revista mexicana de fisica 28 no. 1(1981) 1-28

ON BRUECKNER-BETHE
AND COUPLED-CLUSTER

MANY-BODY METHODS

John G. Zabolitzky

Institut fiir Theoretische Physik
Ruhr—Universitat, D- 4630 Bochum

irecibido junio 12,1981; aceptado junio 19,1981)

ABSTRACT

Partially summed perturbation series constitute one possible
starting point for construction of theories of infinite and finite
Fermion matter. I discuss various problems encountered in these theo-
ries like choice of single-particle potentials, zero-order states, sum-
mation of ring — and ladder— diagrams and occupation probabilities.

RESUMEN

Un posible punto de partida para la construccidn de teorfas
de materia fermidnica infinita o finita lo constituye la suma parcial
de la serie perturbativa. Se discuten varios problemas que aparecen en
dichas teorias como la seleccidn de potenciales de particula indepen-
diente, los estados de orden cero, la suma de diagramas de anillo y de
escalera y las probabilidades de ocupacidn.

1. INTRODUCTION

Many physical problems involve the calculation of some eigen-

state for a given Hamiltonian,



Hy = E, - (M

Many-body problems of this kind arise frequently in quantum chemistry(])
and in solid-state(z), quantum fluid(s) or nuclear(4) physics. Through-
out this paper I will not discuss the origin of any given Hamiltonian,
nor the justification for employing non-relativistic quantum mechanics.
I will discuss different methods to obtain approximately some solution
of the Schrédinger equation (1). At present, there are three broad
classes of computational methods available for this purpose: variational
ones, (partially summed) perturbation theory, or stochastic methods.
Exact analytic solutions are not available in general for realistic
many-body problems. Therefore, stochastic methods currently provide

us with the most rigorous results in many-body physics. The Green's
Function Monte-Carlo (GFMC) method developed by Kalos and collabora-

(5,6,7) has provided us with exact solutjons subject to only

tors
statistical sampling errors for the 4He atoms fluid(g), model nuclear
matter(gj, the electron fluid(10), nuclei“1J and atoms(12). While
providing us with exact results stochastic methods are not easily gener-
alized to complex Hamiltonians (1) involving, e.g., exchange forces,
tensor forces, nonlocal forces and alike as they occur in nuclear
physics. Moreover, many-Fermion systems pose severe difficulties at the
present stage. Also stochastic methods frequently are very expensive
in terms of computer time.

Variational methods are more flexible than stochastic ones
and hav?lgﬁen applied extensively to quite complicated nuclear Hamil-

9

tonians In simple cases like the Helium atom they provide us with

(14)

ever two complications arise: firstly, a variational method will only

results of profound accuracy In genuine many-body problems how-
provide us with an upper bound, and it is in general not easy to esti-
mate the distance to the desired Schrddinger eigenvalue, or to obtain
a reasonable lower bound. Secondly, in many circumstances the evalua-
tion of the expectation value of the Hamiltonian cannot be done rigoro-
usly but has to rely on some approximation scheme. Therefore, one can-
not be even sure of having evaluated an upper bound reliably. One
exception as regards the latter point is the variational Monte-Carlo
method(?J where the expectation value is estimated with only statis-



tical errors. In most integral-equation approaches(15’16)

errors due
to unavoidable approximations can be estimated.

Perturbational methods in principle are not plagued by any
of these problems. They will eventually converge towards true Schridin-
ger eigenstates. They are even more flexible than the variational meth-
ods and may more or less easily be applied to Hamiltonians of arbitrary
complexity. By including higher and higher orders the calculations may
be carried to any desired accuracy. However, as nice as all this may
sound in principle, in practice perturbational methods are the most
limited ones because perturbation theory diverges badly in almost all
cases of interest, Quantum Chemistry problems(1) being a notable excep-
tion. Therefore one has to rely on partial summation schemes sunming
some classes of contributions to arbitrary order. Of course, this is
a very dangerous way to go since it is equivalent to rearranging
infinite, divergent series without having any formal proof justifying
this rearrangement. In fact the partial summations made in most ins-
tances are suggested by physical intuition. One therefore has to be
much concerned about convergence properties of the rearranged series
— almost all of the rest of this paper will be devoted to this question.

Another drawback of partially summed perturbation methods is
the extremely fast increase in numerical effort with the order. Most
calculations do already stop at the lowest order, only in few cases
has it been possible to proceed one or — in very approximate ways— two
orders further.

There is one problem common to all three basic groups of many-
body methods: Which eigenstate of the Schrddinger equation (1) will be
obtuined or approximated? Most frequently one is interested in the
"ground state', the lowest energy solution. However, we have to be
very careful with this notion since the lowest-energy state will depend
on boundary conditions and subsidiary conditions imposed implicitly or
explicitly. In order to keep this in mind and be more precise I want
to avoid implicit boundary and subsidiary conditions and refer to the
"lowest-cnergy state of a given phase''. For example, one might look
for the lowest-energy state producing a homogeneous one-body density in
space, or the lowest-energy crystalline state, or the lowest-energy
pair-condensed state or a spherical nucleus or atom, etc. The absolute



ground state will then be found as the minimum over all phases. This
procedure is also more reasonable from a pragmatic point of view since
rarely a computational method is able to move between phases, i.e., a
calculation started from phase A will under almost any circumstances

not be able to produce the lowest-energy state of phase B, though that
might be the true absolute ground state.

