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ABSTRACT

The goal of this article is to review the present status of
the Interacting Boson Model (IBM) for describing the collective proper-
ties of medium and heavy mass nuclei, with particular emphasis being
given to the work on the IBM at the University of Arizona. First, a
concise review of the basic phenomenological IBM, as developed by Arima
and Iachello for only one kind of boson, is presented. Next, the exten-
sion of the IBM to both proton and neutron bosons is outlined. This
latter model is known as the IBM-2. The application of the IBM-2 to the
tungsten isotopes by the University of Arizona group is discussed, fol-
lowed by their calculations for the mercury isotopes. 1In the case of
the mercury isotopes an extended form of the IBM-2 is developed in order
to treat the configuration mixing of two entirely different structures
which occur in the same energy region. The relationship between the
bosons and the underlying fermionic structure of the nucleus is discussed
using the generalized seniority scheme of Talmi. Work by the Arizona
group to calculate the phenomenological parameters of the IBM-2 using
these generalized seniority ideas is described, along with their results,
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which agree quite well with the empirical values. Efforts by the Univer-
sity of Arizona group to determine the influence of terms left out of
the basic IBM, such as the g boson, using second-order perturbation
theory are described. In conclusion, a discussion of the limitations

as well as the usefulness of the IBM is given along with its exciting
possibilities for the future of nuclear structure physics.

RESUMEN

El propdsito del presente trabajo es el de hacer una revisidn
del estado actual del Modelo de Bosones en Interaccidn (MBI) utilizado
hoy en dia para describir las propiedades colectivas de niicleos pesados
y semi-pesados. Se hace &nfasis, en particular, al trabajo que sobre
el MBI se viene realizando en la Universidad de Arizona. Primeramente
se presenta una revisidn concisa de las bases fenomenoldgicas del MBI
con un solo tipo de bosones tal y como fueron desarrolladas por Arima
y Iachello. Posteriormente se hace una presentacidn esquemitica de la
generalizacidén del MBI que incluye tanto bosones de protdon como de neu-
trén. Este Gltimo modelo se conoce como el MBI-2. Después se discuten
las aplicaciones que el grupo de la Universidad de Arizona ha realizado
a isdtopos de tungsteno presentando en seguida los calculos realizados
para isdtopos del mercurio. Para el caso de isdtopos del mercurio se
desarrolla una forma mas general del MBI-2 que hace posible tratar la
mezcla de configuraciones de dos estructuras completamente distintas que
aparecen en la misma regién de energias. Se discute también la relacidn
entre los bosones y la estructura fermidénica nuclear subyacente utili-
zando el esquema de antigiiledad (seniority) generalizado propuesto por
Talmi. Se describe el trabajo realizado por el grupo de Arizona sobre
el cidlculo de los pardmetros fenomenoldgicos del MBI-2 utilizando las
ideas de antigliedad generalizada mencionadas anteriormente y se presen-
tan los resultados obtenidos, los cuales concuerdan bastante bien con
los valores empiricos. Se describen también los esfuerzos del grupo de
la Universidad de Arizona para determinar, utilizando teoria de pertur-
baciones a segundo orden, la influencia de los términos no incluidos en
el MBI basico, tales como el bosdn g. Se discuten, en conclusién, tan-
to las limitaciones como la utilidad del MBI asi como sus estimulantes
posibilidades para el futurc de la fisica de la estructura nuclear.

I. INTRODUCTION

One of the most interesting features of medium and heavy mass
nuclei is the presence of low-lying collective states. Much effort has
heen made in the previous thirty years to understand the nature of
these collective ?§$perties in nuclei, mainly following the pioneering

work of Rainwater and Bohr and Mottelson(z] in terms of geometrical
models. The problem with these geometrical models is that there is no
well-defined procedure for making transitions between the different

models, e.g.,the transition from a spherical vibrator to a deformed
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Totor. Attempts have also been made to describe these collective prop-
erties in terms of boson degrees of freedom(s), instead of fermion de-
grees of freedom. Unfortunately most of these boson methods involve
infinite expansions, i.e.,boson operators of ever-increasing order(4).
Recently two boson methods have been developed which contain
boson operators of finite order. One is the method of Janssen, Jolos
and Danau(s] which contains quadrupole operators that obey the commuta-
tion relations of a U(6) Lie algebra. Since their method utilizes only
quadrupole operators, their expansion consists only of quadrupole (J=2)
bosons. The second approach is that of Arima and Iachello(ﬁ'BJ, known
as the Interacting Boson Model (IBM), which contains monopole (J=0)
s bosons as well as quadrupole d bosons. The marked difference of the
IBM from earlier boson models is that the total number of bosons is
conserved, i.e., ng + nyg = N = constant. This is an extremely important
feature, since it directly links the IBM to the number of valence fer-
mions and thereby to the underlying single-particle or shell-model struc-

(g1} Consequently, the IBM provides us with a

ture of the nucleus
possible method of simultaneously interpreting nuclear collective prop-
erties in terms of a very simple model, which contains only a few para-
meters in a model space much smaller than the usual shell-model space,
and understanding this model and its parameters in terms of the under-
lying fermionic structure.

The purpose of this article is to describe the Interacting
Boson Model (IBM), its application to explain the collective properties
of medium-to-heavy-mass nuclei and efforts to understand this model in
terms of the nuclear shell model. Section IT describes the IBM as
originally developed by Arima and lachello for even-even nuclei using
only one kind of boson. The model was later expanded to treat both
proton and neutron bosons by Otsuka g;_gl.(g), as we also show in Sec-
tion II. In Section IIT the IBM is applied to the isotopes of tungsten
(W) and mercury (Hg) and the results are discussed in relationship to
other models and to other nuclei investigated in this mass region using
the IBM. The calculations for the Hg isotopes indicate an extension of
the basic IBM to include configuration mixing. Section IV contains a des-
cription of how the bosons can be related to shell-model states. From
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this connection we can understand the origin of the parameters in the
IBM and how they should change as a function of the number of neutron
and/or proton bosons. We can also investigate how the values of the
model parameters are influenced by the restriction of the IBM to only s
and d bosons by including the effects of a g boson, using ordinary per-
turbation theory. In Section V we discuss the limitations of the IRM,
the problems which still face it, its extension to odd A nuclei, includ-
ing the so-called supersymmetries, and its exciting possibilities for

the future of nuclear structure theory.

IT. THE INTERACTING BOSON MODEL

A. IBM-1: One kind of boson

The original Interacting Boson Model of Arima and Iachelléﬁ-s)
did not distinguish between proton and neutron bosons; we will refer to
this model as the IBM-1. Like the shell model, the IBM-1 is a truncation
scheme for restricting the nuclear wave function to a few important de-
grees of freedom. In the case of medium- to-heavy-mass nuclei, the low-
lying collective properties cannot be described in terms of a few shell-
model configurations but would require millions or billions of configura-
tions. The concept of the IBM-1 is that the bosons represent collective
configurations, which contain the important degrees of freedom of these
low-1ying properties.

As in the shell model, one starts with a number of valence
particles outside closed major shells and assumes that the structure of
the low-lying levels is dominated by excitations among these particles.
Secondly, one assumes that the important particle configurations for the
low-1ying levels of even-even nuclei are those for identical particles
paired together in states with total angular momentum J=0 and J=2. The
final assumption is that these pairs can be treated as bosons. Hence,
the number of bosons is equal to the number of pairs of particles outside

the closed shell and is a strictly conserved quantity. Proton (neutron)

bosens with angular momentum J=0 are denoted by SN(SV)’ while those with
angular momentum J=2 are denoted by dn(dp)' In order to take into ac-
count the particle-hole conjugation in the particle space, the number of

proton, Nﬂ, and neutron, Nv’ bosons is taken as the number of hole
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prairs, if more than half of the shell is full. For example, 1:28&7q has
6 protons outside the 50 closed shell or 3 proton-particle bosons and

8 neutron holes in the 82 closed shell or 4 peutron-hole bosens. In
the IBM-1 we do not distinguish between proton and neutron bosons, so
we will drop the subscripts m and v in the rest of this subsection.

