Cal' identieal

lluc1cons intcracting through rhe T = 1 component of the nuc1con-nuc1con
patcotial, which conserves seniority. On rhe othe1' hand, the T= O in-

tcr3ction, which wc have no! yet consülcrcd, strongly hrcaks scniority.

\\'e wouId cxpcct that the important matrix elelTCnts of this T:: O intc1'-

:lction are rhose takcn bctwcen the protoo bosoos and the neutron hosoos,

\\;hidl oceupy di fCerent shells in heavy nuclei. ThC're is evidenee in

light nuclC'i that the protoo-oeutroo T = O iotcruet ion is rcspoosiblc for

producing the defonnatien observed fer these nuclci (47). In the hoson

language this seoiority brc<lking manifests itselfas a mixing of the 5

and d boson coq)Qocnts of the V.'ave ftmctions. For C'xample'. in strongly

oefonned nuclei \,'hieh shov.' good rotational properties. the grOlmd-state

v"ave funetion i5 eS5cntially an equal mixture of s and d bosons, v,'hile'

a nueleus \\hieh hehaves like a 5phcrieal vibrator has a grOlmd-statc

wave flDlCtion v,'hich i5 essenti31ly pure 5 boson in stnlCturc. lhe

simplest intC'rllet ion v,ihieh hreaks seniority strongIy is the quadrupolc-

quadrupole interaction(11,48) This faet ID.:'lkcsreasonahle the choice of

él quaorupole-quadrupole interaetion for the basie protoo-boson-neutron-

bosoo intcraetion io the TBi\1-2(Eq.(14) l. Thu.". cveo though the lBi\l-l

exhihits the heautiful symnctry properties of the U(6) algcbra. it is

the 1R;\1-2whieh appears to possess thelTKJstdireet eooncction to the' un-

derlying mieroscopic [ennion structurc through the gcncralizcd seniority

schcJre .md the quaJrupolc-quadrupole proton-neutron interaction.

The ahove discussion gives only the basie "[lavar" of the
arglUTCnts ofTalmi(l1), Otsuka et al.(9,1O,18,49),Ginocchio(46,SO) ano

others(8,13,21) in their efforts to establish the rclationship between

the lB'\! and the nuclear she11 rood.el. The interested reader is particu-

larIy rcfcrred to Refs. 8-11.13 and 21 for more details.
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As pointed out earlier. once a Jireet relationship has becn
obtained bctween the ~ave functions in the fcnmion space and the s-d
boson space, one can use the imaging technique to determine the struc-
ture and the Nrr and Nv dependence of the boson operator cOTrcsponding
to any given fermion operator. This procedure has becn described in
detail by Otsuka(49l and by Otsl~a. Arima and Iachello(lOl. who spe-
cially work out the form of the quadrupole operator in the s-d boson
space and determine the ~ and Nv dependencc of K, Xn and Xv. The rc-
sults of such calculations fay the SO to 82 majar shell. based on the
work of Otsuka(49), are ShOhTI in Fig.20. In these calculations the SO
to 82 ",1jor shell is treated as a single j ,hell of j =¥ The pre-
diction fay £ is a150 illustrated. In the basie I&~, £ should be con~
stant across a majar shel1, since it is simply the amount of energy
required to change an s boson into a d boson, Le., to change a J = O
correlated femon pair into a J = 2 corrclated fennion pairo The gener-
al izcd sf'niority argurrents given ahoye prcdict a constant value for th is
excitatíon energy across a ~ljor shell.

In Fig.20 one should particularly note that Xv changes sign
at the middlc of the shell and is of the sane fom [or both positivc ami

ncgative values. On the other hand, the values of Xv determin~d empiri-
cally for :-.Iv = SO to 82 are ske\\"ed\\"ithrespcct to the middle of the
shell (see Fig. 16), and the empirical values for ~v= 82 to 126 sho\oo';:m
oscillat ion wi th a minimum at ;\v = 108 in the case of the tungsten isoto.
pes (Fig.ll).

