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ABSTRACf

Trinucleon wave functions, based on the Lane-Robson R-matrix
formalism, have be en previouslY3shown So provide representative binding
energies and rms radii for the P.and He systems. Hereln, calculations
of asymptotic normalization constants are found to be within 15\ of Fa--
ddeev, forward dispersion, and one-boson-expansion predictions. The
model results indicate that the ealculated wave functions yield repre-
sentative A=3 properties and may be useful in studies of two-nucleon
transfer reaction calculations involving 3H or 3He.

RESlNF.N

Ha sido demostrado anteriormente que las funciones de onda
de un sistema de 3 nucleones, basadas en el formalismo de la matrix R
de Lane Robson, proporcionan valores representativos para las ener~ías
de ligadura y radios r m s del 3H y el 3He. En este trabajo se calculan
las constantes de normalización asintóticas y se encuentra que no difie-
ren en más de 15% de las predicciones de los métodos de Faddeev,
dispersión hacia adelante, y desarrollo de un bosón. Los resultados
del modelo indican que las funciones de onda calculadas d~n propiedades
representativas para A = 3, Y pueden ser de utilidad en el cálcul~ de
reacciones de transferencia de dos nucleones que involucren 3H ó He.



48 l. IN1RODUCfION

The calculation of transfer reaction cross sections within
a distorted-wave Boro approximation forma! is often limited bv nuclear
structure information(1-15). Sorne of the most studied processes are
(p,t) transfer reactions which require both core plus two-neutron and
triton wave functions as input. As an example, reactions involvin~
16 (1-10) 40 (4,9-13) and 208 (4,9,13-15) targets have been analyz-O ,~ ' ~
ed by numerous authors, but normalizatían and shape difficulties between
calculations and data persisto The aforementioned (p,t) transfer reac-
ticos require tri ton wave function input, and a study of trinucleon wave
functions is a vital step in resolving (p,t) uncertainties.

For an A=3 wave function to be useful, it should oTovide a
good representatían of trinucleon bound state parameters 5uch as the
binding energy and TmS charge radius(16). These Quantities provide
usefu! constraints on the A=3 wave function, but additional constraints
are needed to further restrict the trinucleon wave ftmction. Additional
constraints are provided by the S7wave asymototic normalizatíon cons-
tants for the 3H and 3110 systems (CO(3H) and Co(3He)) which have a sta-
tus similar to that of the binding energy or TmS charpe radius(17-19).
Since the asymptotic normalizatíon is a fundamental quantity. it pro-
vides an additional constraint on trinucleon wave function~. Thus, a
consideration of CO(3H) and CO(3He) is of interest in assessments of
trinucleon wave functions.

A consideratíon of trinucleon asymptotic normalizatíon cons-
tants i5 justified because these Quantities have provided much usefUl
information. For example, considerations of the asymptotic normaliza-
tion constan! have led to an improved phase shift analysis of p.,3He
scattering(20) as well as an improved understandin~ of nuclear structure
effects on (d,t) analyzing powers(21). In a similar fashion, asympto-
tic normalization studies have the potential to analyze the effects of
the details of the nuclear structure o~ transferred narticles or clus-
ters in reactions 5uch as (t,p). (t,d), or (1He,d) reactions.

The purpose of this oaper is to determine the accuracy of
detailed A=~ wave functions derived from a harmonic oscil1ator basis
(16,22-26) These wave functions have been previously shown to yield
reasonable bindin~ ener~ies and rms radii, and further investi~ation
into their applicability for use in transfer reactions is warranted.
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The trinucleon wave functions wil1 be as~rssed hy considering the asymp.
totie normalizarion constants CO(3H) and Co(3He). The asymptotic norma-
lization constraints when viewed in light of hindinjt and Tms radii re
sults wilL provide insight iota the applicability of harmonic oscillator
trinucleon wave functions in (r, t) transfer Teaetion calcul<Jtions.