In order to write down the appropriate operators for the
bosons it is convenient to use the second quantized formalism, intro-
ducing the creation [S+, dz) and annihilation (s, du] operators, for s
and d bosons, respectively, where u=0, +1, +2. These operators satisfy

the standard Bose commutation relations

[5; sf] = 1, (5581 = 9 [SL 8] 2l 5
d,d] =8 ,0d, d,1=0,1d,d,1=0
[ ] U‘] UM'[U’ U']— ) u’ U'li )
i F o b
[sydi =0, 08", &1 =0, (s,d71=90 ,
-1‘ =
5=, dU ] 0

The most general two-body Hamiltonian for a system of s and

d bosons, which conserves the total number of bosens, can be written in

terms of these operators in the form(ﬁ)
. V2 : o
H=¢ {5+°S) + £ (dT-d] + Z 1 (2L+]) G [[d+xd+ ](L)X[dxd](l‘)](o)
s d 2 L
1=0;2;4
- i,\"z[[di“xd*](g)x [axs](2) - [d+>cs+](2)><[a><a](2) ] (0)
V2
(2)
] e ol ~
* Q'Vb[{diXd+](0) ¥ [sxs1¢0) «+ [s+x5'](o)x[dxd](o) j @
g (0)
+ U (d'xst1 w [dxs 1@ )« % UD[[5+xs+]“” x[sxs](o)](ot

where éu=(-1)2+“ d,u=(‘1ﬁlld,u , which is a spherical tensor under rota-
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tions, while d is already a spherical tensor. The [] denote the ten%or

product of two tcnsor operators, e.g., [d+>~df](L) = 3 (2u12p2|[I>d d ,
HiHz
while the ( ) denote the scalar product of two tensor operators, e.g.,

@ = 02 Fad1 = E T 2uz|00 )d 4, =1 dha -
Mg i H1 H1
ng = the number operator for d bosons. The above Hamlltonian,contains

nine parameters: the two single bosons energies € and €4 and the seven
two-body terms CL(L=O,2,4), VL[L=0,2} and UL[L=O,2). Since the total
number of bosons is conserved, N = ng + Ny, the Hamiltonian can be

rewritten so that the excitation energies are independent of n, and

depend upon only six parameters (see Refs. 12,13).
Another convenient form for writing the Hamiltonian for the

excitation energies only is

o= einge gy R +a, (L) + 2, Q) *a, (T3 Ty) +a, Ty, (9

where
n, = (ded)
P o= L @d) - g ()
r = E ) 2 S*S )
L = ywdkart (4)
Q [dTxs+sTxd] ) - 2 Trata)® |
T, = [d%d1® and T, = (a1

Note that this H contains only six independent parameters. This form of
H is often convenient, since empirically only one or more terms in this
H are required in order to describe reasonably well the low-1lying excita-
tion spectrum. The relationship between the parameters in Eqgs. (2) and
(3) is given in Ref. 12.

Another operator of interest is the one-body transition opera-

tor which has the second quantized form(}Z}
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T(E)_ (2)

m = 050, [d xS+s Xdl + 6 [d Xd](g) + 7062 mg [ 5 xs]{O) (5)
It should be noted that no multipole higher than four is possible if
the operators T(z) are assumed to be at most one-body. Equation (5)
yields transition operators for E0, M1, E2, M3 and E4 transitions, with
appropriate values of the corresponding parameters. The B(E{) and B(Mg)
values are obtained in the usual way as

B(L; I, > J 3 (R fay 0 . (6)

f} 21 #4

From the transition operators one can also calculate quadrupole moments,
magnetic moments and isotope and isomer shifts. One can alsc construct
two-particle transfer operators(b’]s}.

The Hamiltonian in the form of either Eq. (2) or (3) can be
directly applied to describe the low-lying spectra of medium and heavy
mass nuclei away from closed shells. Such studies have been carried
out , for example, for the even samarium (Sm) isotopes(71. It is
important to emphasize that the Hamiltonians in Eqs. (2) and (3) are
completely general and can be used along with the transition operators

in a systematic manner to study the collective properties of any appro-
priate nucleus.
i) U(6) Symmetry and Dynamical Symmetries

There are a number of nuclei which exhibit special collective
properties, which have already been explained and given specific names
within the geometrical picture, such as vibrational properties and rota-
tional properties. One of the very interesting features of the IBM-1
is that these geometrical cases follow directly as limiting cases of the
IBM-1 which can be solved analytically. Thiq is truo since the second
quantized operators of the IBM-1 (i.e., the 9 d and the s, u] can
be combined pairwise (i.e., a creation operator w1th an annihilation

operator) to form a set of 36 operators

(k)

G(ﬁ)(zz') = [bszz,l , where béu = 68", dp) (7)
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L+

hfu = =N bﬁ,'u
for £, £'= 0, 2, ,
which are closed under commutation, i.e.,
k' = k" k" (8)
(6" B71 - ] ck,G y

k"

where the Cikr are numerical coefficients, and,consequently, form a Lie

algebra{12’q4).

One can verify that this is the Lie algebra of the
group U(6) of unitary transformations in six dimensions. Since the
Hamiltonian [ Eq.(2)] is built out of these operators, it follows that
it has the group structure of U(6). In other words, it can be regarded
as a general rotation with constant norm (ng+ny =N = constant)in the
six dimensional space of the s and d bosons.

Generally it is possible to determine subgroups of some
larger group, such as U(6), where a subgroup is defined by a subset of
the generators of the larger group which also close under commutation.
In the case of U(6) it has been found that three subgroup chains exist,
when each chain is restricted to contain the angular momentum group,

0131(]41. These three chains are

I. U(6) 2 U(5) 2 0(5) 2 0(3) 2 0(2) (9a)
II. U(6) 2 SU{3) D 0(3) D 0(2) (9b)
III. U(6) 2 0(6) 2 0(5) 2 0(3) 2 0(2) - (9¢)

If the Hamiltonian H can be written in terms of only the
Casimir operators of a complete chain of subgroups of U(6), then this H
is diagonal in the representation of this subgroup chain and possesses
ry(12"1a). A dynamical symmetry is
a systematic breaking of the symmetry of the larger group [e.g.,U(6) ]

what is known as a dynamical symmet

by the terms proportional to the Casimir operators of the subgroups.
For example, in Chain I [Eq.(9a)] , the U(6) symmetry is broken by the
Casimir operators of U(5); in turn the U(5) symmetry is broken by the
0(5) Casimir operator, and the O(5) symmetry is broken by the 0(3)
Casimir operator [see Eq. (10a)] . But the symmetries of each subgroup
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arc maintained in the sense that different representations of U(5) do
not mix, etc. (see Fig.1). Since in the IBM-1 we have three subgroup
chains, there are three possible dynamical symmetries. These three
dynamical symmetries have been discussed extensively in previous
papers (Refs. 6, 12-14), and the reader is referred to these articles
for details of their construction and solution. Here we will only

quote the results for the energy in each limit.

I. U(5) or vibrational limit
E(IN] ,nd,v,nA,L,M) = Cnd+und(nd+4)+26v(v+3)+2yL(L+1)
(10a)

II. SU(3) or rotational limit
ECINT, O,1) K, LM) = G-k L) = 6 N2op2 a3 (o) |

(10b)
ITT. 0(6) or y-unstable limit

E(IN] 0,v,n,,L,M) = % A(N-0) (N+o+4) + By (v+3) + CL(L+1) .

(10c)

In the above energy formulas the symbols in parentheses on the left-
hand side denote the quantum numbers which are needed to specify
uniquely the states of each subgroup chain. For example, in the U(5)
chain N is the total number of bosons, which is the U(6) quantum
number; ny is the number of d-bosons, which is the U(5) quantum number;
v is the d-boson seniority, which is the 0(5) quantum number; L is the
angular momentum [0(3)] ; and M is the z-projection of L[0(2)]. The
quantum number nAis an extra quantum number required in order to fully
descompose 0(5) in going to 0(3). Arima and Iachello chose this quantum
number n, to be the number of boson triplets coupled to zero angular
momentum. The constants e,a,B,y; k,k'; and A,B,C label boson energy
parameters appropriate for each of the three limiting cases and repre-
sent particular linear combinations of the parameters in Eqs. (2) and
(3). Figures 1-3 illustrate the energy spectra which correspond to the
U(5), SU(3), and 0(6) limiting cases, respectively.