Duval and Barrett(S]) have extended the imaging calculations
[or the boson quadrupole operator, so as to treat each major shell as
if it consisted of two differcnt j shclls, instead of only a single j
shell, as in the earlier calculations(10.20,49). Typical results of
thcir calculations are given in Pig.l1. ~le observes that these calcu-
lations are capable of reproducing both qlmlitatively and quantitatively
the empirical structure found foy K, XV' and Xn'

The treatrrcnt of a ~ljor shell as consisting of t\\,'Odifferent
j shcl1s has a direct connection with e~)crimental observations(52).
For example, in the N = SO to 82 major shcll the [ive single-particlc
lcvels tend to cluster into two distinct groups.

•
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Fig.20 The dependence of £, ~ and Xv on NV as expected in a micrvscopic
theory with degenera te single-partiele orbitals (Ref.49).
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Fig.21 Two nondegenerate j-shell predictions for KV and Xv in (al the
50-82 shell and (b) the 82-126 shell. The units for KV are ar-
bitrary. The arrows indicate mid-shell (Ref.S1)
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The above-mentioned calculations clcarly have predictive power
far the values of the pararnetcrs K. XV and Xrr in mass regions where no
empirical fits using the I~1-2 have becn carried out so faTo In partic-
ular, Duva! and Barret! have used the values of K and Xv predicted froro
their twa j shell calculations far N= 82 to 126 to recalculate their
earlicr IBt-1-2predictions far the propcrtics of the tlUlgsten isotopes(22).
Thcir ncw calculations(Sl) were in even better agreement with the exper-
imental data than the original empirical fit.

Like the single j-shell calculations, the two j-shell calcula-
tioos of Duval and Barre!t 0.150 predict a constan! value of £ across a
majar shell. On the other hand, thc empirically dctenr.ined value of £

changes dramatically from its near-closed-shcll value to its center-of-
the shell value. This change is necessary in the IBM to reproduce the
largc decrease in the 2,+ - O, + splitting as the masses of the isotopes
vary from their closed-shell values to their centcr-of-the-shell values.
In t}~ I~1-2. part of this deercase comes from the change in the number
of d bosons in thc 0,+ and 2, + states as Nv approaches its midshell
valuc. Part of it also comes from thc cffect of states leEt out of the
s-d boson model space, such as g and i bosons and s' and d' bosons. Sagc
and Barrett(S3) have used ordinary second-order perturbation theory to es-
timate the renonnalization effects on the IB¡\l-2parameters due to the g boson.
In order to perform microscopic calculations they begin in the corre-
lated fenmion pair space and then project their results into the s-d
boson space. ~ ~ Ginocchio and Talmi(46). A typical diagram ~hich they
compute in the coupled fernrion space is sho~n in Fig.22(a). Assuming a
two-body quadrupole-quadrupole interaction between the correlated fcrmion
pair~.they obtain a multipole-multipole result for the second-order
process illustrated in Fig.22(b). In particular. after projection into
the s-d boson space, they find the following expression for the monopole-
monopole tenn in second-order perturbation theory, denoted by V: (L = O) :

2J + 1
(2Jn + 1) (2Jv + 1) n'J-:rnJv

(32)



In Fq. (:~~) thl' angular mOlTl('nttmlnotation i5 given hy Fig.22(h), liE i5

the Ji ffel"l'llcl' het\\'l'eJ1 the unperturhcd ground-state ellcrgy ~Hldthc

tmpcrturlwJ intennediate-st;ltc energy ;l:ld the PrlTOC'on the slHl1mation

indicates that tite' Stun is rC'stricted to those intenlll'diatc states "o'ith

I¡;('J) =-l, ""hile I'J(TI) =0 01' 2.
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Fig.22 (a) Typical second-order perturbation theory diagram containing
one correlated fermion pair coupled to J:: 4 as an intermediate
state. Each pair of vertical Unes represents a correlated
fermion pairo
(b) Typical second-order diagrarn showing the notation used in
Eq. (32)

Conq,aring E'1.(32) with E'1.(14) for the [IJ,\1-2 Hamiltonian, we

5ec that Eq. (32) corresponds to a renoIlnalization of the tcnns depending

on ndTI and ndv and, hence, is related to the change in ( as N'J and Nn
vary. Sage and Barrett(53) used the renonnalization tcnn in Eq. (32) to

compute the 2,+ - 0,+ sp1itting in the barium isotopes. Figure 23 shows

the results of thei1' caleulations compared with the cmpirical rcsults of

Otsuka ct al. (9) (lowe1' eurve) and the rcsu1ts obtained assuming a con-

stant va1uc af E:. across the entire majar she11 (uppcr curve). From

Fig.230ne immeJiatcly sces that a sizable amOlmt of lh<-' t:h:lIlge in the
• •21 - 01 sp1itting <Irises from the change in (nd) as Nv v'-'ries (upper