In section II I will briefly review the Coupled-Cluster or
exp(S) method being a very concise and convenient summation of pertur-
bation theory free of approximations. Various subsections will be
devoted to current problems in partially summed perturbation theory,
namely the choice of zero-order states — a question closely associated
with the phase problem mentioned in the last paragraph— the choice of
single-particle potentials, and the summation of various classes of
Goldstone diagrams corresponding to specific physical processes. The
discussion is summarized in section III.

IT. PARTIALLY SUMMED PERTURBATION SERIES

A.  The Coupled-CLlusten method
In order to easily manipulate infinite perturbation series it

(17,18)

has been found convenient to express the desired Schrédinger-

eigenfunction in terms of so-called cluster amplitudes S,

A
¥ = exp(] Sq) ¢, (2)

n=1

where A is the number of particles in the system.
Equation (2) expresses the exact state as some operator applied
to a zero-order state ¢ which must satisfy

(o|¥) + 0, (&|d) =1 (3)

and for fermions in general will be a determinant.

The cluster amplitudes S, describe the linked or correlated
excitation of a n-particle n-hole state with respect to the zero-order
state ¢,

Sn® = O o )



Power-series expansion of the exponential in Eq.(2) produces
the remaining particle-hole excited states being composed of two of more
independent excitations each involving fewer bodies, e.g.,

Snsrn(I> = ¢(n+m)p(n+m)h L (5)

3
W= (1% S+ Sy Syt ... + 1/25;S,+ 1/255+ ... + 1/6S;+ ...)®
(6)

The expansion (2) or equivalently (6) is seen to express the
exact wavefunction as a superposition of the zero-order state and all
possible particle-hole excited states with respect to the same, that is,
nothing else but an expansion into a complete system of orthonormal
functions. The introduction of the exponential form is a concise way to
(19)  1he wording used here is
strongly influenced by the Goldstone diagram expansion(lg).

The Coupled-Cluster (CC) method has been described extensively

(17,18,20) including several review papers(18’20’2]).

implement the linked-cluster theorem

in the literature
Equation (2) essentially constitutes a transformation of unknowns:
instead of determining the A-body wave-function ¥ we now have to deter-
mine the set of cluster amplitudes S, which are two completely equi-
valent representations of the same state. In order to obtain the
cluster amplitudes we have to use the Schrodinger equation,

Hexp(S)|®) = E exp(S)|¢) , (7a)
A

S=1s, (7b)
n=1

This equation will be multiplied from the left with exp (-S) and
projected onto the complete set of determinants made up from the zero-
order state (| and its particle-hole excitedstates { ®npnh|:

(ole ®HeS|o) = E(eleSeS|e) = E , (8a)

=5/, S5 -S S
(\'bnpnhle He I°)=E(¢npnhle e |<p) =0 . (8b)



While Eq.(8a) is an explicit expression for the energy in
terms of the cluster amplitudes S, the A Egs.(8h), n=1, ... A, may be
used to determine the A unknowns Sy, ..., Sp. One of the Egs.(8b) will
be referred to as the n-body equation or the equation for Sn' Explicit
forms for the equations may be found in Refs. 18, 20, 21, 22. Unfortu-
nately, the equations turn out to be nonlinear and coupled with each
other. However, if we assume that the hamiltonian contains only one-
and two-body operators, kinetic energy and a two-body interaction for

example,

A A
H=T+V = = + Voo (9)
Z1 iZj 1

matters simplify since the equation for S, will involve only S13 S yuven

up to Sn+2’
Xg [Sy, Sz ] =E ,
X; [81, Sz, 831 =0 5
X, [Sy, Sz, S3, Sy ] S
X3 [Sls 52: 53, Sh; SS ] =0 s (]0)
Xy [ Siy 'Sz Say Sips S5 8¢l =0
Xa [ 81y S5y 85y wony S5 =0

where . denotes the functional telation between its arguments, the
n-body equation.

Since we have not invoked any approximation, the system of
equations (10) is equivalent to the Schrédinger equation (1). It tumns
out, and I will discuss below, that iterative solution of Eqs.(10) will
produce the perturbation series or, upon selection of specific paths
of iteration through the equations, any desired partial summation
scheme.

In order to discuss the Coupled-Cluster equations (10) in more
detail it is convenient to use a graphical notation in analogy to
Goldstone diagrams. Lines with arrows directed downwards or indices v
will represent states occupied in the zero-order state or holes, while



lines with arrows directed upwards or indices p will denote unoccupied
or particles states. The amplitudes S, Will be denoted by blobs being
entered by n hole lines and being left by n particle lines, i.e., a
creation of linked n-particle n-hole excitation. The potential is de-
noted by a dashed horizontal line. A solid horizontal line denotes

an energy denominator, that is the difference between the particle and
hole energies for the particle and hole lines it crosses.