As mentioned earlier, nuclei with vibrational U(5)-1like proper-
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Fig.3 A typical spectrum with 0(6) symmetry and N=6. In parentheses
are the values of g and n, .

ties and rotational SU(3)-like properties have already been known for
some time and investigated using geometrical models. One of the
interesting predictions of the IBM-1 is that a third limiting case
exists, namely the 0(6) 1limit, which appears to resemble the y-unstable
model of Wilets and Jean(15}

some of the Pt jsotopes(lé). Figures 4-6 show examples of experimental
spectra which exhibit the limiting cases U(5), SU(3) and 0(6), respec-

and has been observed experimentally among

tively. In general, examples of U(5) - like nuclei are found at the begin-
ning and the very end of shells, examples of SU(3) - like nuclei are found
in the middle of shells, and examples of 0(6) - like nuclei past the mid-

dle of shells.
As stated previously, most nuclei do not belong to any of

these limiting cases but are somewhere in between two of them. For
example, the Sm isotopes start out vibrational-like [U(5)] at the begin-
ning of the 82 ncutron shell and become rotational-like [SU(3)] as the
neutron nurber increases towards the middle of the shell, as seen in
Fig.7(Exp.). Using the general IBM-1 Hamiltonian, Eq. (3), Scholten

Bt gl.(7) have been able to reproduce this transition from U(5) to
SU(3) symmetry in the Sm isotopes [ Fig. 7(Th.) 1. They are also able to
reproduce the correct trends with respect to Nv in the B(E2) transi-
tion rates, two-neutron separation energies, quadrupole moments and

isotope and isomer shifts(7’131.
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A computer program, called PHINT, has been written by Schol-
ten(17) and is available onrequest. The program PHINT solves the full
IBM-1 Hamiltonian [ Eq. (3)].

B. IBM-2: Proton and Neutron Bosons

(m

neutron interaction which is mainly responsible for causing nuclei to

As Talmi has pointed out for many years , 1t is the proton-
deform. As experimental evidence for this fact, he observes that the
energy splitting between the O* ground state and the first 2% excited
state in the even tin (Sn) isotopes is more or less constant throughout
the entire 50 to 82 neutron shell (see Fig.8). For the even isotones
with N = 82 one finds a similar result. Hence, the interaction among
only valence neutrons or only valence protons in semi-magic nuclei

(only one closed shell) is not sufficient to cause nuclei to deform.

On the other hand, nuclei such as barium (Ba) and xenon (Xe), which

£ I T I T 1 I T T I
-4 v Sn
(Me\/} o Cd e Te
A Pd n Xe
0O Ru 4 Ba
1.5 +— —
1.0 — =
05— =
1 | | | 1 | i} 1 It

50 58 66 T4 82
Neutron Number

&
Fig.8 The energy of the 2, state of the Sn, Cd, Pd, Ru, Te, Xe and Ba
isotopes in the 50-82 neutron shell.
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have both active valence protons and valence neutrons, show a strong
decrease in the 2+- 0" energy splitting as the neutron hole number in-
creases from the closed shell value of 82, as seen in Fig.8 for the Ba
isotopes. As the number of neutron holes increases, the proton-neutron
interaction increases in strength, causing the Ba and Xe isotopes near
the middle of the 50 to 82 neutron shell to become strongly deformed,
as seen from their rotational-like spectra in this mass region.

So one wants to distinguish between neutron and proton bosons
and wants to introduce a term into the basic Hamiltonian involving an
interaction between the neutron and the proton bosons. A completely

general form for such a Hamiltonian 15(8’9’13)

H = H +H +V " (1
™ RV ™

where pr(p = m,v) is the Hamiltonian for identical bosons and is of
the form of Eq.(2), while V_ represents the interaction between the
proton and neutron bosons.

In the IBM-2 the eigenstates are direct products of proton-
boson states and neutron-boson states. In terms of group theory they
represent the direct product of U(6) xU(6), so that the eigenstates are
labeled by [Nﬂ] x[Nv]’ where [ N] denotes the completely symmetric repre-
sentation of U(6) containing N bosons.

The problem now is which, of all possible proton-neutron
states, are the most important ones. Based on previous calculations
using the IBM-I(8’13), we believe that the most significant IBM-2 pro-
ton-neutron states are those which have the same structure as the
equivalent IBM-1 states, namely the totally symmetric states, labeled
by [ Np.+ Ny ]. Another way of saying this is that as much as possible
we would like the IBM-2 Hamiltonian to be "invariant under rotations' in
the proton-neutron space. Since this is a two-dimensional space, it
transforms according to SU(2) and can be described using a formalism

(13,18)

known as F-spin , which is similar to but not identical to

isospin, where F, = Nr - N and F = %,, ﬁ%l y sesmy Fya In terms of

F-spin, the IBM-1 states correspond to the IBM-2 states of maximum
e . N r + Ny

Fespin,di.g., P = gw=i——g—F

2 2
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Consequenitly, the only difference between the IBM-1 and the IBM-2 is that
in the IBM-2 one also has states of lower (or mixed) U(6) symmetry, such
as [Ny + Ny - 1,11, [N, + Ny - 2,21, etc. A sufficient condition for

the IBM-2 Hamiltonian to be F-spin invariant is for R L

Since this is in general not true, it will be necessary to \s)zparate the
totally symmetric states from the states of mixed U(6) symmetry, as will
be described below.

The general approach(8’9’11J is to include two terms in ¥t
The first is a quadrupole-quadrupole interaction between the proton and

(2)
v

neutron bosons of the form KQn(z) = Q , where k is the interaction

strength parameter and
(2) - &% + (2) o a2l .
[)1O (prdp + dpxsp) + Xp(dedp) (p=T,V) (12)
is the boson quadrupole operator. The parameter Xp is the ratio of the

seniority conserving part of Qp to the seniority non-conserving part.

The second term in Vw is a Majorana force of the form

M?T\) = &, (szxd; - dzxsi) (2) , (vaaﬂ = a\)xsw)&)
(13)
’ k£1,3 Ek(d:xd;)(k) .(avxéﬂ)(k’
The purpose of the Majorana force is to remove states with mixed U(6)
symmetry, as discussed above, by shifting them up in energy. A large
Majorana force guarantees that the low-lying states in the IBM-2 are
nearly totally symmetric in the proton and neutron variables.

A quadrupole-quadrupole form is taken for the basic proton-
boson-neutron-boson interaction for two reasons. First, it is a mani-
festation of the strong quadrupole-quadrupole interaction between
protons and neutrons in the fermion space. Second, it is the lowest-

(1)

Thus, the general form taken for the IBM-2 Hamiltonian

order multipole-multipole force which mixes seniority
(8,9,13)

is

t2 FM_ AV VL (14)

#:= E0 ’ S(ndn ’ nd\,) * B Q, ™ W i

where £= B ~E for simplicity and E, is a constant for a given nucleus,

depending at most quadratically on N, and N, and contributing only to
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the binding energy. From the earlier discussion (e.g., the Sn isotopes)

we expect the dominant term in VDp to be the d-boson conserving term
Vo= Y ¢ Lvm [(d+Xd+)(L) @) | peun. (9
o S ag P2 PP p e 8 i

Since the Hamiltonian (14) does not contain completely general
forms for the interactions among the bosons, both for identical and non-
identical bosons, it does not possess the appealing symmetry properties
and subgroup chains, such as those found earlier for the IBM-1 Hamil-
tonian (2). However, there exist limits in which numerical solutions
similar to the previous three IBM-1 cases, i.e., U(5), SU(3) and 0(6),
are obtained(S’TSJ. For example, when the number of proton and neutron
bosons is small and near the beginning or the very end of a shell, so
that € (nd » is large compared with « (Qv° Qy , U(5) or vibrational-like
results are realized in the IBM-Z. Here we have used ()} to denote the
expectation value of an operator. When the number of proton and neutron
bosons is large (near the middle of a shell) and R = g = /772, e}
that k (Q_ - Qu) is large compared with e (nd ) , the IBM-2 results are
SU(3) or rotational-like in structure. Finally, when the number of
proton and neutron bosons is between the middle of the shell and the
end of the shell and X, = -Xy = 0, the IBM-2 Hamiltonian yields an
0(6)-1like spectrum. A direct relationship between t??3§BM-1 and IBM-2

A computer program called NPBOS, written by Otsuka and

parameters can be derived using the F-spin formalism

Scholten(19}, determines the eigenenergies and eigenstates of the IBM-2
Hamiltonian (14) for different choices of the parameters. In general,
there could be ten variable parameters to be determined for each nucleus
studied. This number is however usually reduced to six by assuming that
only V,,(V...) contributes to relative splittings in isotopes (isotones)
and that the contribution of C4pis negligible. The remaining six para-
meters are €, K, X,» Xp» COp and C20 (p=mor v). After the first
isotope (isotone) is described, xn(xv) is determined and is then assumed
to be the same for all the remaining isotopes (isotones), leaving only
five parameters per nucleus.