curve). But it is <lIso true that the reno~1liz<ltion dl~ to the g boson

in second-order perturbation theory is: (1) of the correet sign émd (2)

tcnds to impro\~ the agrccmcnt with the empirically detcrmined valuc.
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Fig.23 Calculated splittingsbetween the first excited 2+ state and the
ground state for several Ba isotopes. The circles are the empir-
ical values found by Otsuka et al. (Ref.9); the triangles are the
results Di Sage and Barrett (Ref.53)¡ and the X are ealculated
values assuming a constant value for E. (Ref.53).

Independent calculations by Otsuka(S4) have sho~TI thar the
inclusion of the g boson 1n second.ordE'T perturbatlon thC'ory in rhe hosco
space improvcs the agrccment between exact shclI-rnodcl calculations and
the sane spectra calculated in the Tm.!. r.tuch work 5till rem.1ins to be
done regarding the importancc of tc~~ not present in the simple s-d
boson 18M. Must g hosons be included in the TPJ.lon an <'qual footing with
the s-d bosons or can their influence be accurately treated Q~ing second-
order perturbation theory? IJm". important are i bosons and basans of
higher J? Howsignificant 3re bosons of a different structure. i.e .•
collectivity. such as SI and dI hosons? Sorre work along this lattcr line



576

i5 already being invcstigated by van Isacker(SS), ~ho has expanded the
basic 1&'-1-1to inelude a single 5', dI or g boson.

Anothcr arca of considerable interest and activi ty is tha! oí

cstablishing the connection bet .•..'een the lEN and the collective IOOdelsof
Bohr and ~~ttelson(2); ho~ever. this work will no! be discussed in
det3il heTe. The research in this area is procecding along two lines.
Thc [irst consists of constructing the coheTent ar intrinsie state for
the IBM and demonstrating that the classical limits, corrcsponding to the
diffcrent gcomctrical models, can be projectcd fTcm it(56-S8). In partic-
ular, Diepcrink and Scholtcn(58) have sho\<'nthat the thrce limiting cases
tha! appcar in the I~l cOTrcspond to different shape phases. The work
carried out so far(S? ,58) seems to indicate that the IBr-l and the co11ec-
tive rrodcls are two related formulations of the san'e phenomena, in the
same way that the Ileisenberg picture and the Schrodinger picture, res-
pectively, are two fonnulations of quantlDlllTCchanics.

lhe sccond 1ine of rcsearch in this area is in\'est igating the
relationship ben.:een the 1&\1wave ftmction (in the boson space) and the
Bohr-~k:>ttelsongeorrctrical-model v.'ave function(S9.60). Similar to the
rcsearch with regard to the coherent state, this work also indicates
that a relat ionship can be established betv,;een the t\'.'o fonnulations,
namely a one-to-one correspondence can be estahlishcd bctwcen the wave
ftmctions in the two fonnulations, if a ITkJnopolcvibration (1.e .• an s
basan) is added to the geomctrical-model •••;ave function. Muchresearch
is continuing in both of these arcas.

To summarize this section, we have gained some insight into
the structure of the IBI'I bosons through the general ized seniority scherrc
and the concept of correlated fermion pairs which are capable of fonning
a condensate. On the other hand, no general theory exists ••.•.hich estab-
l¡shes the cxact relationship between states in the fenniol1 she11-model
spncc and statcs in the s-d basan space. Unti 1 we have such a general
theory, we will not be able to say precisely when the asslwptions of the
1&\1are val id for a particular nucleus and ••.•.hen these assumptions wi11
brcnk down. hhcn we are able to calculate the 181'1 basis sta tes and the
fB\l pararrcters using the fennion she11-rodel theory. then ••.•'c ••..'ill be
ahle to prcdict when the 181'1 •••0'111 break dO,,"TIduc to loss of collectivity
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in the basis states (i.c., in the structure oí the hosans) and when
other degrees oí freedorn (j.c., g and i bosons and/ay s' and dI bosans]
mL~t be included in arder to explain the nuclear structure observed
expcrincntally.