11. MORY Mil FOR-'ULATWN

The modeI for the A=, haund states was outlined in Refs. (25)
and (26), and represents an application of the Lane-Robson R-~atrix me-
thodology(Z7). The R-matrix equations Can be "Titten in the form

o , (1 )

where H is the A=3 hamiltonian(25) and YAc and bAC are the reduced
widths(28) and logarithmic derivatives associated with the expansion
states IA>(2S). The expansion states are introduced in arder to des-
cribe the nuclear wave function within the interaction repioo, Tc,ac'
in all channels. The quantities be are related to the radial wave func-
tions Uc(rc) in the physical channels(c) by

[ídUCJU crr-
e e r=a

c c

where re is the eoordinate between the separatin~ elusters and ac is
thc channel radius. These quantities provide the conneetion bet\leen
the interaction region and the various two-body break-up channels. The
~ are expansion amplitudes which are to be determined by the solution
ofEq. (1).

Within this framework, the model is defined by choosing a
form for the hamiltonian and a set of expansion states and cluster 'lave
funetions. The hamiltonian which ineludes the nueleon kinetic ener£ies
and two-body nuclear and Coulomb interactions 1S specified in Refs. 25,
26. As expansion or basis states, we utilize a set of properly S~TIme-
trized translationally invariant hanmonic oscillator eigenstates(291.
The use of harmonie oscillator states facilita tes transformations re-
quired in (p,t) transfer reaetion studies. The oscillator transfonma-
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tlOTl proper.ties enum.,'the lb statc~ with a favored status when com-

pared with non-ascil1ator hasis stntes. Additional details of the A=3
formulat ion is provided in Rf>f. 25.

In Ref. 16 an effective interaction for oscil1ator basis
sta tes \'.'as dctennincd for rhe two, three, and fOUT nucleon svstems. This
intcfaction is ha sed on the Sussex m;ltrix elerncnts(30) and is of the

fonn

Vmodi ficd Suss('x e \rC;ussex (3)

"'he fe r. is ;1 str('n~th parameter of ordC'r unity. Cooo fits to A=2. :\,

-l, ,:lIld :; .~r(lllnd st;-Ite hindin.\~ I..'nt'r~il's ano rms radi i \\'cre ohtained from

the madi Cicd ~llSS(".\ intcractil'll {.'lSI1 \dth rhe \'al11C' (=1.168 for rhe
hll-c .1 (16,']) TI '10- • -lid= .{1{ tn :"llSSf'X CI.rI.\ l' l'í']t'nrs -. lE':- lnteractlon \'1(' tC'

"I! ~l!ld :'I!(' hindll1<":' l'nlTl.'il~~ hithin .:;" of E'xN'rirnellt. Th(' 3H Im~ radius

\\(lS \\ i thin ~ of €'x~'l'ril"\"~nt <m~~ the .~H€'m:::: radiu:::: ".as rredicted to be

Idthin S' af dat:l(ll". Thll~. :he \~~I t'ra\'ides repre::::entative bindin.'!

C'n\..'r.~i<.'s and TU:' r"di i far the -'H and .'He 5}'sterns.

hT' note that u:,in,<! a sI1>!htl\" stroni!C'r interaction

hinding L'nl'r~,ie:, In <1grC'ement Idth .4.=~ data('';]).

For completeness.

(C=1 _190) loads to
Ho\\.e\'er. \\'e wi 11 use

the ~ISI In calcular ions nre:::.ented herein s-ince it proddes a consis-

tent d('~cription 01'.\=2, ~, -l. and 5 systems. This consistency is need-

eo ir ~ystem:Jtic ~tlloics of (t,p) <lnd other reactl0ns such as (t.d) or

(a.d) :In' to he pCrrorrrK'd.

Far hinúin.l; cncrgy and nns radius calculatians, the A=3

wave fUflctions wcre restricted to a 4hw model spacc. This truncation

is scverc but st111 providcs a 63 component wave function. which i5

quite dl't,dlcd. However, a comparison of our mode1 with previoU5 S-wave

asyrnptotic normal iz.:¡t ion calculations(32) requires that the basis he

tnlllcatC'd to only pennit 'so and 3s, .•.3D, state5 in the rn coordina te

and S-~tatcs in thc t\. coordinate (!"ce Fig. 1, Ref. 25).' In this man-

n0f, the dptail nroviueo by our A=3 wave functions i5 at least comparable
to othcr tI"e<ltmC'nts(1S,26,32-3S).

lIl_ ASHIl'TOTlC NOR'~\LlZATl(]ll CONSTANTS

As notcd in the introduction. the S-wave asvmptotic norma-
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li:ation constan! Ca is a fundamental quantity which provides an impor-
tan! constraint on the A=3w'avefunction. In this scction. \..:e repart
calculations of Co(~) and Co(~e) and will compare these values with
those recently obtained from Faddeev (32,33), forward dispersion (34),
and one-boson-expansion(3S)mcthods.

