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ABSTRACf
Partially summed perturbation series constitute ene possible

starting point far construction ai theories ai infinite and finite
Ferrnion matter. 1 discuss various problems encountered in these theo-
ríes like choice af single-particle potentials, zero-order states, sum-
mation oi ring - and ladder- diagrams and occupation probabilities.

RESUMEN

Un posible punto de partida para la construcción de teorías
de materia fermiónica infinita o finita lo constituye la suma parcial
de la serie perturbativa. Se discuten varios problemas que aparecen en
dichas teorías como la selección de potenciales de partícUla indepen-
diente, los estados de orden cero, la suma de diagramas de anillo y de
escalera y las probabilidades de ocupación.

l. lNTROruCfION

t-Ianyphysical pronlcms involve the calculation of sorne eigen.
statC" for a given fiarni1tonian,
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(1)

Many-bouy problems of this kind arise frequently in quantum chemistry(l)
and in solid-state(2). quantum fluid(3) or nuclear(4) physics. Through-
out this paper 1 will not discuss the origin of any given Hamiltonian,
nor the justification far employing non-relativistic quantum mechanics.
1 will discuss differcnt mcthods to obtain approximately sorne solution
of the Schr~dinger equation (1). At present, there are three broad
classcsofcomputational methods available far this purpose: variational
ones, (partially summed) perturbation thcory, ar stochastic methods.
Exact analytic solutions are not available in general fer realistic
many-bodyproblems. Therefore, stochastic methods currently provide
Q~ ~ith the mest rigoreus results in many-body physics. The Green's
Function ~Ionte-Carlo (GFHC) method developed by Kalos and collabora-
tOTs(5,tJ,i) has pTO\"ided liS \,,-ith exact solutjons subject to on1y

statistical sampling errors far the 4He atorns fluid(8), model nuclear
matter(9). the electron fluid(10), nuclei (11) and atoms(12) .• hile
pro\'iding us v.-ithexact results stochastic methods are not easily gener-
alizcd to complex Hamiltonians (1) im'ol\'ing, e.g., exchange forces,
tensor forces, nonlocal forces and alike as they occur in nuclear
physics. Moreover, man~'-Fennion systems pose sev('re difficultics at the
prcscnt stage. Also stochastic methods frequentl)' are very expensive
in tcrms of computer time.

Variational methods are more flexible than stochastic ones
and havc been applicd extensively to quite complicated nuclear Harnil-
tonians(13). In simple cases like the Helium atom they provide us with
results of profound accuracy(14). In genuine many-body problems how-
cver two complications arise: firstly, a variational method will only
provide us with an upper bound, and it is in general not easy to esti-
m,te the distance to the desired Schrüdinger eigenvalue, or to obtain
a reasonable lowcr bound. Secondly, in many circumstances the evalua-
tion oC the expcctation value of the Hamiltonian carmot be done rigoro-
usly but has to reIy on sorneapproximation schcme. Thereforc, one can-
not be evcn sure of having evaluated an upper bound reliably. One
exccption as regards the Iatter point is the variational Monte-Carlo
mcthoJ(7) whcre thc expectation value is cstimateJ with only statis-
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tical crrors. In mas! integral-equation approaches(15,16) errors due
to unavoidablc approximations can be estimated.

I'erturbational methods in principIe are not plagued by any
of thes~ problems. They will eventually converge towards true Schrodin-
gcr cigenstatcs. They are even more flexible than the variational meth-
ous and r.~y more ay lcss easily be applied to Hamiltonians oí arbitrary
complexity. By ineluding higher and higher orders the calculations may
be carricd to any dcsired accuracy. How.ever. 35 oiee 35 a11 this may
soulld in principIe, in practicc perturbational methods are the rost
limitcd anes bccausc pcrturbation theory diverges badly in almost a11
cases of interest, Quanttun Chemistry problems(l) being a notable excep-
tiao. lncrcforc ane has to reIy on partial surnmation schemes surnming
sorrc classcs of contributions to arbitrary arder. Of course. this is
a vcry dangcrous way to go since it is equivalent to rearranging
infirrite, divcrgcnt series without having any formol proof justifying
this rcarran£emcnt. In faet the partial stmnnations made in roost ins-
t,mees arc suggestcu by physical intuition. One therefore has to be
mueh eonccrncd about eonvergence propcrties of the rearranged series
- alrost all of the rcst oí this paper will be devoted to this question.

Anothcr drawback of partially summedperturbation methods is
the extreme!y fast incrcase in Illuncrical effort with the order. Most
cakulations do alrcady stop at the lowest order, only in few cases
has it heen possiblc to proeeed one or - in very approxirnate ways- two
ordcrs furthcr.

There is one problem cornmonto al] three basic groups of many-
hooy mcthoJs: ¡,hieh eigenstate of the Schrodinger equation (1) will be
ohtained or approximated? ~tost frequcntly one is interested in the
"grolD1Ustate", the lowe5t encrgy 501ution. However, we have to be
very careful with this notion 5ince the lCMe5t-energy state will depend
on bOlmelaryconditions and subsidiary canditians imposed implicitly ar
explicitly. In order to keep thi5 in mind and be more precise 1 want
to .I\..-oidimplicit bOlmdary and subsidiary canditions and refer to the
"lowest-ener~'Y statc of a givcn phase". For exanqllc, one might look
for the 10wcst-cneT&l)'state producing a homogeneous one-body density in
spaec, or the lowcst-energy cl)'stalline state, or the lawest-energy
pair-candcnsed state or a spherical nucleus ar atom, etc. The absolute



ground state wil1 then be found as the minirnurnover a11 phases. This
proccdure is a150 more reasonable from a pragmatic point oí vi~' since
rarcly a computational method is able to move betwccn phases, i.c., a
calculatían started from phase A will tmder almost any cira.unstances
not be able to produce the lowest-energy state of phase B, though that
might be the tTUe absolute ground state.