The goal is to use the program NPBOS to determine empirically
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the values of these six parameters which yield the best description of
the low-lying spectra of medium- to heavy-mass nuclei and which at the
same time vary smoothly with changes in the neutron- and proton-boson
number. It is important, for example, that the set of parameters for
one set of isotopes (constant Z) be quite similar to the set of para-
meters for the neighboring series of isotopes (i.e., nuclei with Z + 2).
The values of these parameters should not vary in a random manner, if
the IBM-2 is a truly meaningful description of the properties of nuclei
in this mass region, since according to the IBM-2 these parameters are
related to the underlying fermionic structure 8™ 1115,20)

Therefore, it is definitely of interest to determine empiri-
cally these six parameters as well as possible in the mass regions
50<N or Z<82, 82<N< 126, Z>82 and N> 126 and then to compare their
values with results obtained from calculations based on microscopic
theories involving the fermionic degrees of freedom. Work along this
line has been carried out and is continuing and will be discussed in

the next two sections.

IT1I. APPLICATIONS OF THE IBM-2

Numerous applications of the IBM-2 to different nuclei have
already been carried out, and the reader is referred to References 8,
13 and 21 for the details regarding some of these calculations. Here
we present only the IBM-2 calculations performed at the University of

Arizona for the tungsten(zz) and mercury(23’24)

isotopes.
A. The tungsten (W) isotopes:

The proton number for W is Z=74, so it has four proton-boson
holes, i.e., Ny = 4. The neutrons are in the 82-126 shell, so that
0'<Nvf 11, where particle bosons are counted from the beginning to the
middle of the shell and hole bosons from the middle to the end of the
shell.

As discussed in Section II-B, it is assumed that B = B = 8
for simplicity. This might seem an oversimplification, since the proton
bosons and neutron bosons are in different shells. However, calcula-
tions using this assumption have led to reasonable results, not only

for W, but also for other nuclides[8’13’21).
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The va and sz terms are included in the Vvv interaction
but not at all in the V1T1T interaction, since for most of the region fit-
ted,N, >N, so that the V _ term is not excepted to be very important.

In the Majorana term £; = 0.04 MeV and &1 = £3 = -0.02 MeV
for the entire isotopic chain. The Majorana term is used primarily to
push up in energy those states with large non-symmetric parts. Since
the low-lying collective states are largely symmetric, the influence of
the Majorana term on these states is expected to be minimal(8’133.

With these simplifications, the Hamiltonian used in the fit
to the W isotopes becomes

(2) (2)
H = e(ndﬂ + nd\)} + KQ‘IT . Q\) + M‘]T\) + V\)\) ) (16)

so there are only six free parameters: €, K, Xy Ko Cgv and Cgv
After one isotope is fitted, ¥, is established and is kept constant for
the remaining isotope fits, so there are only five free parameters
thereafter.
The experimentally determined energy levels for the even-even
W isotopes span the range in neutron number from N = 96 to 114, but pre-
dictions can be made beyond this region by a smooth extrapolation of the
above parameters.
Figure 9 shows the results of Thel)uval—liarr?é:g(zzJ
%g%culations of the energy levels for the isotopic chain ;,Wg, to

7uW118. Figure 10 gives a detailed comparison with the experimental
data(25-27) according to the quasi-ground state rotational band and the
quasi-y and g vibrational bands. Figure 11 contains graphs of the para-
meters used.

Perhaps the most striking feature of the energy spectra is
the sharp rise in the y and 8 bands at neutron number N = 108, which
may be due to a subshell closure in the i13/2Nilsson level and/or a
reversal in the deformation. This is supported by such effects as (1)

a maximum in the quadrupole momentum of the 2," state for N = 108,
(2) a minimum in the 21+- 0: splitting for N = 108, and (3) a large
change in the two-neutron separation energy after N = 108. Fitting
this sharp rise has led to a dip in the value of x, at N = 108.
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Fig.9 Calculated energy spectra of the tungsten isotopes showing the
low-lying 0%, 2% and 4% states, with respect to the 0% ground
state.
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Fig.10 Comparison between the calculated (solid lines) and experimental
(black dots) energy levels of the tungsten isotopes in (1) the
ground state band, (2) the guasi-Y band, and (3) the quasi-g band,
respectively.The experimental points are from Refs. 25-27.
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Fig.11. The IBM-2 parameter set used for the tungsten isotopes. The
value used for X was =1.6.

In general, the agreement with experiment for the ground-
state-band and y-band energy levels is quite good. The agreement
with the g-band energies is not so successful, notably in lgﬁw“ , and
178, 04. The IBM-2 predicts the g-band energy levels for these two
isotopes to be much farther apart than experiment seems to indicate.
In the case of ‘3ﬁw112 one should note that the experimental B-band
energies are listed as questionable.

Duval and Barrett(zz] also determined the electromagnetic
transition rates between the different energy states, using the wave
functions obtained from the previous calculation and the computer
program NPBE-'M“Q). The most general single-boson transition operator of
angular momentum £ can be written as

&) o ple) , i) (17)
o v z
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where Téel is of the form of Eq. (5). One can use the transition opera-
tor (17) to calculate all moments from £=0 to £=4 but results only
for £=2 will be given here. The results of other moments, 1.e., p(E0)
and isotope and isomer shifts, are given in Ref. Z2.

For £=2 the EZ transition operator can be written in the form

T (E2)

eWQﬂ H eUQv * (18)
where Qp is given by Eq.(12). In principle, the parameters W and iz
in the quadrupole operators Q may be different from those used in the
quadrupole operators in the Hamiltonian Eq.(16) ; however, Duval and
Barrett have taken them to be the same in their calculations, so as to
reduce the number of free parameters. This also seems a natural choice.
The parameters CH and e, have units of eb and indicate the proton-boson
and neutron-boson effective charges, respectively. As a further simpli-
fication, they use a constant e,=¢, for all nuclei. The value of the
constant is determined by fitting one of the experimentally known
transition rates. Using eﬂ:=ev==0.126 eb (determined by fitting the
2.t > O‘+ transition in !52W,.g), they obtain the results shown in the
following figures and in Ref.(22). Results are presented using the more
conventional reduced transition rates, i.e., the B(E2) values given by
Eq.(6). Figures 12 and 13 show the absolute B(E2) values for the
21*'+01+, 42+->01*, and 23+-> 0,* transitions. These are typical exam-
ples of the results obtained. Many more such B(E2) values and also
branching ratios are reported in Ref.(22). It should be noted that the
theory reproduces all of the trends of the known data(28—30}, including
the fact that the 2,%> 0., transition is 107% times weaker than the
21++01+ transition. It should also be remembered than no attempt was
made to fit any of the B(E2) values while determining the parameters in
the Hamiltonian.

Since the E2 transition operator is, in fact, a quadrupole
operator, it is also possible to calculate the quadrupole moment for a

nucleus in a state of angular momentum J, using

16m| 1/2 J2. E2
o = [ (38 conr® gy . (19)
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Fig.13 Comparison between calculated and experimental B(E2) values

for the 23+ e 01"" transition. The circles are from Ref. 28

the squares from Ref. 29 and the diamond from Ref. 30
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Using the IBM-2 wavefunctions and the E2 transition operator given by
Eq.(18), Duval and Barrett obtain the quadrupole moments shown in Fig.14
for J= 21+ and J=2,*. Note that the parameters e, and e, in the AER
operator have already been determined from fitting the B(E2) data and as
before, x, and x, are the same numbers used in the Hamiltonian (16), so
there are no new free parameters in determining the quadrupole moments.
The IBM-2 predicts the correct sign in both of the above cases, and
the agreement with experiment is very good for Qz:. But, in the case of
Q," , the IBM-2 values differ dramatically from the recently determined
exgerimental numers 3 for 1%2W10g and 18%W),,. Experiment indicates
a sharp decrease in Q22+ for these two isotopes, which is not predicted
by the IBM-2. This decrease is, however, predicted by the pairing-plus-
quadrupole model of Kumar and Baranger(32) » but for other properties
associated with the 22+ state (i.e., energy and E2 transitions), the
IBM-2 agrees much better with experiment(zz).
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Fig.14 Comparison between calculated and experimental quadrupole mo-
ments for the 2% and 2,% states. The experimental points (the
circles and squares) are from Ref.31
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The program NPBOS also gives the ground-state energies of the
01+ states, from which one can determine the two-neutron separation

energies (22) ‘

Figure 15 shows a comparison of the theoretical results
with experiment. The agreement with experiment isquite good.

To summarize this subsection, we have seen that the IBM-2
yields results for the tungsten isotopes which are in generally quite
good agreement with experiment, particularly for the energy levels and E2
transitions. The IBM-2 also allows us to make a large number of theore-
tical predictions where data are not now available. It would be worth-
while for experimentalists to perform further investigations of the tungs-
ten isotopes in order to compare them with the theoretical predictions.