With this notation, the most relevant parts of the two-body
equation, the equation from which S, is to be determined, is shown in
Fig.1. Consider for the moment just the first three terms, (a) to (c),
as an iterative scheme to determine S,. In the first iteration we find

S, = - (Q/ex) v ; 1

the first-order perturbation theory result for the wavefunction change.
Inserted into the energy expression,

E = B+ (9|vSa]e) (12)

this is seen to produce the second-order perturbation correction to the
energy. There is no first-order contribution since we assume the unper-
turbed state |¢ ) to be the Hartree-Fock (HF) solution.

Further iteration of Fig. 1(a) to (c¢) will produce an increas-
ing number of interactions between the particles, Fig.2. In fact the
equation we are solving (formally) iteratively is just the familiar
Bethe-Goldstone equation(zo):

€5, = -Q v(1+85) . _ (13)

In Egs. (11) to (13), e2 denotes a two-body energy denominator, and Q,
a two-body Pauli projection operator which takes care that the particle
lines in Figs. 1 and 2 really are particles.

In this approximation, our two-body equation just yields the
sum of all two-body scattering processes between a pair of particles,
sumed to infinite order of perturbation theory. This is the first
case we encounter where a partial summation has been performed. There
are many contributions to the energy of third, fourth,..., order in the



energy which have been neglected so far, for example all of the terms
resulting from the wavefunction amplitudes of Fig.3 when inserted into
the energy expression Eq.(12).

(a) (b) {c)
=3
\
+ S, +

(e) (f)

A A

C 4 ]
Y N

(1)

Fig. 1 Equation for the two-particle two-hole excitation amplitude S
in diagrammatic form. The "3"- and "4"-body boxes denote the
three- and four-body Bethe-Faddeev summations, i.e., the sum of
ladder diagrams.
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Fig.2 Lowest order approximation to S; for the short-range forces. This
sum of two-body ladder diagrams is obtained from the Bethe-
Goldstone equation, terms (a) to (c) of Fig.1.

It is justified to take along a second-order contribution
like Fig.2(c) and at the same time omit a contribution like Fig.3(a) of
the same order? Fortunately, this question can be answered unambigously
due to the presence of certain singularities in the equations for certain
classes of interaction potentials v. If the interaction v has a hard-
core, i.e., if it is infinitely repulsive over a finiteinterval, one
must keep together all the terms of Fig.2 any of which does not exist
(is equal to infinity) but the sum of which does exist and even provides
(23) of the total
energy Eq.(12). The presence of the hard-core forces us to deviate

from order-by-order perturbation theory and keep together certain classes
of diagrams to all orders. Simultaneously, these classes of diagrams

correctly the leading term of the low-density expansion

acquire a physical "meaning': the diagrams of Fig.Z are said to repre-
sent the multiple-scattering series for the two particles involved.
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Fig.3 Lowest order approximation to S, for long-range forces. This sum
of ring diagrams is obtained from the RPA-equation, terms (a),
(b), (f) and (g) of Fig.1 together with the lowest-order approxi-
mations Fig.1 (k) and (1).

As another extreme let me discuss the Coulomb potential.
Because of its long range, in an infinite system (e.g., a metal) taking
v to be 1/r leads to another singularity. The individual terms of Fig.Z,
as well as their sum, are well behaved since we do not have a hard-core,
but the diagrams of Fig.3 now do not exist, but only their sum. This is
just the familiar statement that in an infinite Coulomb system the sum
of ring diagrams must be kept together, and the physical meaning
acquired by this partial summation is the ''screening' of the long-range
Coulomb force due to collective processes. Like the ladder diagrams in
the hard-core case, the sum of ring diagrams furnishes exact leading-
order terms for the energy and other quantities in the Coulomb case(24'25).

Since the leading terms of the two-body equation seem to
produce just the ladder diagrams and not the rings, one might believe
that the Coupled-Cluster method is especially adapted to treat short-
range forces. This, however, is not true — it is only a consequence of



our notation that ladders are recovered more easily than rings. In fact,
upon iteration Figs. 1(f) and 1(g) will produce all the ring diagrams if
we replace the "3" and ''4"-body boxes (to be discussed below) by just one
interaction v-their lowest order- in a suitable manner [Fig. 1(k), 1(1)].

The Coupled-Cluster equations, as is obvious from the preceed-
ing discussion, have the appealing feature that even in a low-order ap-
proximation, like considering 52 only, they do contain the correct lowest-
order approximations for two completely adverse problems: the (short-
range) hard-core problem as well as the (long-range) Coulomb problem. In
fact, the two-body equation Fig. 1 as it drops out by purely formal mani-
pulations of the Schrodinger equation (8b) turns out to embody the most
important physics of these two quite different many-body problems and is
able to describe two-body short-range correlations as well as long-range
screening. The partial summations of perturbation theory suggested by
this equation are just those required in order to avoid singularities in
extreme cases.