In section 11 1 will briefly review the Coupled-Cluster or
exp(S) method bcing a very concise and convenient surrunation oí pertur-
bation theory free of approximations. Various subsections will be
Jevoted to curren! prOblems in partially summed perturbatían theory,
namcly the choice of zera-arder states - a question closely associated
with the phasc prOblern mentioned in the last paragraph- the choice oí
single-particle potentials, and the summation oí various classes of
Goldstone diagrams corresponding to spccific physical processes. The
discussion is surnmarized in scctian 111.

11. PARTIALLY SlR>NED PER"IURBATION SERIES

A. The Coupted-CtU6teA method
In arder to easily manipulate infinite perturbation series it

has been found convenient(17, 18) to express the desired Schr6dinger-
eigenfunction in terms of so-called cluster amplitudes Sn'

A
~ = exp( ¿ Sn) ~ ,

n=1
(2)

hnere A is the number of particles in the system.
Equation (2) expresses the exact state as some operator applied

to a zero-arder statc q¡which must satisfy

(3)

and far íermions in general will be a determinant.
The cluster amplitudes Sn describe the linkcd ar correlated

excitation oí a n-particle n-hale state with respect ta the zera-arder
state q¡,

q¡np nh (4)
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Power-series expansion of the exponential in Eq. (2) produces
the remaining particle-hale excited states being composcd oí two of more
independent excitations each involving fewer bodies, C.g.,

5 5 ~n m ~
(n+m) p (n+m) h ( 5)

'Y
2 3(1 + 5)+ 52+ 53+", + 1/25)52+ 1/252+ ..• + 1/652+ .oo)~

(6)

The expansion (2) or equivalently (6) is seen to express the
exact wavefunction as a superposition oí the zero-arder state and all
possible particle-hale excited states with respect to the same, that is,
nothing cIsc but an expansion into a complete system oí orthonormal
functians. The introduction oí the exponential form is a concise way to
implement the linked-cluster theorem(19). The wording used hcre is
strongly influenced by the Goldstone diagram expansion(19) •

The Coupled-Cluster (CC) method has been described extensively
in the literature(17,18,20) including several review papers(18,20,21).
Equation (2) essentially constitutes a transformation of unknowns:
instead oí determining the A-body wave-function ~ we now have to deter-
mine the set oí cluster amplitudes Sn' which are two completely equi-
valent reprcsentations of the same state. In arder ta Obtain the
cluster amplitudes we have to use the SChrOdinger equation,

H exp(5) I~) = E exp(S) I ~ ) (7a)
A

5=l:5n (7b)
n=l

This equation will be IJlJltiplied froo the left with exp (-5) and
projected onto the complete set of determinants made up from the zero-
order state (~ I and its particle-hole excited states ( hp nh 1:

I -s s -s SI(~npnh e He I~)'E(~ h1e e $)npn

E

o .

(8a)

(8b)
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While Eq.(8a) is an explicit expression for the energy in
terms of the cluster amplitudes Sn the A Eqs.(8h). n=1 •.•. A. may he
useu to uetermine the A unknowns 51 •...• SAo One of the Eqs.(8b) will
be refcrred to as the n-body equation ar the equation far So" Explicit
fonns [or the equations maybe found in Refs. 18, 20, 21, 22. Unfortu-

nately, thc cquations turn out to be nonlinear and coupled with each
othcr. However, if we assumc that the hamil tonian contains only one-
and two-body operators, kinetic energy and a two-body interaction far
examplc,

A
H = T + V = í

i=l

p2
1-+2m

Aí v, ,i<j J.)
(9)

mattcrs simplify since the cquation far So will involve ooly 51,52"",
up to 5

0
+2,

Xo [51. S, ) = E
Xl [51. S,. 53 O
X, [SI. S,. 53. 54 O
X3 [51. S,. 53. 54. Ss O (10)
X4 [SI. 52. 53. 54. Ss, S6 O

XA[SI.S2,S3, ...• SA! O

whcrc Xn denotes thc functional rclation bctwecn its arguments, the
n-body equation.

Since we have no! invoked any approximation, the systcm of
equations (10) is equivalent to the Schrodingcr equation (1). lt turns
out, and 1 will discuss below. that iterative solution oí Eqs.(10) will
produce the perturbation series or, upon sclection oí specific paths
of itcration through the equations, any desired partial summation
schemc.

In order to discuss the Coupled-Cluster equations (10) in more
detail it is convenient to use a graphical notation in analogy to
Goldstone diagram6. Lines with arrows directed downwards or indices v
will represent states occupied in the zero-order state or holes, while
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lines with arrows directed upwards ar indices p will denote unoccupied
or partieles states. The amplitudes 5n will be denoted by blobs being
cntered by n hale lines and being left by TI particle lines, j.c., a
creation of linked n-particle n-hale excitation. The potential is de-
noted by a dashed horizontal lineo A salid horizontal lioe denotes
an energy denominator, that is the diffeTence between the particle and
hale energies fer the particle and hale lines it crosscs.