As was stated in Section II, the goal of the empirical IBM-2
is to determine smoothly varying values of the parameters e, k, ¥, and
%, Which reproduce the experimental data for all even-even nuclei in a
given mass region. In Figure 16 we show the values of these parameters
(33) and see that they
are, for the most part, consistent with the parameters for the tungsten

for the neighboring osmium and platinum isotopes

isotopes, illustrated in Fig.11. Also the isotopes of xenon, barium and
cerium,whose valence bosons occupy the 50-82 shell, have been recently
fitted(34) with a consistent set of parameters. These parameter values

(35) are also

plus those for gadolinium, samarium, neodymium and thorium
shown in Fig.16. So the goal of obtaining self-consistent sets of the
IBM-2 parameters is borne out by the current research, but further inves-
tigations of the isotopes of other nuclides need to be carried out in

the future.

B. The mercury (Hg) isotopes:
The Hg isotopes are particularly fascinating since their
experimental excitation spectra indicate the coexistence of two different

structures in the same energy region(36).

Generally there is configura-
tion mixing between these structures. Recently Duval and Barrett(zs)have
developed an extension of the IBM-2, which allows them to describe in a
completely general and quantitative manner the mixing of two different

configurations of any arbitrary structure.



558

San (MeV)
T
!

1 1 1 I L e
96 100 104 108 2 e

neutron number

Fig.15 Comparison between calculated and experimental two-neutron sepa-
ration energies, S, The experimental points (solid circles)
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Fig.16 Summary of the IBM-2 parameters g, i, M and ¥ _ appearing in
Egs. (12) and (14), as determined from phenomenogogical calcula-
tions as given in Refs. 33-35. The open circles denote values
for yg.
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The Duval-Barrett method(2>) consists of first describing the
general features of the two different configurations in terms of two dif-
ferent IBM-2 calculations and then mixing the results of these two calcu-
lations using an appropriate IBM-2 mixing Hamiltonian. Their technique is
nost easily understood in terms of a specific application, which they chose
to do for the mercury isotopes in the region 153Hg10q to 1§§Hg108 . These
are particularly interesting isotopes to study since they simultaneously
show one set of states which are distinctly rotational in character and
a second set which are vibrational in structure. Such simultaneous rota-
tional and vibrational structures are a common feature of nuclei which
have either their proton number or their neutron number near a closed
shell value, another example being the tin isotopes(37J. Although previ-
ous descriptions of this phenomenon in the Hg isotopes have been giver£36l
in the Duval-Barrett technique the rotational and vibrational characters
of the different configurations arise quite naturally through the IBM-2
formalism.

This effect is illustrated in Fig.17 which shows the energy

spectra of the Hg iSOtOpBS(Z7J.

One clearly sees the two different con-
figurations, namely the vibrational states, which change very little
from isotope to isotope, and the rotational levels which come very low
in energy at lggHglou.

Duval and Barrett consider the simultaneous vibrational and
rotational structures in the Hg isotopes to arise from two different
boson configurations. The vibrational spectrum is assumed to come from
the standard IBM-2 picture of the interaction of the one proton-hole
boson (Nn = 1) with the valence neutron bosons (Nv)’ as shown in Fig.18(a).
In this case, the effect of the k Q.+ Qy interaction is small, since
Ny=1, and the IBM-Z Hamiltonian (14) possesses more or less a U(5) or

vibrational symmetry(8’13].

The rotational spectrum is assumed to arise

from the excitation of a proton boson (i.e., a proton pair) above the

82 shell gap, so as to produce a configuration of two proton-hole bosons

and one proton-particle boson (N, =3), as shown in Fig.18(b).In this case
there are three active proton bosons to interact with the active neutron

bosons through the k Q * Q, term. This interaction strongly mixes states

of different nunhers of s and d bosons and has been shown to lead to a
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Fig.17 Experimental energy levels for 13559102 to lgaﬂgnz. The solid
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Fig.18 (a) The single-particle proton and neutron configurations for the
even-even Hg isotopes.
(b) The single-particle proton and neutron configurations for the
even-even Hg isotopes when a proton pair has been excited
across the B2 shell gap.
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rotational spectrum when several active proton and several active neu-
tron bosons are present. So for N?T =3 the IBM-2 Hamiltonian (14) pos-
sesses more or less a SU(3) or rotational symmetry(s’ls).

One would also expect there to be some mixing between these
different configurations. There is evidence for such mixing in the ex-

(38) . It can also be seen in Fig.17, e.g., the 4" states

perimental data
for N=106 and 108. To account for thismixing , Duval and Barrett intro-
duce a boson mixing Hamiltonian between the N, =1 configuration and the
N; =3 configuration. In the specific case considered here, the most
general mixing Hamiltonian that is two body in the fermion space and
connects the two configurations is:

H. = a(sixsh +sxs)© + gdlxd! +d~d)@ . (20

mix
In the case of the mixing of configurations in other nuclei, H , may
have a different form.

The complete IBM-2 calculation of the Hg isotopes now involves
two separate calculations (one for Ny =1, another for N;=3) plus a mixing
calculation. In the former two independent calculations, the IBM-2
Hamiltonian (14) is diagonalized in the appropriate space. Each of
these calculations would appear to involve several different parameters.
The number of parameters is reduced by insisting that the neutron number
dependent parameters be the same for each isotope in both calculations.
The VmT term is not used since N; is small, i.e., one or three. Also,
the value for y; in each calculation is kept fixed for all isotopes. The
parameters o and g are kept constant for all isotopes. Another parame-
ter, which gives the amount of energy needed to excite a proton boson
into the next major shell, is also needed. This parameter, called A,
is also kept fixed at a value of 4 MeV for all isotopes.

The results of the Duval-Barrett calculatiens are given in
Figs.19(a) and (b). Figure 19(a) shows an unmixed calculationm, i.e.,

a =8 =0. In this case two separate calculations were done and an
amount A was added to the Ny=3 eigenvalues. Figure 19(b) shows the
result of including mixing among the states in Fig.19(a). The mixing
is seen to cause the states to "move' in exactly the manner described
by the experimental states.
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Fig.19.

and Barrett also determined the B(E2) values by considering an E2 transi-
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tion operator of the form

where €, has units of e-barns and gives the effective charge of the
proton and neutron bosons in the N_=1 configuration. The proton and
neutron bosons are treated as having the same effective charge for sim-
plicity.
figuration. The () operators are the same as those given in Eq.(12).
The subscripts 1 and 3 refer to the proton-boson space in which the

operator acts.

= e (01, ¥ Q4

)

\Y)

e,(Qs;

Comparison of theoretical versus experimental energy levels (a)
for no configuration mixing, and (b) for configuration mixing,
with parameters q=0.1 MeV and f=0.2 MeV [See Eq.(20)]. Solid
lines are the N;=1 configurations, labeled by (1); dashed lines
are the Nj=3 configurations, labeled by (3).
Experimental states are ordered in increasing
Open circles are vibrational levels.

Using the wave functions from the previous calculations, Duval

+Q3)

Similarly, e, is the effective boson charge in the N;=3 con-

Only the first two
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TABLE 1.

COMPARISON OF EXPERIMENTAL AND THEORETICAL B(E2) VALUES

B(EZ; J, = J,) B(EZ;\Ji"Jr)IElEZ;Ji' =)
" bW i, ¥
+ + ¥ + + 4 2 +2 4, g 4, 6, =4,
Ll 4 2, 6, ~4, 3 T ¥ y ¥ ¥ 3 3
2, =0, 4tz a," 2, 6, =4,
exp. th. exp. th. exp. th. exp. th. exp. th. exp. th. exp. th.
L AL . 2 - .70 15° 11.1 . 16 8 19.5 1.359 a8
80108
186
soH910s  -28% .39 6% 63 1.9%  1.06  >1200° 6.8 <95 .54 LTS . 4,55 kg 28.8
184y 3P e 1 e 2.1® L9 - 1.48 3 .28 % 6.27 = 84.2

80 104

Ref. 39 Ref.41

le!,lU s Ref.42

Table I compares the results of their theoretical calculations
for B(E2) transition rates and branching ratios with experiment. For
absolute B(E2) values they had only to determine the values of e, and e,.
For the sake of simplicity they assumed that the ratio es/e3 is given
by k4/k3, where k; and k5 are the strengths of the quadrupole interaction
in the N; =1 and N, = 3 configurations, respectively. This is a reason-
able assumption, since both the effective charge and the quadrupole
interaction strength are proportional to the mean square proton radius.
Thus by fitting to only one of the experimental B(E2) values, they deter-
mined both e, and e; . For the branching ratios, however, only the ratio
eq/e3 is important, so there are no new free parameters in this case.