Since most of the problems I want to discuss below concern
many-body systems interacting via short-range potentials, the form Fig.1
for the two-body equation is the useful one. In Coulombic problems one
would choose to write down the equation differently, that is employing
nothing but a different notation and a different grouping of terms (21’25!
B. Zero-order States

Before talking about particles and holes one should specify
what these single-particle (s.p.) states are to be. The very Ansatz for
the wavefunction, Eq.(2), assumes a zero-order or reference state ¢ to be
given which for fermions usually is taken to be a determinant. In the
present section I want to address the question what the significance of
choosing one or other prescription for this state is.

The full, presumably exact, wavefunction ¥ is built up from ¢
by means of npnh-excitation operators S,. The idea of a practical cal-
culation to be carried out is, of course, to truncate the coupled set of
equations (10) for the S, and calculate only a small, finite subset up to
Sy and neglect all S, m > N. In order for this scheme to work one should
at least be sure that the S will not grow with n in which case any
truncation would be disastrous. In some sense, for any approximation
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scheme within the context of the Ansatz equation (2) the S, must be
"small". In other words, the unperturbed state ¢ must be close to the
true state ¥ in order for approximate schemes towork. This is already
suggested by Eq.(3): if the unperturbed and exact states are orthogo-
nal, even the exact method does not work! In this sense Coupled-Cluster
theory is akin to perturbational methods. In spite of the partial summations
made it is still required that the solution be not too far from the zero-
order state.

Let me discuss some examples. In an infinite system there
exist essentially four different phases: fluid, solid, superfluid, and
clustered. In the case of the Heliums these phases are familiar, at
least the first three. The clustered phase is thought to consist of
droplets (of several 4He atoms, say) forming a (low-density) fluid.

At a given density, we do not know a priori which of these
phases will be lowest in energy. On the contrary we might be tempted
to calculate the equation-of-state for fluid Helium-3 as a function of
density ignoring the phase boundaries. For this problem, since we
expect the true, fully interacting wavefunction to produce a constant
number density in space it is reasonable to use plane waves as s.p.
states to built a determinant ¢ from. In fact, this is precisely what
has been used in most calculations so far(]6’26].

On the other hand when interested in the properties of solid
Helium-3 we would not use plane waves in zero order since localization
of particles at lattice sites is believed to be an essential feature of
solids whichwe should not like to miss, even in zeroth order. In fact,

(27) centered around lattice sites

we would use localized s.p. orbitals
for this problem to build a determinant from. This intuitive, physical
choice in each of the two cases will lead to ''reasonable' magnitudes
for the correlation effects (although it should be noted at this point
that the Helium-3 fluid as well as the solid are too strongly correlated
systems to be treated by the Coupled-Cluster method at all to our
current knowledge). Our choice of reference states allows us now to
calculate the energy of two phases at the same density. Neither calcu-
lation exhibits instability against the other phase even if the other
phase is significantly lower in energy.

In other words, a method like the Coupled-Cluesters in practice
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is not able to move from one phase to another. Given a zero-order state
9, the solution ¥ of the Schrédinger equation approximated will be one
of the same symmetry —not necessarily the ground state. Similar state-
ments hold true for almost any other method, in particular for varia-
tional methods, but not in general for the Green-Function-Monte-Carlo
method.

If one would try to approximate a solid starting from the
fluid plane-wave determinant it is rather obvious that one would get
very large S, amplitudes. The solid-like structure implies long-range,
many-body correlations which if not embodied within the reference state
must be build up by the Sy

A similar situation exists if one is interested in the super-
fluid state. It is necessary to use as reference state one which

(28). If one tries to describe a

already is superfluid, like a BCS state
superfluid state starting from a normal fluid one, divergent S, ampli-
tudes result (?8)

discussed above for fluid/solid states. Within a given symmetry it has

The clustered state will exhibit the same problems as

been found useful to use as occupied s.p. states those resulting from a
(18)

(symmetry-restricted) HF or generalized HF scheme. The latter one
results from requiring S;=0.

The essence of all the above discussion is that it is not
possible to ask of most many-body methods, in particular the Coupled-
Cluster method, "Given some reference state, produce the ground state'.
The only question allowed and possible to answer is '"Given some refer-
ence state, produce some eigenstate of the Schrodinger equation'. It is
then general experience that the state produced will be the one for
which the overlap ( ¢|¥ ) is maximal, or, if we wish to keep (¢|¢ ) =1,
the overlap (¥|¥ ) is minimal, both expressing the fact that the eigen-
state found is the one ''closest' to the unmperturbed state. It is then
a consequence that the eigenstate found will be of the same phase as the
zero-order state. It may be hoped that one will obtain the lowest-energy
state of that phase. The only way to produce the absolute ground state
is to calculate separately for all possible phases and take the minimum
of the energy.