With this notation, the mest relevant parts of the th'o-body
equation, the equation from which ~ is to be determined, is sh~n in
Fig.l. Consider for the moment just the first three terms, (a) to (e),
as an iterative schcme to determine 52' In the first iteration we find

52 (11 )

the first-order perturbation theol)' result far the waveflUlction change.
Inserted into the energy expression,

E = E
HF

+ (~lvS21~ > (12)

this is seco to produce the second-order perturbatían correction to the
energy. There is no first-order contribution since we assumc the tmper-
turbed state I~) to be the Hartree-Foek (HF) solution.

Further itcration of Fig. lea) to (e) will produce an inereas-
ing number oí interactions between the partieles, Fig.2. In faet the
equation wc are solving (formally) iteratively is just the familiar
Bethe-Goldstone equation(20):

-Q2 v(l + 52) ( 13)

In Eqs. (11) to (13), e2 denotes a two-body energy denominator, and Q2
a two-body Pauli projection operator which takes care that the partiele
lines in Figs. 1 and 2 really are particles.

In this approximation, OUT two-body equation just yields the
sum oí all two-body scattering proccsses bctwcen a pair oí partieles,
summed to infinite arder oí perturbatían theory. This is the first
case we encounter where a partial sUrnmation has becn performed. There
are many contributions to the energy oí third, fourth, ... , arder in the
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energy whidh have been neglected so far, for example all of the terms
rcsulting írom the wavefunction amplitudes of Fig.3 when inserted into
the energy express ion Eq. (12).

~
=
V__V

+
~

+
~

(a) (b) (e) (d)

+
~

+
~

(e) (1)

+ + + ..•

~=

~=

(9) (h) ( i )

cm m m ++ .. + ..

(k)

ctfW +
~

+ ...

(1)

F il). 1 Equation tor the two-particle two-hole excitation arnplitude S
in diagranunatic formo The "3"- and "4"-body boxes denote the2
three- and four-body 8ethe-Paddeev surnmations, i.e., the sum oi
ladder diagrams.
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=
(a) (b) (e) (d) (e) ( f )

Fig.2 Lowest arder approxirnation to S2 for the short-range torces. This
sum of t",,~body ladder diagrams i5 obtained [rom the Bethe-
Goldstone equation, terms (a) to (e) of Fig.l.

lt is justified to take along a second.order contribution
like Fig.2(c) and at the same time omit a contribution like Fig.3(a) of
the same arder? Fortunately, this question can be answered unambigously
due to the presence oí certain singularities in the equations for certain
classes oí interactian potentials v. If the interaction v has a hard-
core, Le .. if it is infinitely repulsive ayer a finiteinterval, one
must keep together all the terms of Fig.2 any of which does not exist
(is equal to infinity) but the sum of which does exist and even provides
correctly the leading term of the low-density expansion(23) of the total
energy Eq. (12). The presence of the hard-core forces us to deviate
from order-hy-order perturbatían theory and keep together certain classes
oí diagrams to a11 orders. Simultaneously, these classes of diagrams
acquire a physical "meaning":the diagt:amsof Fig.2 are said to repre-
sent the multiple-scattering series for the two particles involved.
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(a)

+

( b)

+

(c)

Fig.3 Lowest arder approximation te S2 fer long-range forces. This sum
oi ring diagrams is obtained from the RPA-equation, terms (a).
(b), (f) and (g) of Fig.1 together ...••.ith the lowest-order approxi-
mations Fig.1 (k) and (1).

As another extreme let re discuss the CoulonDpotential.
Because oí its long range, in an infinite system (e.g., a metal) taking
v to be liT leads to another singularity. The individual terms of Fig.2,
as well as their sum, are wel1 behaved since we do no! have a hard-core,
but the diagrams oí Fig.3 now do not exist, but only their sumo This is
just the farrrlliarstatemcnt that in an infinite Coulomb system the suro

of Ting diagrams must be kept together, and the physical meaning
acquired by this partial sUJmnation is the "screening" oí the long-range
Coulomb force due te cellective processes. Like the ladder diagrams in
the hard-core case. the sum of ring diagrams furnishes exact leading-
order terms for the energy and other quantities in the Coulomb case(24,2S~

Since the leading terms oí the two-body equation seem to
produce just the ladder diagrams and not the rings, one might believe
that the Coupled-Cluster rnethod is especially adapted te treat short-
range forces. This, however, is not true - it is only a consequence oí
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OUT notation that ladders are recave red more easily than rings. In faet,
upon iteration Figs. l(f) and l(g) wi11 produce a11 the ring diagrams if
we repIace the "3" and "4"-body boxes (to be discussecl helo","') by just one
interaction v-their 10\.;cst ordcr- in a suitable manner[Fig. l(k), 1(1)].

The Coupled-Cluster equations, as is obvious from the preceed-
ing discussion, have the appcaling feature that even in a low-order ap-
proximation, like considering 52 only, they do contain the correet lowest-
arder approximations fay two completely adverse problems: the (short-
range) hard-core problem as well as the (long-range) Coulomb problem. In
fact, the two-body equation Fig. 1 as it drops out by purely fo~,l mani-
pulations of the SchrOdinger equation (8b) turns out to embody the most
important physics of these two quite different many-body problems and is
able to describe two-body short-range correlations as well as long-range
screening. The partial s~1tions of perturbatían theory suggested by

this equatíon are just those required in order to avoid singularities in
extreme cases.