For the most part, the theoretical calculations of energy
levels and B(E2) values compare very well with experiment, with the
exception of the ratio B(E2; 22+ ¥ 21+)/B(E2; 22+ *> 01+) for lggl—lglos.
Since the amount of mixing between states depends upon the location of
the energy levels before they are mixed as well as the mixing parameters,
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o and g, improving the fit to the emergy levels should improve the agree-
ment of the calculated B(E2) values with experiment. Also, this expez-
imental result may be in error.

These calculations were performed using an excited configura-
tion built on three identical proton bosons. A more realistic calcula-
tion should make a distinction between the two proton-boson holes and
the excited proton-boson particle. However, if one considers only sym-
metric combinations of these different proton bosons, then the calcula-
tion can still be performed treating them as identical. The argument
is the same as that given for performing an IBM-1 calculation, where
neutron bosons and proton bosons are treated as identical“s).

Even though the spectrum for N =3 is shifted up in energy by
4 MeV with respect to the N =1 spectrum, sufficient energy is gained
through the attractive k Qp + Q, interaction due to the increase in the
number of active protons to overcome most of this shift. This effect is
not present in the heavy Hg isotopes, since the number of active neutron
bosons is small. The N;=3 spectrum lies very high in energy for these
isotopes(as} .

One might expect that states formed by exciting two proton
bosons into the next major shell are also important. The fundamental
question iswhether or not the k Qq - Q, interaction increases sufficient-
ly in strength as the number of proton bosons is increased so as to
overcome the excitation energy of each proton boson across the shell gap.
By empirically studying the energy of the 2p-2Zh and 4p-4h states in
heavy nuclei, one finds that the 4p-4h excited state lies significantly
higher than the 2p-zh state(zs).
the one proton boson excitation) should make an important contribution to

Hence, only the 2p-2h excitation (i.e.,

the excited-state configuration.

To summarize, Duval and Barrett(zs) have developed an expanded
IBM-2 technique, in which different configurations are described in terms
of separate IBM-2 calculations, the results of which are then mixed
using the appropriate IBM-2 mixing Hamiltonian. In the case of the Hg
isotopes the vibrational and rotational characters of the energy levels
arise naturally in their approach due to the U(5) symmetry of the Nj=1
configuration and the SU(3) symmetry of the N;=3 configuration. More
extensive calculations are now being carried out for the entire chain of
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Hg isotopes(24). It should be emphasized that the Duval-Barrett tech-
nique is quite general and that it has also been applied to other nuclei,
such as the platinum and molybdenum isotopes, which also exhibit the

features of the mixing of two distinctly different configln'aticms(“).

IV. MICROSCOPIC THEORY OF THE IBM

As originally formulated by Arima and Iachello(®), the IBM was
a purely empirical model with no direct connection to the underlying mi-
croscopic fermion structure. Since the tremendous success of both the
IBM-1 and IBM-2 in describing the properties of even-even medium-to-heavy

mass nuclei(s’”’zn

, considerable progress has been made in understanding
the structure of the IBM in terms of the nuclear shell-model theory.

Like the nuclear shell model, the IBM is first and foremost a
wave function truncation procedure. It reflects the standard problem
which exists in most of physics, namely that one cannnot solve the dynam-
ics of the problem, e.g., the Schrodinger equation, in the full space
spanned by all the variables, since this space is too large or even infi-
nite. Consequently, one is forced to work in a truncated model space,
so as to have a finite and tractable number of degrees of freedrom
which can be treated numerically. The nuclear shell model is itself
such a truncation scheme; for example, the low-lying spectrum of 8 s
usually described as two neutrons interacting in the restricted model
space of (Ods/z, 151/2, 0d3/2 ). However, if one works in a truncated
model space instead of the full space, one must then use effective
operators appropriate for this model space instead of the full space
operators; otherwise incorrect results will be obtained. We will return
to this point latter.

In the case of medium-to-heavy mass nuclei, which have several
valence nucleons outside the nearest closed proton and neutron shells,
even the usual shell-model truncation, consisting of the assumption that
these valence protons and neutrons interact only in the lowest-lying,
open major shells appropriate for each, is intractable. Such calcula-
tions often involve millions or billions of states of each possible angu-
lar momentum. Consequently, even a more restrictive truncation of the
full space is necessary in order to make microscopic calculations feasi-
ble for such nuclei. The boson degrees of freedom assumed in the IBM
appear to be a reasonable truncation scheme for describing these nuclei
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as demonstrated by the success of the phenomenological IBM exhibited in
Section III. The remaining question is to establish the link between
these boson degrees of freedom and the corresponding fermion degrees of
freedom.

The bosons of the IBM are clearly more complicated in struc-
ture than a simple pair of identical nucleons coupled to J=0 or J=2.
We consider only pairs of identical nucleons, because in heavier nucleil
the protons and neutrons, in general, occupy different major shells, so
that it would not be possible to form a pair with J=0 and positive par-
ity from a valence proton and a valence neutron. The IBM bosons already
contain some of the collectivity of the interacting fermions. This
effect is similar to the manner in which the nuclear reaction matrix
already contains the influence of the strong, short-range repulsion in
the nucleon-nucleon potential. Thus, the IBM bosons represent correla-
ted pairs of identical nucleons, but what kind of correlated pairs?

The recent work of Talmi[]1) indicates that, at least for the
J=0 bosons, these correlated pairs are of the type described by the

(45). This approach has the advantages

generalized seniority approach
(1) of strictly conserving the number of nucleons, and hence the number
of correlated pairs or "bosons", (2) of treating the J=0 and J=2 pairs
in the same manner, and (3) of being amenable to calculation with a wide
class of effective interactions, instead of only the pairing interaction,
as in the case of BCS theory.

In the generalized seniority approach(45), one constructs the
creation operator of a correlated J=0 pair for several j-orbits in the

same major shell in the form

st = Va8, (22)
2 R
]
where
* e 1 j—m 5 + -
85 = fg(_l) . (23)

and the ay are weighting factors for each j orbit.
An example of such a correlated pair would be two identical
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nucleons in the 82 to 126 major shell. This shell contains six j-orbits,
SO we can construct six J=0, T=1 states. If we diagonalize the 6x6
matrix representing the interaction between these two nucleons in this
major shell for any appropriate effective interaction, we find that one
of the eigenstates lies considerably lower in energy than the other five.
This lowest-lying collective JT =0" state is the J=0 correlated pair
defined in Eq.(22).

If all the ay are equal in Eq.(22), then S+ is one component
of a total quasi-spin operator, and the seniority scheme is easily ex-
tended to several j orbits. In real nuclei, of course, the oy will be
unequal, and we will lose the appealing SU(2) properties of the quasi-
spin operator. In spite of this, Talmi has shown that some important
properties of the seniority scheme survive this generalization.

In particular, Talmi(1]’45)

asked under what conditions will
a ''condensate' of pairs created by (22) be an eigenétate of a shell-

model Hamiltonian Hg, containing only single-nucleon energies and two-
body effective interactions. In other words, what are the conditions

on Hg, so that
+n b) = FE +n )
He(8)m |00, = Ep(s)™ |0, , (24)

where HF' 0)p=0 and [ 0 )y is the fermion vacuum state. Talmi (4*)

showed that (24) holds for any value of n, provided that

+ _ oyt
HS 1oy = vsTloy (25)
t ot 4 she
[t 811,87 oy, = ash2p0o, (26)
and
o & Dn=1j
En nVO 3 A, (27)

where V, and A are simply c-numbers. The trends regarding binding
energies and separation energies predicted by Eq.(27) agree very well
with the experimental trends. Hence, a correlated pair of the form (22)
is a likely candidate for a J=0 boson, since it leads to a condensate,
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i.e., (S+)“| 0 )F’ which yields results in agreement with experiment for
nearly spherical nuclei. Unfortunately, if we calculate the commutator
of ST with (S+}+, we find that it is not équal to one but is

(shf, s = 13 25+ N2 - Jo2] a;fmajm (28)

h | 3j m
So the S+ do not create real bosons. We could neglect the second term
on the right hand side of Eq.(28), which is the commonly used quasi-bo-
son approximation. This is, however, a good approximation only when the
number of valence nucleons is small compared with z (2j+1). We seek a
result that will be true for any number of valencejbarticles.