This last problem unfortunately is by no means trivial since
it requires knowledge about all possible phases. In the Helium-3 problem,
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for example, only the fluid, solid, and superfluid phases are well-known.

At small densities, however, significantly below the fluid saturation

density, the clustered phase (in particular, just one huge droplet) is

to be expected to be lowest in energy which is not generally well recog-

nized. It is therefore important to search for possible other phases(zgz
Another interesting observation may be made when employing

different zero-order states. Using the fluid/solid example of above,

one calculates saturation (energy vs. density) curves qualitatively

shown in Fig. 4(a). At any density there exist two different eigenstates

of the Schrédinger equation having different symmetry properties. How-

(30) that Schrodinger eigenvalues cannot

ever, it is very well known
cross. Therefore, the situation actually is like in Fig.4(b), i.e.,
there exists an "avoided' level crossing, a situation which in several
known cases leads to divergencies in perturbation theories(31). The
fact that one does not realize the least bit of trouble in actual Helium
calculations demonstrates nicely the ability of approximate methods to
run straight across the avoided crossing in Fig.4(b) without experienc-
ing any divergencies. The reason for this ability is the great differ-
ence in structure between the two states involved because of which there
is no coupling at all between them, and one may be considered without any
reference to the other. It is not clear in how far the fluid/solid
situation is similar to problems in nuclear physics(sz).
C. Single-particle potentials

In section II.A, T introduced an energy denominator made up
from s.p. energy differences,

e, * Lile e ) | (14)

for the n-body case. There has been some discussion in the literature

about what these s.p. energies should be(ss).

Considering the exact two-
body equation, Fig. 1, there arises no problem of this sort. If someone
does not want to have certain terms in the s.p. denominators,that is on
the left hand side of the equation, he may easily put those terms on the
right hand side of the equation and thereby get rid of them, or vice versa.

The organization of terms in an exact equation should not matter. Problems
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arise if approximations are to be introduced. In that case, grouping
together of some terms usually is meant to suggest as approximation to
neglect the whole group of terms, and not only part of the group.

The s.p. energies consist of a kinetic and eventually poten-
tial term,

e =T +U , (15)

diagrammatically shown in Fig.5. The grouping together of terms used in
Fig.1 corresponds to having only the terms outside the brackets in the
energy denominator. The terms in brackets are contained in Figs.1(e)
and (h), i.e., on the right hand side. In other words, we suggest to
use a s.p. potential for the holes created self-consistently [Figs.5(b),
(c)] but kinetic energy only for the particles [Fig.5(f)]. The potential
energy for the particles,Figs. 5(g) to 5(k), is taken together with some
other contributions in Figs. 1(e), (h).

In order to justify this grouping and resulting approximation
schemes to be discussed below let me again discuss two extreme cases,
the hard-core gas and the Coulomb fluid.

For the Coulomb fluid, one would not use the grouping as
described in the last paragraph. For the long-range Coulomb force,
small-momentum excitations just around the Fermi surface are of great
importance. By analytic continuation argtments(y)
the s.p. energy and thus potential must be continuous at the Fermi sur-

it may be shown that

face. Therefore, one is forced to use exactly the same approximations
for the particle as well as the hole potential, e.g., kinetic energy
only for both, or kinetic energy plus HF potentials [Figs. 5(b),(g)] for
both, or kinetic energy plus HF potentials plus correlation contributions
[Figs.5(c),(h)] for both. Whatever is not taken into the s.p. energies
will be found on the right-hand side of Fig.1, and approximation schemes
may be discussed neglecting some or all of the remaining contributions.
For the hard-core gas, we have to keep together the multiple-
scattering series in order to avoid infinities. The HF potentials,
Figs.5(b),(g) do not make any sense by themselves in this case, Fig.5(b)
only together with Fig.5(c) is finite, and similarly Fig.5(g) has to be
kept together with Figs.5(i), (k),(1). At first sight using precisely
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Fig.4 Schematic equations ofstate in a two-phase region.
(a) Two independent calculations producing the two equations of
state for the two phases.
(b) Schr8dinger eigenvalues obeying the non-crossing rule.
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Fig.5 Single-particle energies. The dot denotes kinetic energy.
(a) to (e), for hole states.
(f) to (1), for particle states. The diagrams in brackets must
be omitted in the case of short-range forces.



these terms for the s.p. potentials seems to be perfectly reasonable. If
a particle is moving inside a many-body medium it will acquire a self-
energy due to its interactions with the other particles around, which is
precisely the physical interpretation of Figs.5(g), (i), (k), (1). This
argument would be perfectly right if there existed some particle moving
through some medium, like in the case of an optical potential. In the
ground-state problem, however, there never occurs just one particle in-
side the medium. In order to create a particle we must have some two-
body collision taking place creating a pair, i.e., two particles moving
inside the medium. This fact invalidates the previous discussion.
Consider Fig.6 where the situation is shown in some detail. Figure 6(a)
shows the process of Fig.5(k) in context. One of the two particles
excited in some two-body process interacts with a third particle. How-
ever, with a strong short-range force, particles 1 and 2 will always be
very closely spatially correlated. The interaction of 2 with 3 via a
short-range force also implies a short-range correlation between these
two particles. Therefore, also particles 1 and 3 must be close together
and it is equally likely that 1 and 3 will interact, like in Fig.6(b),
as it is that 2 and 3 will interact, Fig. 6(a). However, while Fig.6(a)
could be termed a particle potential, Fig. 6(b) can not: it involves a
genuine three-body scattering process. In the presence of short-range