Sinee mast of the problems I want to diseuss below eoneern
many-body systems interaeting via short-range potentials, the forro Fig. 1

for the two-body equation is the useful onc. In Coulombie problems one
would choose to write dOhTI the equation differently, that is employing
nothing but a different notation and a different grouping of terms (21,25)

8. 2eJto- OMeA S-tatu
Before talking ahout particles and holes one should specify

what thcse single-partiele (s.p.) states are to be. The very Ansatz for
the wavefunction, Eq.(2), assumcs a zero-order or reference state $ to be
given which for fermions usual1y is taken to be a determinant. In the
present section 1 want to address the question what the significance of
choosing one or other prescription for this state is.

The fu1l, presumably exact, wavefunction ~ is built up írom $

by mcans of nprul-excitation operators Sn. The idea oí a practical ca1-
cu1ation to be carried out is, oí eourse, to truncate the couplcd set oí
equations (10) for the Sn and caleulate only a small, finite subset up to
SN and neglect all Sm' m > N. In. arder for this scheme to work one should
at least be sure that the Sn will not grow with n in which case any
truncation would be disastrous. In sorne sensc, for any approximation
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sQheme within the eontext of the Ansatz equation (2) the Sn must be
1150011", In other words, the unperturbed state <JI rus! be close to the
true state 'f in arder for approximate schemesto work. This is already
suggested by Eq.(3): if the unperturbed and exaet states are orthogo-
na1, cven thc exact mcthod dDes no! work! In this sense Coupled-Cluster
thcory is akin to perturbational mcthods. In spi te oí the partial stmJnations

made it is sti11 required that thc 501ution be not too far íTem the zero-
arder state.

Let me discuss sorne examples. In an infinite system there
exist esscntially four dtíferent phases: fluid, solid, superfluid, and
clustered. In the case of the Heliums these phases are familiar, at
least the first three. The clustered phase is thought to coosist oí
droplets (of several 411eatoms, say) forming a (low-density) fluid.

At a given density, we do no! know a priori which of these
phases will be lowest in cnergy. On the contrary wc might be tempted
to calculatc thc equation-of-state for fluid Helium-3 as a function of
density ignoring the phase boundaries. For this problem, since we
expcct the true, fulIy interacting wavefunction to produce a constant
numbcr density in space it is reasonable to use plane waves as s.p.
st3tes to built a determinant ~ frorn. In faet, this is precisely what
has been used in IDOSt caleulations so far(16,26).

On the other hand when interested in the properties of solid
Helium-3 we would not use plane waves in zero order since localizatíon
of particles at lattice sites is beIieved to be an essential feature oí
solids ..•:hich we should not like to miss, even in zeroth order. In faet,
we would use localized s.p. orbitals(27) eentered around lattiee sites
for this problcm to build a determinant from. This intuitive, physieal
choice in each of the two cases wiU lead to "reasonable" magnitudes
for the eorrelation effeets (although it should be noted at this point
that thc Hclium~3 fluid as well as the solid are too strongly correlated
systems to be treated by the Coupled-Cluster method at a11 to our
current knowlcdge). OUr choice of reference states allows us now to
calculate the cncrgy of two phascs at the same density. ~eithcr calcu-
latian exhibits instability against the other phase even if the other
phasc is sign ifícant ly lowcr in cnergy.

In athcr wards, a method 1ike the Coupled-Cluesters in practice
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is not able to JTX)ve from ane phase to anothcT. Given a zera-arder state
~, the solution ~ of the Schrodinger equation approximated will be ene
of the same symmetry --not necessarily the ground state. Similar sta te-
ments hold true for almost any other method, in particular for varia-
tiana! methods, but not in general for the Green-Function-t-lonte-Carl0
rnethod.

If ane would try to approximate a salid starting from the
fluid plane-wave determinant it is rather obvious that ene would get
very large Sn amplitudes. The solid-like structure implies long-range,
many-body correlations which if not cmbodied within the reference state
must be build up by the Sn.

A similar situatían exists if ene is interested in the super-
fluid statc. It is necessary to use as reference state ene which
already is superfluid. like a BCS state(28). If one tries to describe a
superfluid state starting from a normal fluid one, divergent Sn ampli-
tudes result(28). The clustered state will exhibit the same problems as
discussed aboye for fluid/sol id states. Within a given S)~try it has
been fOlmd useful to use as occupied S.p. states those resulting from a
(symnetry-restricted) HF or generalized HF(18) scherne. The latter one
results from requiring 51= O .

The essence of all the aboye discussion is that it is not
possible to ask of most many-body methods. in particular the Coupled-
Cluster method, "Givcn sorne rcferencc state, produce the ground state".
The only question allowed and possible to answer is "Given sorne refer-
ence state, produce sorne eigenstate of the Schrodinger equation". It is
then general experience that the state produced will be the one for
which the overlap (~I~) is maximal, or. if we wish to keep (~I~)= 1.
the overlap (~I'1') is minimal. both cxpressing the fact that the eigen-
state found is the one "closest" to the unperturbed state. It is then
a consequence that the eigenstate found will be of the same phase as the
zero-order state. It may be hoped that one will obtain the lowcst-energy
state of that phase. The only way to produce the absolute grOlmd state
is to calculate separately for all possible phases and take the rrilnimum
oí the energy.