At this point we recall that the IBM corresponds to a wave
function truncation and not to an operator expansion. Consequently, we
are not interested in expressing fermion pair operators in terms of bo-
son operators. What we want is a correspondence between the boson
states and the fermion pair states. This is done by making a one-to-one
mapping of the fermion pair states, (S+)n| 0) g, onto the boson states
(s+}n | 0)p, where | 0)p of the boson vacuum state(g’10’18’46). For
simplicity and convenience we have assumed that the states in both
spaces are properly normalized.

Once such a direct correspondence has beenestablished between
the correlated fermion pair states and the boson states, one can deter-
mine the appropriate boson operators by constructing their "image" in
the boson space(9’1a). That is, one requires that the matrix element of
the corresponding boson operator in the boson space be the same as the
matrix element of the fermion operator in the fermion space. For exam-
ple, we would require that

] [6H]" 11 00 = nvp + 22D

(29)

I

€0 stHy(sH™] 00

or that

H wVsls » %A (shz sz | (30)
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This is the appropriate effective Hamiltonian in the boson space. It
should be noted that Hp as given by Eq.(30) does not reproduce all pos-
sible eigenstates of the fermion Hamiltonian but only the one corres-
ponding to (s*)n| 0)p. Also, Hg is not an expansion in powers of g
and (S+)+. Hence, once we have established the appropriate correspon-
dence or mapping between the correlated fermion pair states and the
boson states, we can determine the form of all the boson operators
(i.e., effective operators) using the "imaging" technique.

So far we have discussed only the J=0 correlated pair with
generalized seniority v=0 and the "condensate" of pairs formed from it.
Let us now consider pair states with J=2 which have generalized senio-
rity v=2. The operator which creates a correlated J=2 pair can be
written in the form

Dy = I8y —— I Gmim|jj'apalal, , . (31)

L L]
ij'JJ /1+6jj' e jm 3'm

As before we can ask under what conditions on the shell-model
Hamiltonian Hf will the states (S*Jn'l(DE)I 0 ) be eigenstates. Once
again Talmi(11’45) has established that such conditions exist, that the
eigenvalues obtained produce results in agreement with experiment and
that the corresponding boson Hamiltonian can be constructed by the
imaging procedure.

So far there has been an exact one-to-one correspondence be-
tween the results in the correlated fermion pair‘Space and in the boson
space. However, states constructed with two or more Dﬂ operators may
not be orthogonal to states with smaller numbers of qz operators, e:g.,
the state (DT -D+) [0 ’p is, in general, not orthogonal to the v=0 -
state (S+)2 | 03 g, where the dot represents a scalar product of the two "
D", In order to make the correspondence between these higher Dﬁ stgtes’
and the boson stateé, we must project out of the fermion states those
components which are states with lower generalized seniority. Hence,
the state (S+)“'2DLDL. [d ) | corresponds to the boson state
(s+)“'2(d+)2 | 0 >p, where ) | denotes that the part not orthogonal to
sHn | 0 ) F has been projected out.

Therefore, the mapping procedure of Ginocchio and Talmi(46)
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and the generalized seniority method(45J permit us to establish a one-to
one correspondence between correlated fermion pair states and states in
the s and d boson space. Whether or not these particular correlated
fermion pair states, as constructed in the above manner, actually corres-
pond to the s and d boson states of the IBM must await future investi-
gation.

So far we have discussed only configurations for identical
nucleons interacting through the T=1 component of the nucleon-nucleon
potential, which conserves seniority. On the other hand, the T=0 in-
teraction, which we have not yet considered, strongly breaks seniority.
We would expect that the important matrix elements of this T=0 inter-
action are those taken between the proton bosons and the neutron hosons,
which occupy different shells in heavy nuclei. There is evidence in
light nuclei that the proten-neutron T=0 interaction is responsible for
producing the deformation observed for these nuclei(47). In the boson
language this seniority breaking manifests itselfas a mixing of the s
and d boson components of the wave functions. For example, in strongly
deformed nuclei which show good rotational properties, the ground-state
wave function is essentially an equal mixture of s and d bosons, while
a nucleus which behaves like a spherical vibrator has a ground-state
wave function which is essentially pure s boson in structure. The
simplest interaction which breaks seniority strongly is the quadrupole-

[]1'48). This fact makes reasonable the choice of

quadrupole interaction
a quadrupole-quadrupole interaction for the basic proton-boson-neutron-
boson interaction in the IBM-2 [Eq.(14)] . Thus, even though the IBM-1
exhibits the beautiful symmetry properties of the U(6) algebra, it is
the IBM-2 which appears to possess themostdirect connection to the un-
derlying microscopic fermion structure through the generalized seniority
scheme and the quadrupole-quadrupole proton-neutron interaction.

The above discussion gives only the basic "flavor" of the
arguments of Talmi(11), Otsuka g£‘g;.(9’10’18'49),Ginocchio(dﬁ’so) and
Dthers(8’13'21) in their efforts to establish the relationship between
the IBM and the nuclear shell model. The interested reader is particu-
larly referred to Refs. 8-11,13 and 21 for more details.
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As pointed out earlier, once a direct relationship has been
obtained between the wave functions in the fermion space and the s-d
boson space, one can use the imaging technique to determine the struc-
ture and the Ny and Ny dependence of the boson operator corresponding
to any given fermion operator. This procedure has been described in
detail by Otsuka(4g) and by Otsuka, Arima and Iachello(10), who spe-
cially work out the form of the quadrupole operator in the s-d boson
space and determine the N and Ny dependence of ¥, yy and ¥,. The Te-
sults of such calculations for the 50 to 82 major shell, based on the
work of Otsuka(49), are shown in Fig.20. In these calculations the 50
to 82 major shell is treated as a single j shell of j=-%} . The pre-
diction for e is also illustrated. In the basic IBM, e should be con-
stant across a major shell, since it is simply the amount of energy
required to change an s boson into a d boson, i.e., to change a J=0
correlated fermion pair into a J=2 correlated fermion pair. The gener-
alized seniority arguments given above predict a constant value for this
excitation energy across a major shell.

In Fig.20 one should particularly note that x, changes sign
at the middle of the shell and is of the same form for both positive and
negative values. On the other hand, the values of y,, determined empiri-
cally for N, =50 to 82 are skewed with respect to the middle of the
shell (see Fig.16), and the empirical values for Ny=8Z to 126 show an
oscillation with a minimum at N, = 108 in the case of the tungsten isoto-
pes (Fig.11).

Duval and Barrett{51) have extended the imaging calculations
for the boson quadrupole operator, so as to treat each major shell as
if it consisted of two different j shells, instead of only a single j

shell, as in the earlier calculations(10’20’49).

Typical results of
their calculations are given in Fig.21. One observes that these calcu-
lations are capable of reproducing both qualitatively and quantitatively
the empirical structure found for k, ¥y, and yg.

The treatment of a major shell as consisting of two different
j shells has a direct connection with experimental observations(sz).
For example, in the N=50 to 82 major shell the five single-particle

levels tend to cluster into two distinct groups.
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Fig.20 The dependence of €, k and X, on N,, as expected in a microuscopic
theory with degenerate single-particle orbitals (Ref.49).
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Fig.21 Two nondegenerate j-shell predictions for k,) and ¥, in (a) the
50-82 shell and (b) the 82-126 shell. The units for k,, are ar-
bitrary. The arrows indicate mid-shell (Ref.51)
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The above-mentioned calculations clearly have predictive power
for the values of the parameters k, x, and y, in mass regions where no
empirical fits using the IBM-2 have been carried out so far. In partic-
ular, Duval and Barrett have used the values of k and y,, predicted from
their two j shell calculations for N=82 to 126 to recalculate their i

were in even better agreement with the exper-

earlier IBM-2 predictions for the properties of the tungsten isotopes
Their new calculations(ST)
imental data than the original empirical fit.

Like the single j-shell calculations, the two j-shell calcula-
tions of Duval and Barrett also predict a constant value of € across a
major shell. On the other hand, the empirically determined value of e
changes dramatically from its near-closed-shell value to its center-of-
the shell value. This change is necessary in the IBM to reproduce the
large decrease in the 21+ = 01+ splitting as the masses of the isotopes
vary from their closed-shell values to their center-of-the-shell values.
In the IBM-2, part of this decrease comes from the change in the number
of d bosons in the 01+ and 2;+ states as Ny approaches its midshell
value. Part of it also comes from the effect of states left out of the
s-d boson model space, such as g and i bosons and s' and d' bosons. Sage
and Barrett(ss) have used ordinary second-order perturbation theory to es-
timate the renormalization effects on the IBM-2 parameters due to the g boson.
In order to perform microscopic calculations they begin in the corre-
lated fermion pair space and then project their results into the s-d

boson space, a la Ginocchio and Talmi(46).