forces it is verywellknown(ss)

that not only all two-body scattering proc-
esses must be considered in their entirity or not at all, but also all
three, four, ..., body scattering processes must be considered in their
entirity or not at all since they form a diverging series. It is conse-
quently a bad approximation for a short-range force to select out proc-
esses like Fig.6(a) to keep and those like Fig. 6(b) to discard which is
precisely what one does if one introduces a particle potential energy in
a two-body theory. The only admissible 'particle potential"' is the one
retaining all the three-body processes, i.e., Fig.6(c). Of course, one
has to solve a three-body equation to get it.

For a short-range force one therefore has two alternatives:
either neglect all the potential contributions, i.e., take kinetic energy
only for the particle states, or take into account all three-body proc-
esses like Fig.6(c) which involves solution of the three-body Bethe-
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Faddeev equation(sﬁ].

The resulting two-body matrix of Fig.6(c), how-
ever, does not have the nice physical interpretation of a one-body
particle potential. It definitely is a strongly non-local two-body
operator. Therefore, it does not make much sense to put those contri-
butions into an energy denominator. This is why in Fig.1 these terms
have been put on the right-hand side of the equation, Fig.1(e), and the
energy denominator in Fig.1(a) contains kinetic energy only for the par-
ticles. For the holes no corresponding discussion arises since hole
states are not spatially correlated.

(b) (c)

Fig.6 Origin of the Bethe-Faddeev summation, for ladder diagrams.

In any given problem, like nuclear matter for example, the
question arises if we are closer to the Coulomb-fluid situation or if
we are closer to the hard-core gas situation. In the first case, a
potential for particles would be justified, in the second case not.
Numerical calculation(zz’ss), bears out that the situation is some-
where it between. This fact, however, implies that no reliable calcu-
lation can be carried out at all without calculating the three-body
contributions since these are of the same order of magnitude as those
taken into account via a particle potential.

Since one may always add and substract an arbitrary term,
one could introduce an arbitrary ''model' particle potential into the
two-body approximation, and subtract it from the three-body term. If
one knew how the three-body term would look in general, this would be
a very reasonable procedure. However, inpractice there is no general
scheme available. In the sense that an arbitrary parameter is introduced
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into the theory, one must make sure that the final results do not de-
pend on it. If one therefore chooses the introduce whatever particle
potential one likes, one is of course free to do so if this can be
shown not to affect the final result. In order to show this, however,
one would have to solve a three-body Bethe-Faddeev equation using the
stipulated particle potential, and nothing is gained.

D. Rings and Laddens

In fact the situation for nuclear matter is even worse than
I sketched in the last section. If we want to discuss three-body con-
tributions, then besides Fig.1(e) we also have to discuss Fig.1(f) the
lowest order of which are shown in Fig.7. If we close these diagrams
on the top with an additional interaction line they are seen to yield
ring diagrams for the energy. Iterating Fig.1(f) to all orders will in
fact produce all forwardgoing ring diagrams, i.e., the Tamm-Dancoff
approximation (TDA).

Let me again consider the two extreme cases of the electron
fluid and the hard-core gas. For the electron fluid, the ring diagrams
forma diverging series(24) and must be summed in closed form. In this
case, Fig.7(a) is the single most important contribution to the two-body
equation, Fig.1. This term is much more important than any self-energy
term, provided we do not introduce a discontinuous single-particle spec-
trum at the Fermi surface.

In the hard-core gas, Fig.7(a) by itself again is not meaning-
ful but all two-body processes have to be taken together, i.e., the
other two-body scattering terms of Figs.7(b), (c) etc. must be included
with Fig.7(a). Then, however, there is precisely the same argument as
in the preceding section applying to Figs.7(c),(d): The third particle
present must be included in all scattering processes, i.e., we again
have to perform a three-body Bethe-Faddeev summation leading to Fig.1(f).

In the intermediate (nuclear matter) situation one is now
cought between two arguments: if it is of great importance to have the
single-particle spectrum continuous at the Fermi surface because of
jmportant low-momentum excitations, then one immediately knows that also
contributions like Fig.7 will be important — like in the electron fluid.
If the diagrams of Fig.7 are not important, however, than also the con-
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tinuity of the s.p. spectrum is very likely at disposition.

(a) (b)

(c) (d)

Fig.7 Origin of the Bethe-Faddeev summation, for ring diagrams.

The best way out is of course again to perform the three-body
summation and include all these diagrams via Figs.1(e) ,(6(22’36).