This last problem unfortunately is by no means trivial since
it requires knowledge about a11 possible phases. In the Helium-3 problem,
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for example, only the fluid, solid, and superfluid phases are well-known.
At 5mall densities, however, significantly below the fluid saturation
density, the clustered phase (in particular, just one huge droplet) is
to be expected to be lowest in energy which is not generally well recog-
nized. It is therefore important to search for possible other phases(291

Another interesting observation IMY be IMde when employing
different zero-order states. Using the fluid/sol id exarnple of aboye,
ane calculatcs saturation (energy vs. density) curves qualitatively
shown in Fig. 4(a). At any density there exist two different eigenstates
of the Schrodinger equation having different synuretry properties. How-
ever. it is very well known(30) that SChrOdinger eigenvalues cannot
(rass. Thcrefore, the situation actually is like in Fig.4(b), i.e.,
there exist3 an. "avoided" leve! crossing, a situatían which in several
knohn cases leads to divergencies in perturbatían theories(31). The
fact that one does not realize the least bit of trouble in actual Helium
calculations demonstrates niceIy the ability oí approximate rnethods to
run straight across the avoided crossing in Fig.4(b) without expericnc-
ing any divergcncies. The Teason fOT this ability is the great differ-
cncc in structure between the 0..'0 states involved becausc oí which there
is no coupling at a11 between them, and one may be considered without any
rcfcrence to the other. It is not clear in how far the fluid/salid
situation is similar to problems in nuclear physics(32).

c. S"-ngle - paM.ú.le potentia..l'.6
In scction II.A, I introduced an energy denominator made up

from s.p. encrgy differences,
n

e = í (E - E ) (14)
n k=l Pk vk

for the n-body casc. Thcre has been sorne discussion in the literature
about what these s.p. energies should be(33). Considering the exact two-
body equation, Fig. 1, there arises no prOblem oí this sort. If sorneone
docs not want to have certain terms in the s.p. denominators,that is on
thc left hand sirle of thc equation, he may easily put those terms on the
right hand side of the cquation and thereby get rid oí them, or vice versa.
The organization of tenns in an exact equation should not matter. Problems
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arise if approximations are to be introduced. In that case, grouping
together of sorne tcnns usually is I1Eant to suggest as approximation to
neglect the whole group of tenns, and not only part of the group.

The s.p. energies consist oí a kinetic and eventually poten-
tial tenn,

T + U
a a (15)

diagranmatically shown in Fig.5. The grouping together of tenns used in
Fig.l corresponds to having only the tenns outside the brackets in the
energy denominatoT. The tcrms in brackets are contained in Figs.l(e)
and (h), Le., on the right hand side. In other words, Wp suggest to
use a s.p. potentiaI for the holes created seIf-consistentIy [Figs.5(b),
(c)) but kinetic energy only for the particles [Fig.5(f)). The potential
energy for the particles,Figs. 5(g) to 5(k), is taken together with sorne
other contributions in Figs. lee), (h).

In order to justify this grouping and resulting approxirnation
schemes to be discussed below let me again discuss two extrcne cases,
the hard-core gas and the Coulorrb fluid.

For the Coulomb fluid, ene would not use the grouping as
described in the last paragraph. For the long-range Coulorrb force,
small.rnomentum excitations just around the Fermi surface are oí great
iJTlx¡rtance. By analytic continuation arguments (34) it may be shown that
the s.p. energy and thus potential nust be continuous at the Fenni sur-
faee. Therefore, one is foreed to use exactly the same approximations
for the particle as well as the hale potential, C.g., kinetic energy
only for both, or kinetic energy plus HF potentials 1 Figs. 5(b),(g)) for
both, or kinetic energy plus HF potentials plus correlation contributions
[Figs.5(c),(h)] for both. Whatever is not taken into the s.p. energies
will be found on the right-hand side of Fig. 1, and approximation schernes
may be discussed neglecting sorne or all of the remaining contributions.

For the hard-core gas, we have to keep together the multiple-
scattering series in order to avoid infinities. The HF potentials,
Figs.5(b),(g) do not make any sense by themselves in this case, Fig.5(b)
only together with Fig.5(c) is finite, and similarly Fig.5(g) has to be
kept together with Figs.5(i),(k),(1). At first sight using precisely
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...f...
N p

Fig.4 Schematic equations ai state in a t.....o-phase region.
(a) Two independent calculations producing the twa equations oi

state fer the two phases.
(b) SchrBdinger eigenvalues obeying the non-crossing rule.

+ ..•

(o) (b) (e) (o) (b) (d) (.)

(1) (g) (h) (;) (k) ([)