V. DISCUSSION AND CONCLUSIONS

At the very least the IBMis an extremely useful JOOdelfar
describing the low-lying properties oí even-even, medium-to-heavy maS5
nuclei. It is simple model both to crupIoy and to understand and can be
easily utilized to describe the properties oí nuclei with many valence
nucleons far from closed shells. These properties are aften extrcmely
difficult or impossible to calculate using earlier models(2). But the
IBl-1is more than JUS! a roodel J bccause through the rBr-f we can now a150
undcrstand the connection between the difíerent geometrical models (or
symmctry limits) as the number oí va1ence nucleons changes and can des-
cribe the change between these limits in a smooth manner as a function
of nucleon number.

Since the original Tm.1 is a phenomenological JOOdel, it has its
Iirnitations; it does not work for a11 nuc1ei and for a11 excitation
energies. 8ecause of the previous successes of the 1BM, sorne people
believe that the IBM has a wider range of applicability than its basic
assurnptions permito For example. the 1&'1 is meant to describe the Iow-
lyíng propertíes of medíum-to-hea\~ mass nuclei, roughly up to 2 or 3
~~vin excitation energy, depending upon the nucleus. For higher excita-
tíon energies the correlated pairs would begin to be broken up. This
does not mean, of course, that it is impossible to extend the IBM in
sorne way to treat hígh spin states and backbending; in fact, sorne work
is aIread)' being done along this line(61). Ne have already seen in the
case of the Hg isatapes that the hasic I~I can be extended in a straight-
fon~ard manner to describe configuratíon rnixing in nuclei(23). The IBM
a1so is heing applied to light nuclei (i.e., N and Z < 50), where the
basic assumptions of the model are probab1y not val id. Again the basic
lEN can rost likely be extended to treat selected properties of sorne oí
these nuclei, prohably through the use of the F-spin fonmalism(62).

Since the IBM represents a wave ftmction truncation procedure,
we have the possibi1ity of understanding the conoection hetween the bosan



configurations anJ tlw tDldcrlying microscopic fel1lll0n structure. In
Section IV \\CC'fmuld tllat thC' gC'ncralizcd sC'niority schcme(45) plus the
correspondcnce 01'mapping procedllre of (;inocchio and To.lmi(46) offers liS
the possibility oE such ;:m tmdcrstanding. 1t ,,"'as0.150ohscrvcd in Sec-
tion IV that thc strllctllrc of the JW-1-2Hamiltonian appears to be simply
related physically to the tmdC'rlying fennion interactions. If in the
long nm this connection 01' one simi lar to it proves to be correet, then
we will o.t last reach the goal of a tUlificd thcory of nuclear structure

£01'0.11nuclei.
d (57-60)

Thc IBMand thc Bohr-l'-lottclsonMoel appcar to he related ,
as wc discussed in Section IV. They secm to he simply two representations
o£ the sane phcnomcna, as the Heisenherg picture and the Schrcdinger pic-
ture are two equivalent rcpresentations oí quantummcchanics. It is only
a matter o£ which representation is more convenient 01' useful for des-
cribing and tmderstanding any particular 5ystem. At the present time the
IBr>li5 the easier model to use in pcrfonning munericaI calculation5 oí
nuclear propertie5 for ~my mcdiurn-to-heavy~~ss nuclei.

The 113M i5 a rich and varieJ Trodel, and roanyaspects of its
devc1op:rent• application and interpretation havc, tmforttmately, hecn
only briefly discussed 01' simply mcntioned here. For more details the
interested reader is referred to Refs. 8, 12-14, 21 and 49, which are
IOClregeneral in nature. Duc to a limi ted scope for the present papel', .•...e
have not even touched on the trcmcndously exciting suhject of the newly
developed lnteraeting Boson-fermion Model (1BrN) for describing the
propertics o£ odd.A nuclei (21,63). The corrhination of the 1&\1 and IBH-l
has led to the predietion of thc possible existence of so-called super-
s)~tries in thc spectral structure of certain neighboring cven and odd
mass nuclei(Zl,64).

In conclusion, the 1&\1 is an exciting development £01'nuclear
physics, not on1y bceause of the successes it has had so far in descri-
bing an explaining nuclear properties, but a150 because of the possibili-
ties it offcrs for our future understanding of nuclear structure. It is
an active, dynamic and growing field of research with muchchallenging
and stimulating work re~lining to be done.
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