A typical diagram which they
compute in the coupled fermion space is shown in Fig.22(a). Assuming a
two-body quadrupole-quadrupole interaction between the correlated fermion
pairs,they obtain a multipole-multipole result for the second-order
process illustrated in Fig.22(b). In particular, after projection into
the s-d boson space, they find the following expression for the monopole-

monopole term in second-order perturbation theory, denoted by V; (L=0):

VR (L=0) = k2 I' | (I I |1 Q- QI (IpI)I) P5p

27+ 1 (32)

I N, +n "y




In Iiq. (32) the angular momentum notation is given by Fig.22(b), AE is
the difference between the unperturbed ground-state energy and the
unperturbed intermediate-state energy and the prime on the summation
indicates that the sum is restricted to those intermediate states with

In(v) =4, while Iv(ﬂ) =0 or 2.

Sy

Sw

(a) (b)

Fig.22 (a) Typical seccnd-order perturbation theory diagram containing
one correlated fermion pair coupled to J=4 as an intermediate
state. Each pair of vertical lines represents a correlated
fermion pair.

(b) Typical second-order diagram showing the notation used in
Eq. (32)

Comparing Eq.(32) with Eq.(14) for the IBM-2 Hamiltonian, we
see that Eq.(32) corresponds to a renormalization of the terms depending
on ng and ng and, hence, is related to the change in ¢ as N, and Ng

vary. Sage and Barrett[SSJ

used the renormalization term in Eq.(32) to
compute the 21+ = 01+ splitting in the barium isotopes. Figure 23 shows
the results of their calculations compared with the empirical results of
Otsuka et gl.(gj (lower curve) and the results obtained assuming a con-
stant value of e across the entire major shell (upper curve). From
Fig.23 one immediately sees that a sizable amount of the change in the

- A splitting arises from the change in (ng) as Ny varies (upper

1 1
curve). But it is also true that the renormalization due to the g boson
in second-order perturbation theory is: (1) of the correct sign and (2)

tends to improve the agreement with the empirically determined value.
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Fig.23 Calculated splittingsbetween the first excited 2 state and the
ground state for several Ba isotopes. The circles are the empir-
ical values found by Otsuka et al. (Ref.9); the triangles are the

results of Sage and Barrett (Ref.53); and the X are calculated
values assuming a constant value for E. (Ref.53).

Independent calculations by Otsuka(s4J have shown that the
inclusion of the g boson in second-order perturbation theory in the hoson
space improves the agreement between exact shell-model calculations and
the same spectra calculated in the IBM. Much work still remains to be
done regarding the importance of terms not present in the simple s-d
boson IBM. Must g bosons be included in the IBM on an equal footing with
the s-d bosons or can their influence be accurately treated using second-
order perturbation theory? How important are i bosons and bosons of
higher J? How significant are bosons of a different structure, i.e.,
collectivity, such as s' and d' bosons? Some work along this latter line
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is already being investigated by van Isackerfss)

, who has expanded the
basic IBM-1 to include a single s', d' or g boson.

Another area of considerable interest and activity is that of
establishing the connection between the IBM and the collective models of
Bohr and Mottelson{z); however, this work will not be discussed in
detail here. The research in this area is proceeding along two lines.
The first consists of constructing the coherent or intrinsic state for
the IBM and demonstrating that the classical limits, corresponding to the

different geometrical models, can be projected from it(SG'SS).

In partic-
ular, Dieperink and Scholten®®) have shown that the three limiting cases
that appear in the IBM correspond to different shape phases. The work

(57,58) seems to indicate that the IBM and the collec-

carried out so far
tive models are two related formulations of the same phenomena, in the
same way that the Heisenberg picture and the Schrddinger picture, res-
pectively, are two formulations of quantum mechanics.

The second line of research in this area is investigating the
relationship between the IBM wave function (in the boson space) and the

(59’60). Similar to the

Bohr-Mottelson geometrical-model wave function
research with regard to the coherent state, this work also indicates
that a relationship can be established between the two formulations,
namely a one-to-one correspondence can be established between the wave
functions in the two formulations, if a monopole vibration (i.e., an s
boson) is added to the geometrical-model wave function. Much research
is continuing in both of these areas.

To summarize this section, we have gained some insight into
the structure of the IBM bosons through the generalized seniority scheme
and the concept of correlated fermion pairs which are capable of forming
a condensate. On the other hand, no general theory exists which estab-
lishes the exact relationship between states in the fermion shell-model
space and states in the s-d boson space. Until we have such a general
theory, we will not be able to say precisely when the assumptions of the
IBM are valid for a particular nucleus and when these assumptions will
break down. When we are able to calculate the IBM basis states and the
IBM parameters using the fermion shell-model theory, then we will be
able to predict when the IBM will break down due to loss of collectivity
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in the basis states (i.e., in the structure of the bosons) and when
other degrees of freedom (i.e., g and i bosons and/or s' and d' bosons)
must be included in order to explain the nuclear structure observed

experimentally.

V. DISCUSSION AND CONCLUSIONS

At the very least the IBM is an extremely useful model for
describing the low-lying properties of even-even, medium-to-heavy mass
nuclei. It is simple model both to employ and to understand and can be
easily utilized to describe the properties of nuclei with many valence
nucleons far from closed shells. These properties are often extremely
difficult or impossible to calculate using earlier models(z}. But the
IBM is more than just a model, because through the IBM we can now also
understand the connection between the different geometrical models (or
symmetry limits) as the number of valence nucleons changes and can des-
cribe the change between these limits in a smooth manner as a function
of nucleon number.

Since the original IBM is a phenomenological model, it has its
limitations; it does not work for all nuclei and for all excitation
energies. Because of the previous successes of the IBM, some people
believe that the IBM has a wider range of applicability than its basic
assumptions permit. For example, the IBM is meant to describe the low-
lying properties of medium-to-heavy mass nuclei, roughly up to 2 or 3
MeV in excitation energy, depending upon the nucleus. For higher excita-
tion energies the correlated pairs would begin to be brokeﬁ up. This
does not mean, of course, that it is impossible to extend the IBM in
some way to treat high spin states and backbending; in fact, some work
is already being done along this line[ﬁn. We have already seen in the
case of the Hg isotopes that the basic IBM can be extended in a straight-
{23). The IBM
also is being applied to light nuclei (i.e., N and Z<50), where the

forward manner to describe configuration mixing in nuclei

basic assumptions of the model are probably not valid. Again the basic

IBM can most likely be extended to treat selected properties of some of

these nuclei, probably through the use of the F-spin formalism(ﬁz).
Since the IBM represents a wave function truncation procedure,

we have the possibility of understanding the comnection hetween the boson



configurations and the underlying microscopic fermion structure. In

(45)
46)

the possibility of such an understanding. Tt was also observed in Sec-

Section IV we found that the generalized seniority scheme plus the

correspondence or mapping procedure of Ginocchio and Talmi{ offers us
tion IV that the structure of the TBM-2 Hamiltonian appears to be simply
related physically to the underlying fermion interactions. If in the
long run this connection or onc similar to it proves to be correct, then
we will at last reach the goal of a unified theory of nuclear structure
for all nuclei.

The IBM and the Bohr-Mottelson Model appear to be related(57‘601
as we discussed in Section IV. They seem to be simply two representations
of the same phenomena, as the Heisenberg picture and the Schridinger pic-
ture are two equivalent representations of quantum mechanics. It is only
a matter of which representation is more convenient or useful for des-
cribing and understanding any particular system. At the present time the
IBM is the casier model to use in performing numerical calculations of
nuclear properties for many medium-to-heavy mass nuclei.

The IBM is a rich and varied model, and many aspects of its
development, application and interpretation have, unfortunately, been
only briefly discussed or simply mentioned here. For more details the
interested reader is referred to Refs. 8, 12-14, 21 and 49, which are
more general in nature. Due to a limited scope for the present paper, we
have not even touched on the tremendously exciting subject of the newly
developed Interacting Boson-Fermion Model (IBRM) for describing the
(21’63]. The combination of the IBM and IBFM
has led to the prediction of the possible existence of so-called super-

properties of odd-A nuclei

symmetries in the spectral structure of certain neighboring even and odd
mass nuclei(21’64).

In conclusion, the IBM is an exciting development for nuclear
physics, not only because of the successes it has had so far in descri-
bing an explaining nuclear properties, but also because of the possibili-
ties it offers for our future understanding of nuclear structure. It is
an active, dynamic and growing field of research with much challenging

and stimulating work remaining to be done.
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