Fig.5 Single-partiele energics. The dot denotes kinetic energy.
(a) to (e), far hale states.
(i) to (1), far partiele states. The diagrams in brackets must
be omitted in the case oí short-range forces.
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these terms for the s.p. potentials seems to be perfectly reasonable. If
a particle is moving inside a many-body medium it will acquire 3 self-
energy due to its interactions with the other particles around, which is
precisely the physical interpretation of Figs.5(g), (i), (k), (1). This
argument wauld be perfectly Tight if there existed sorne particlc moving
through sorne medium, like in the case oí an aptical potential. In the
ground-state problem, however, there never occurs just ane particle in-
sirle the medium. In arder to create a particle we must have sorne tKO-
body collision taking place creating a pair, i.c., two particlcs moving
insirle the medium. This faet invalidates the previous discussion.
Consider Fig.6 where the situatían is shown in sorne dctail. Figure 6(a)
shows the process of Fig.5(k) in contexto One of the two particles
excited in sorne two-~ody process interacts with a third particle. How-
ever, with a strong short-range force, particles 1 and 2 will always be
very elosely spatially eorrelated. The interaetion of 2 with 3 via a
short-range force also implies a short-range correlation between these
two partieles. Therefore, also partieles 1 and 3 must be close together
and it is equally likely that 1 and 3 will interact, like in Fig.6(b),
as it is that 2 and 3 will interact, Fig. 6(a). However, while Fig.6(a)
could be termed a particle potential, Fig. 6(h) can noto it involves a
genuine three-body seattering process. In the presenee of short-range
forces it is verywe11 known(35) that not only a11 t\lo-bodyscattering proc-
esses must be eonsidered in their entirity or not at al1, but also a11
three, four, ... , bady seattering proeesses must be eonsidered in their
entirity or not at a11 since they form a diverging series. It is eonse-
quently abad approximation for a short-range force to seleet out proc-
esses like Fig.6(a) to keep and those like Fig. 6(b) to discard which is
preeisely what one does if ene introduces a partiele potential energy in
a two-body theery. The enly admissible "partiele potentialll is the one
retaining all the three-bady processes, i.e., Fig.6(e). Of course, one
has to salve a three-body equation to get it.

For a short~rangeforce one therefore has two altcrnatives:
either neg1ect all the potential eontributions, i.c., take kinetic energy
only for the partiele states, or take into aeeount a11 three-body proe-
esses like Fig.6(c) which involves solution of the three-body Bethe-
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Faddeev cquation(3ó). The resulting two-body matrix of Fig.6(c), how-
evcr, docs no! havc the oiee physical interpretatíon oí a one-body
particlc potcntial. lt definitely is a strongly non-local two-body
opcrator. Thcreforc, it dces no! make much scnse to put those cootri-
butiaos into an cncrgy denominator. This is why in Fig.l these tenns
havc bccn put on the right-hand side of the equation, Fig.1(e), and the
energy denominator in Fig.l(a) contains kinetic energy only far the par-
tieles. For the hales no corrcsponding discussion arises since hale
statcs are not spatially correlated.

(a) ( b) (e )

Fig.6 Origin of the Bethe-Faddeev surnmation, for ladder diagrams.

In any given prOblem, like nuclear matter far example, the
qucstion arises ir we are cl05eT to the Coulomb-fluid situatíon ay if
wc are cl05eT to thc hard-core gas situatíon. In the first case, a
pateotial far particles would be justified, in the second case noto
Numcrical caIcuIation(22,33), bears out that the situatían is some-
where it between. This fact, however, implies that no reliable calcu-
lation can be carried out at a11 without calculating the three-body
contributions since these are of the same order oí magnitude as those
taken into aceeunt via a partieIe potential.

Sinee ene may aIways add and substraet an arbitrary term,
one could introduce an arbitrary llmadel" particle potential into the
two-body approxirnation, and subtract it fram the three-body termo If
one kncw how the three-body tenn would Icok in general, this would be
a vcry reasonable procedure. HO\'W.ever,in practice there is no general
schemc avai1able. In the sense that an aroitrary paranEter is introduced
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ioto thc thcory, one must make SUTe that the final results do not dc-
pend on it. If one therefore chooses the introduce whatever particle
potential one likes, ane is oí course free to do so if this can be
shown not to affeet the final resulto In arder to show this, howcver,
one would have to solve a three-body 8ethe-Faddeev equation using the
stipulated partiele potential, and nothing is gained.

V. IWlg<l and taddeM
In faet the situatían for nuclear matter is even worse than

1 sketched in the last section. If we want to discuss three-body con-
tributions, then besides Fig.l(e) we also have to diseuss Fig.l(f) the
lowcst arder oí which are shown in Fig.7. If we close these diagrams
on the top with an additional interaction linc they are secn to yield
ring diagrams for the energy. Iterating Fig. 1 (f) to all orders will in
faet produee all forwardgoing ring diagrams, Le., the Tanm-Daneoff

apPJ~ximation (TDA).
Let me again consider the two extreme cases oí the electron

fluid and the hard-eore gas. For the electron fluid, the ring diagrams
fonna diverging series(24) and ITIlstbe sUJlTredin elosed fonn. In this
ease, ¡'ig.7(a) is the single JOOstimportant eontribution to the two-body
equation, Fig.1. This tenn is much JOOre important than any self-energy
terrn, providcd we do not introduce a discontinuous single-partic1e spec-
trum at thc Fenni surface.

In the hard-eore gas, Fig.7(a) by itseIf again is not mcaning-

fuI but a11 two-body processes have to be taken together. i.e., thc
other two-body seattering tenns of Figs. 7(b), (e) ete. IlRlstbe ineluded
with Fig.7(a). Thcn, however. thcre is precise1y the same argument as
in the preeeding seetion applying to Figs.7(e),(d): The third particIe
present must be included in a11 scattering processes, i.c .• we again
have to perfonn a three-body 8ethe-Faddeev sUJlJl1:ltionleading to Fig. 1 (f).

In the in!ermcdiate (nuclear matter) situation one is now
eought between two arguments: if it is of great importance to have the
singlc-paTticl~spectrum continuous at the Fenmi surface because of
important low-momentum excitations, then one immediately knows that also
contributions like Fig.7 will be important - like in the electron fluid.
If the diagram5 of Fig.7 are not important, however, than also the coo-
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tinuity oE the s.p. spectrum is very likely at disposition.