It should be mentioned that the solution of three-body Bethe-
Faddeev solution does not get us rid of the problem completely, but
only pushes it one order farther down in the hierarchy of equations,
Eq. (10 ). When solving the three-body equation, no problems remain on the
two-body level, Fig.1. However, precisely the same questions are to be
answered now when solving for the three-body amplitude: what are the
s.p. potentials to be? For the holes things again are obvious. For the
particles, however, having one the three closely correlated particles
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involved in a collision with a fourth one immediately forces us to con-
sider a four-body problem (Fig.8), i.e., solve the four-body Bethe-

Faddeev equation(TB’sﬁ)

and so on. We realize at this point that in
truncating the hierarchy of Egs.(10) we always will face the same kind
of problems and eventually will- for a short range force— have to
resort to using kinetic energy only for the particles in some n-body
equation, the last one we actually consider solving. Numerical calcu-
lation(18’22’36) bears out, fortunately, that on the three-body level
the choice already does not matter any more: for all practical purposes
solving the three-body equation with kinetic energy only allows us to

evaluate Figs. 1(e),(f) to sufficient accuracy.

A A

N

A

A

A A AN
M N N

Fig.8 Four-particle scattering resulting when trying to use particle
potentials within the three-body Bethe-Faddeev summation.

For the Coulomb problem it is not sufficient to include only
the forward-going ring diagrams. One also must include the backward
going ones, i.e., the full Random-Phase approximation (RPA). This is
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done via Fig.1(g). This class of processes is seen to involve a four-
body Bethe-Faddeev summation as well in the hard-core case (short-range
forces). However, fortunately it has been observed many times(18’22’36)
that these contributions for short-range forces are cancelled to very
good accuracy by those of Fig.1(h). Since it is not possible to solve
the four-body Bethe-Faddeev equation with presently methods the best
approximation is to leave out these terms in the case of short-range

forces.

E. COccupation probabilities

In various places there occur interactions of particles or
holes with ''the medium'', i.e., all the occupied states, denoted graphi-
cally by elements like Fig.9(a). It has been argued(37) that these
terms must be modified since not all the occupied states are occupied
all the time. In fact, the very form of the exponential ansatz, Egs.(2)
and (6) shows that while we are looking at some S2 matrix element and
the equation for it at other places within our many-body system other
excitation processes depleting the Fermi sea take place. Diagrammati-
cally, this consideration leads to terms like Fig.9(b) which are of op-
posite sign than Fig.9(a). Approximately, when some term including
process Fig.9(a) has the value A, the same term replacing Fig.9(a) by
Fig.9(b) has the value A(-x), with

_ 1
W g

Zl=

T (viva|S; S3| vivp) (16)
Viva

The sum of both processes is therefore given by A(1-«). This expres-
sion has a nice physical interpretation. k, Eq.(16), is the probability
for any hole state to be depleted, i.e., for the particle normally oc-
cupying it to be excited, since S, is the amplitude for such an excita-
tion process. Any term involving summations over occupied states is
therefore reduced by the factor (1-k) being the probability for a hole
state to be actually occupied.

The most prominent places where summations over occupied
states occur are the hole- and particle-potentials, Figs.9(c),(d) show
the corresponding renormalizations [to Figs.5(b),(c) and 6(c)]. In a
two-body approximation one would only have Fig.9(c) but not Fig.9(d)



since the particle potentials for short-range forces come in only from
the three-body equation. In this case, the hole potential is signifi-

cantly reduced by the factor (1-«k). The energy denominators become
smaller, therefore, resulting in additional attraction.

i

(a) (b)

9 < S2
(c) (d)

Fig.9 Origin of occupation probability insertions.
(a) interaction with occupied states;
(b) subtraction from (a) due to depletion of occupied states;

(c) same as (b), in the two-body occupied state energy denomi-
nator.

(d) same as (b), in the "particle potential".

Most of this is quite spurious, however. Upon inclusion of
particle potentials via three-body processes, Fig.1(e), one also has
the corresponding renormalization, Fig.9(d). The energy denominators
remain almost unchanged by the occupation probability renormalization
now since the particle potential is equivalently reduced. Moreover,
there are some combinatorial factors coming in (38) \hich reduce the
renormalization for the hole potential. In spite of the hole potential
being stronger than the particle potential, the renormalizations there-
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fore cancel to a high degree. In the nuclear matter problem occupation
probabilities are not very important, thereforefzz).

Another place where occupation probabilities have been thought
to be important is the self-consistent single-particle potential to be
used in the one-body, or generalized Hartree-Fock equation(sg). The
renormalization to this potential, Fig.10(a), is given in Fig.10(b).

This term being identically zero in infinite matter has had an additional
saturating influence on nuclei(18’39). Lately it has turned out(do),
however, by comparison with exact solutions of the Schrédinger equatioé11?
that this renormalization contribution is essentially cancelled by its
three-body Bethe-Faddeev summation, Fig.10(c).

Taking all together, the idea of occupation probabilities is
not a useful one in nuclear problems. Exactly the opposite is true in

(41)

an essential manner.

