revista mexicana de fisica 28 no. 1 (1981) 41 -46 N

HEISENBERG-LIKE EQUATION
OF MOTION FOR DIRAC
ALGEBRA IN GENERAL RELATIVITY

0. Cerceau

Department of Physical Chemistry, University of Carabobo

Valencia - Venezuela

(recibido febrero 26, 1981; aceptado junio 18, 1981)

ABSTRACT

The Heisenberg equations of motion are applied to YS and the
spin tensor, o"V. In both cases, the limit for the special-relativistic
situation gives a Zitterbewegung equation, the frequency being double of
that of the Compton frequency. These results agree with previous ones by
S.K. Wong and G. Szamosi. The use of a diagonal metric, such as the
Robertson-Walker metric has an ambiguous effect on the frequency: Either
we redefine the gamma or the spin tensor, and then formally the fregquency
is the same, or there is no redefinition, and the spectrum becomes
complex.

RESUMEN

Se aplican las ecuaciones de movimiento de Heisenberg a YS y al
tensor de espin o"V. En ambos casos, en el limite de relatividad especial
se obtiene una ecuacidn de Zitterbewequng, con una frecuencia igual al
doble de la de Compton. Estos resultados estdn de acuerdo con los obteni-
dos por S.K. Wong y G. Szamosi. El uso de una métrica diagonal, como la
de Robertson-Walker, tiene un efecto ambiguo en la frecuencia: Si redefi-
nimos la gama o el tensor de espin, entonces formalmente la frecuencia
es la misma, o, en caso contrario, si no hay redefinicidn, el espectro se
torna complejo.
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I. INTRODUCTION

Many results on this subject have been found by ang(1). Pre-
viously, Szamosi(z) had found the form the equations take in the special-
relativistic limit. In this brief paper, we give a couple of results
that, for some reason, were not taken into account in Ref. 1.

I1. EQUATIONS OF MOTION FOR y° AND THE SPIN TENSOR

The idea is of course to write down the Heisenberg equations of
motion, valid for an arbitrary operator, and then to apply them to the
elements of the Dirac Algebra. It is worth mentioning here that Wong“1
considers it important to justify his technique by showing that it ap-
plies rigorously to the mean values of the observables. Here we ensure
covariance by use of the generalized derivative operator (including spin),
which may be considered as the logical extension of the Schrddinger re-
presentation of momentum, B ih ax, etc.

Here we use the notation of Chapman and Leiter(s).

The spin covariant derivative is written v, and acts on the
various quantities according to their transformation properties, like a
spinor or a gamma matrix. The Fock-Ivanenko coefficients T, appear here.

It is clear that the fully covariant derivative for a tensor is just the

@),

ordinary covariant derivative

ve' = g"p
(3) give recipes for calculating the Fock-

Ivanenko coefficients, and so does J.G. Fletcher(s). This last author

Chapman and Leiter

finds expressions to calculate the F-1 coefficients as explicit functions
of the gamma matrices.

A. Equation of motion fon y°

The properties of this matrix, defined by

¥ = oyl y2 43 b "
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are important because of its relation with the problem of charge conjuga-
tion (see, for example, Ref. 6), and to chiralirv(7).

The technique used here is vervy simple: the ecuation of motion
is written down using the ordinary coordinates of general relativity and
each side of it is taken to be an onerator acting on a free solution of
the Dirac's equation. By cancelling out constant factors in both sides,

we are left with

Vo= v S+ ¥, v] (v,0)
Now: the first term at righ is zero, as is alwavs assumed, in order to
preserve Ricci's theorem (see Ref. 3, for example); since y® anticommutes

with all the other gamma matrices, .making use of the anticommutation re-
lation and simplifying

1

Y5 o= -2ySy vy, (M

which is valid in the space of general relativity, a space endowed with
curvature and spin.

B. Time evofution of the spin tenson
In the same way, the eauation we start with is
My = v,

The commutator is easily evaluated by using the AC relations twice, and
we find

My =2 @Y -V (2)

C. The equations of motion Lin the special-nrelativity Limit

The preceeding results may be transformed to the form corre-
sponding to the special-relativity limit, simplv by dropping the connec-
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tions (both affine and Fock-Ivanenko):
In this way, Eq. (1) gives, after some manipulation
Vo= -2yS P 5,0 = c2inlyS (m) v, (3)

L
Y flat

and for an arbitrary (free) spinor, it can be put in operator form:
%5 = ix-1 45
Y f1at D' Yerae

which is the Zitterbewegung equation for vy . ESee Eq. (27-c) in Ref. 7].

D. Eguation 4or the spin tenson

The same procedure gives for 5“V the expression
sy o= 2 e,y VL) 4

Observe that in special relativitv the linear momentum for a free parti-
cle is conserved; this last equation is then equivalent to the time deri-
vative of the angular momentum, as defined in Schrédinger's renresenta-
tion.

v

Repeating the procedure gives "V and G"”. The relation between

them is, as may be proved after a simple but lenghthy calculation,

M eir, e =0 (5)
which is the equation of motion (again Zitterbewegung) for the spin ten-
sor, or rather, for its derivatives. In Ref. 2, an expression is obtained
for tensors of higher order, like %y uv? but the calculation is much too
lenghthy, and will not be shown here. See Ref. 2, Eq. (27-a).

To end this point, note that the resulting wavelength is half
that of the Compton wavelength, so the frequency is double. Szamosi has
shown (Ref. 2) that all coordinates move by performing this special os-
cillation, and this shows that the movement of a particle should be con-
fined to a 4-dimensional tube, of diameter egual to the Compton wave-
length of the particle. The Zitterbewegung is thus an important charac-
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teristic of the motion, al least in flat 4-smace. The big nroblem arises

when one realizes that this freauency, around 102! sec™

, 1snot an observa-
ble, in the sense of aquantum mechanics. Inother words, exnressions are
obtained formallyas limit formof others, more general and valid in General

Relativity, but it seems as if their meaning is not vet completely clear.

III. EFFECT OF A CHANGE IN METRIC ON THE FREQUENCY OF MOTION

In Ref. 3, Eq. (31), tensors are given that allow one to go
from flat 4-space matrices y" to others contained in a locally tangent
universe, the change in metric generating the change in all those proper-
ties not depending on AC relations, since these are intrinsic, i.e., rep-
resentation-independent. Let's study theRobertson-Walker case (8). Search
for the time evolution of y° gives the expression (¥ is the matrix in RW
geometry)

¥om U=y R o

and this result may be interpreted in two ways:
First: re-define the gamma matrix in Robertson-Walker geometrv; then

(1 -yWytys

Q‘rS

and then

B e B

the same frequency as before.

Second: take the factor (1 - Y(4)) as a frequency-splitting factor; then,
after some algebra, we find a doubly degenerate spectrum, the new fre-
quencies being

Vi, = Mg = [1 ; : AD] H

Vg3 = oy, = [J._-_] AQ]
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The frequencies are now complex, but the order of magnitude is the same,
so no new problem about observability should arise.
Finally: the study of the Robertson-Walker induced change in the frequen-
cy, if any, was suggested by Dr. G. Szamosi. This author has tried to gen-
eralize his results to non-diagonal metrics, but the amount of calcula-
tion involved apparently does not seem to be justified by the results.

The same type of calculation gives a similar result for the
spin tensor: either the tensor is redefined, and the frequency is the

same as before, or there is a splitting with complex-valued freauencies.
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