--0
(b)

---V--v
(a)

(e) (d)

Fig.7 Origin of the Bethe-Faddeev summation, tor ring diagrams.

The best way out is of course again to perforrn the three-body
summation and incIlrle alI these diagrams via Figs. l(e) ,(f)(ZZ,36).

lt should be mentioned that the solution of three-body Bethe-
Faddeev solution does not get us rid of the problem completeIy, but

only pushes it ane arder farther clown in the hierarchy oí equations,
Eq. (10). Whensolving the three-body equation, no problems rema in on the
two-body level, Fig.1. However, preciscly the same questions are to be
answered now when solving far the three-body amplitude: what are the
S.p. potentials to be? For the holes things again are obvious. For the
partieles, however, having one the three closely correlated partieles
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involved in a collision with a fourth ane immediately forces us to con-
sider a four-body problem (Fig.8) , i.e., solve the four-body Bethe-
Faddeev equation(18,36) and so on. We realize at this point that in
truncating the hierarchy of Eqs.(10) we always will face the sane kind
of problems and eventually will- for a short range force- have to
resort to using kinetic energy only for the particles in sornen-hody
equation, the last one we actually consider solving. Numerical calcu-
lation(18,22,36) bears out, fortunately, that on the three-body level
the choice already dces no! matter any more: far al1 practical purposes
solving the three-body equation with kinetic energy only allows us to
evaluate Figs. l(e) ,(f) to sufficient accuracy.

Fig.8 Four-particle scattering resulting when trying to use particle
potentials within the three-body Bethe-Faddeev summation.

For the Coulomb problem it is no! sufficicnt to inelude only
the forward-going ring diagrams. One also must include the backward
going ones, i.c., the fuI! Randorn-Phase approximation (RPA). This is
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done via Fig.1(g). This class oí processes is seen to involve a four~
body Bethe-Faddeev summation as well in the hard-eore case (short-range
forees). However, forttmately it has been observed many times(18,22,36)
that these contributions for short-range forces are cancelled to very
good aeeuraey by those of Fig.l(h). 5inee it is not possible to solve
the four-body Bethe-Faddeev equation with presently methods the best
approximation is to lcave out these terms in the case oí short-range
forces.

E. Ocoupa,Uon pJlobab..:.u.u ••.•

In various places there occur interactions oí particles or
hales \o:ith "the nrdium", Le., a11 the occupied states, denoted graphi-
eally by elements like Fig.9(a). It has been argued(37) that these
terms mus! be modified since no! all the occupied states are occupied
a11 the time. In fact, the wry fonn of the e'.-ponentialansatz, Eqs. (2)
and (6) sha-s that while we are looking at some 52 matrix element and
the equation fer it at other places "ithin OUT many-body system other
excitatían processes depleting the Fermi sea take place. Diagrammati~
eally, this eonsideration leads to tenns like Fig.9(b) whieh are of op-
posite sign than Fig.9(a). Approximately, when some tenn ineluding
process Fig.9(a) has the value A, the same tenn replacing Fig.9(a) by
Fig.9(b) has the value A(-K), with

( 16)

The sum of both processes is therefore given by A( 1 - K). This expres-
sion has a niee physieal interpretation. K, Eq.(16), is the probability
for any hole state to be depleted, i.e., for the partiele normally oe-
cupying it to be excited, since 52 is the amplitude fer such an excita-
tion process. Any tenn involving slDlITlationsover occupied states 1s
therefore redueed by the factor (1 - K) being the probability for a hole
state to be actually occupied.

The IDOSt prominent places wnere st.mJT13tionsover occupied
states oceur are the hole- and particle-potentials, Figs.9(e),(d) show
thc corresponding renormalizations [to Figs.5(b) ,(e) and 6(e)l. In a
two-body approximation one would only have Fig.9(c) but not Fig.9(d)



since the particle potentials for short-range fOTces come in only fram
the three-body equation. In this case, the hale potential is signifi-
canUy reduced by the factor (1 - K). The energy denominators become
smaller, therefore, resulting in additional attraction.

tI

(o)

(e )

(b)

(d)

Fig.9 Origin ai occupation probability insertions.
(a) interaction with occupied states¡
(b) subtraction troro (a) due to depletion af occupied states;
(e) sarne as eb), in the two-body occupied state energy denomi-

nator.
(d) same as eh), in the "particle potential".

Mast oí this is quite spurious, hOh'cver. Upon inelusion oí
particle potentials via three-body processes, Fig. lee), ane a150 has
the corresponding renormalization, Fig.9(d). The energy denominators
remain almost unchanged by the occupation probability renormalization
now since the particle potential is cquivalently reduced. Moreover,
there are sorne combinatorial factors coming in (38) which reduce the
renormalization for the hole potcntial. In spite of the hole potential
being stronger than the particle potential, the renormalizations there-
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fore cancel to a high degree. In the nuclear rnatter problem occupation
probabilities are not very important, therefore(22).

Another place where occupation probabilities have been thought
to be important is the self-consistent single-particle potential to be
used in the one-body, or generalized Hartree-Fock equation(39). The
renorrnalization to this potential, Fig.10(a), is given in Fig.10(b).
This term being identically zero in infinite matter has had an additional
saturating influence en nuclei(18 ,39). Lately it has turned out(40),
however, by convarison wi th exact solutions of the SchrOdinger equation( 11:
that this renonmalization contribution is essentially cancelled by its
three-body Bethe-Faddeev summation, Fig.10(c).