Lo en G

(a) (b) (c)

many-Boson problems where occupation probabilities do contribute in

)

T~

Fig.10 Ocupation probability renormalization of the particle-hole poten-
tial.
(a) lowest order particle-hole potential
(b) depletion subtraction from (a)
(c) Faddeev summation cancelling (b)

F. The hofe-Line expansion

Throughout the previous sections I used the Coupled-Cluster
formulation of many-body theory. Historically, in the nuclear matter
problem the hole-line expansion(zo’zz) has been used extensively. The
hole-line expansion is easily recovered from the Coupled-Cluster
schene(22’42) by iterating the equations. Consider Fig.1. Iterating
terms Figs.1(a),(b),(c) produces the Brueckner reaction matrix G or K,
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or the two-hole-line approximation. By iterating in addition Figs.1(d),
1(e) and 1(f) once we obtain terms involving an additional hole line,
i.e., three-hole-line terms. Upon inspection these are found to be all
the three-hole-1line terms(ZD). Iterating these terms another time yields
some four-hole line terms, other four-hole line terms are recovered by
iterating Figs.1(g),(h),(i). In general, in order to recover the full
n-hole-line approximation, we have to take into account some terms of
the n-body equation iterated once, of the (n-1)-body equation iterated
twice, ..., of the 2-body equation iterated (n-1)-times.

The hole-line expansion is essentially a low-density expan-
sion. In this sense it is related to the Coupled-Cluster theory which
relies on n-body clusters becoming small for large n, which also will
hold true only for not-too-large densities. It is therefore not too
surprising that both theories yield quite similar results(zz).

It is to be noted, however, that the n-body Coupled-Cluster
theory always is more comprehensive than the n-hole-line approximation.
It contains all the n-hole-line diagrams plus a large number of self-
consistent iterations, usually building a whole class of diagrams upon
any single hole-line diagram. Consider the three-hole-line approxima-
tion, for example. It will contain just the lowest-order ring diagram,
Fig.11(a). The three-body Coupled-Cluster approximation, however, will
iterate Fig.1 to all orders thereby producing all the forward going ring
diagrams of Fig.11(b),(c), etc. Similar observations hold true in a
great number of other places.

(a) (b) (c)

Fig.11 Ring diagram contributions to the energy.
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Though it does not occur in practice, i.e., for existing
nuclear force models, Coupled-Cluster theory is capable to deal with
much more complicated situations than the hole-line expansion. If
there were a strong spin-isospin mode in nuclear matter, i.e., if we
were close to a pion condensation threshold, long-range correlations
would build up due to the processes Fig.11 — like the plasmon mode is
build up in the electron fluid. This would lead to a divergent hole-
line expansion, but could very well be treated by the three-body version
of Coupled-Cluster theory. The fact that there is no indication of di-
vergence in the hole-line expansion may therefore also be taken as an
indication that there is no threshold for pion condensation anywhere
near the densities considered so far, i.e., up to twice nuclear density.

Detailed comparisons of hole-line and Coupled-Cluster approxi-
mations may be found in Refs., 18, 20, 22, 42.

ITI. SUMMARY

Partially summed perturbation series are one important tool
in the description of many-fermion ground states. They offer great
flexibility and adaptability to any ground-state problem. Complicated
nuclear hamiltonians do not create the significant problems they intro-

1(13-16) or stochastic®"12)

duce into variationa schemes. They do suf-
fer, however, from the lack of any formal proof of convergence. One has
to rely therefore on physical arguments as to why some approximation
scheme should be reasonable or preferrable above some other, besides
numerical investigations of convergence properties and quantitative
comparison with other theories, like variational or stochastic ones, in
their range of applicability.

Numerical results show that the Coupled-Cluster as well as
Brueckner-Bethe (hole-line expansion) methods are in agreement with each
other as well as any other reliable calculation put forward so far(22’403
The previous sections have tried to explain what the physical reasons
behind this success are, and why for different hamiltonians like the
Coulomb one different approximation schemes have to be used. This com-
parison teaches us that nuclear forces are sufficiently short-ranged to

necessitate the ordering scheme according to the number of interacting
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bodies, i.e., the introduction of n-body Bethe-Faddeev summations.

There are intriguing problems, however, which up to now can-
not be treated by this class of methods, namely the phases of liquid
He. In spite of the simple central force even the variational schemes
so far have failed to come close to experimental results for the liquid

saturation curve(43).

This failure is due to the strong many-body cor-
relations introduced by the huge repulsive core present in the interac-
tion, and the strong state-dependence of these correlations. Though the
Coupled-Cluster theory would perfectly be capable of dealing with the
state-dependence, the strength of the repulsive core and the high den-
sity of the system lead to slow a convergence in cluster amplitudes,
i.e., one seems to be forced to solve three-, four-, maybe even five-
body equations. It may be hoped that these difficulties could be over-
come by the Correlated Coupled-Cluster method(44), a joining of va-
riational and Coupled-Cluster schemes.
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