Taking a11 togetherJ the idea of occupation probabilities is
not a useful ane in nuclear problems. Exactly the opposite is true in
many-Boson problems(41) where occupation probabilities do contribute in
an essential manner.

(o) ( b) (e )

Fig.10 Ocupation probability renormalization af the particle-hole poten-
tial.
(a) lowest arder particle-hole potential
(b) depletion subtraction from (a)
(e) Faddeev summation cancelling (b)

F. Thehole-l<nee~~on
Throughout the previous sections 1 used the Coupled-Cluster

fonnulationof many-body theory. Historical1y, in the nuclear matter
problem the hole-line expansion(20,22) has been used extensively. The
hole-line expansion is easily recovered írom the Coupled-Cluster
scheme(22 ,42) by iterating the equations. Consider Fig.l. Iterating
terms Figs. l(a),(b),(c) produces the Brueckner reaction matrix G or K,
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or the tWQ-hole-line approximation. By iterating in aciditioo Figs. l(d),
l(e) and l(f) once we Obtain tcrms involving an additional hale linc,
i.c., three-hole-line te~~. Upon inspection these are found to be all
the three-hole-line terms(20). lterating these terws another time yields
sorne four-hale linc terms, other four-hale lioc tcrms are recovered by
iterating Figs. J(g) ,(h),(i). In general, in order to reeover the full
n-hole-line approximation. we have to take into account sorne terms of
the n-hody equation iterated once, of the (n-J)-body equation iterated
twice, ...• of the 2-hody equation iterated (n-l)-times.

The hole-line expansion is essentially a low-density expan-
sion. In this sense it is related to the Coupled-Cluster theory which
relies on n-body clusters becorrring srnall for large n, which a150 will
hold true only for not-too-large densities. It is thereforc not too
surprising that both theories yield quite similar results(22).

lt is to be noted, however, that the n-body Coupled-Cluster
theory always is more comprehensive than the n-hole-line approximation.
lt contains all the n-hole-line diagrams plus a large number of self-
consistent iterations, Q~ual1ybuilding a whole class of diagrams upon
any single hole-line diagram. Consider the three-hole-line approxima-
tion, for exan~le. It will contain just the lowest-order ring diagram,
Fig.ll(a). The three-body Coupled-Cluster approximation, however, will
iterate Fig.l to all orders thereby produeing all the forward going ring
diagrams of Fig. lJ(b) ,(e), etc. Similar observations hold true in a
great number of other places.

(a) (b) (e)

Fig.ll Ring diagram contributions to the energy.
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Though it does no! occur in practice, i.e., far existing
nuclear force madels, Coupled-Cluster theory is capable to deal with
much more complicated situations than the holc-line expansiono If
thcre werc a strong spin-isospin mode in nuclear mattcr, i.c., if we
wcre close to a pion condensatían threshold, long-range correlations
would build up due to the processes Fig.11 - like the plasman mode is
hui Id up in the electron fluid. This would lead to a divergent hole-
line expansion, but could very well be treated by the three-body version
of Coupled-Cluster theory. The fact that there is no indication of di-
vcrgencc in the hale-line expansion may thereforc a150 be taken as an
indication that there is no threshold far pion condensatían anywhere
near the densities considered so far, i.c., up to twice nuclear density.

Detailed comparisons of hole-line and Coupled-Cluster approxi-
maticos Rk~Y be found in Reís. 18, 20, 22, 42.

1I 1. Slr-NARY

Partially summed perturbatían series are ene important t001
in the dcscription oí many-fcrmion ground states. They offer great
flexibility and adaptability to any ground-state problem. Complicated
nuclear hamiltonians do not create the significant problems they intro-
duce into variational(13-16) or stochastic(S-12) schemes. They do suf-
fer, howcvcr, from the lack of any fonnal proof oí convergence. One has
to rely therefore on physical arguments as to why sorne approximation
schcme should be rcasonable or preferrable aboye sorne other, besides
numerical investigations oí convergence properties and quantitative
comparison with other theories, likc variational or stochastic ones, in
their range of applicability.

Numerical results show tbat the Coupled-Cluster as well as
Brueckner-Bethe (hole-line expansion) methods are in agreement with each
other as wel1 as any otber reliable calculation put forward so far(22,4°1
The previous sections have tried to explain what the physical reasons
behind this soccess are, and why for different h¡uniltonians like the
Coulomb ane different approximation schemes have to be used. This corn-
parisan teaches us that nuclear force s are sufficiently sh?rt-ranged to
necessitate the ordering scheme according to the number of interacting
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bodies, i.c., the introduction of n-body Rethe-Faddeev surnmations.
There are int riguing problems, howevcr, which up to now can-

not be treated by this class of methods, namely the phases of liquid
3He. In spite oí the simple central force even the variational schemes
so far have failed to come close to experimental results for the liquid
saturation curve (43) . This failure is due to the strong many-body cor-
relations introduced by the huge repulsive core present in the interac-
tiao, and the strong state-dependence oí these correlations. Though the
Coupled-Cluster theory would perfectly be capable of dealing with the
state-dependence, the strength of the repulsive core and the high den-
sity oí the system lcad to slow a convergence in cluster amplitudes,
i.c., ene seems to be foreed to salve three-, four-, maybe even five~
body equations. It may be hoped that these difficulties could be over-
come by the Correlated Coupled-Cluster method(44), a joining of va-
ri"tional and Coupled-Cluster schemes.
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