The A=3 wave functions are written in tenms oí the interna1
coordinates 1'12 and TB(see Fig. 1, Re£. 25). For~, 1'12 is the coordi-
nate joining the two neutTons and r8 is the coordinate bet~een the
centers-of-mass oí the dineutron and the proten. The T12 and TB coordina tes
are chosen to facilitate antisymmetry requiremcnts(2S,26). Using the
formalism outlined in section 11, the triton wave funetían is defined
as

(4 )

(S)

where A is the number oí basis states included in the model, and

A

'\f1J(rB) X(512, 53' 5) .

In Eq. (S), ~L(r) are radial wave functions(36) , YIM(;) are spherical
harmonics normalized over the unit sphere (37), and X(512, 53' 5) are
wave functions representing the spin coupling structure oí the A=3
system. Additional details concerning the fonmalism of the A=3 ~ave
functions and their coupling structures are discussed in Ref. 25,26.

As noted earlier, the (r12, r8) coordinates were chosen to facil-
itate antisymmetry rcquircmcnts. However, the formulas for Co(32)rc-
quiTe the (113, re) coordina tes (251 . The desired transformation between
the original expansion states (r12, rB) and the recoupled states
(r13, re) are developcd in terms of standard angular momentum recoupling
coefficients and unequal mass ~bshinsky brackets (38-40)

Following Sasaka~á et al. (32), the 3H asymptotic nor~lization cons-
tant is defined by the relation
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1 Uro7B r ~00

e

<4>d(rl))I~ (r1). rc»
r~l exp (-erc)

(6)

where ~d i5 the deuteron wavc function, o/ is the tri ton wave function,
and e is given by

(7)

The overlap in Ea. (6) is onlv a function of rc' and hence the limit only
contains terms involving this coordinate. In F~.(7), M i5 the reduced
mass in the d + n channel, h 15 Planck's constant divided by 2n, IEI i5
the model triton binding ener,y, and IEdl is the model deuteron binding
cner~y.The 3He as}~ptoticnormali:ation constan! CoC3He) and wave func-
tion are defined in a gimilar manner. Details are provided in Refs. 25,
26 and 32.

The results of the R-matrix (R~) A=3 asymptotic normalization
constant (e (3H) and C (3He)) calculations are summarized and cOntPared
wi th other ~alculation~ (32-35) in Table l. Eouation (6), which defines
the ~I asymptotic normalizatíon constant, involves the product oí a (00-

stant factor (1/16) and a limit dependent on the deuteron-triton over-
Iap and terms involving Te' The constant factor can be compared with
data since the binding energies are known.To date, sufficient data to pro-
perly define the second factor is not available. However, experimental
~1ta suggests e(3H) = 0.516 and e(~) = 0.483. These results are in
close agreement with the R-matrix values which are based on calculated
binding energies(16). However. Faddeev results(32) yield smaller e va-
lues. This is attributed to the triton binding energy which is under-
predicted by the Reid soft-core/Faddeev model(32). Ibwever. the agreement
between the RM model and experimental e values does not imply that the
R-matrix asymptotic normalization constants aTe correcto

The 3U and ~ asymptotic normalization constants are lar~er
than their Faddeev counterparts (32.33). However. the ~'ICo(3¡l) value
(1.882) lies between the one-boson-expansion (OBR) valuc (1.910) and the
Faddeev values (1.706(32) and 1.776(33)). In view of the uncertainties
involved, these resu1t$ are quite clase, and the RM value is within 11\
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of the Faddeev(32) and within 2\ of the OBE v.lues.

TABLE 1

Asvmptotic normalizatían constants

B(3H) Co(3H)
B(3He) Co(3He)(fm-1) (fm-1) Reference

0.421 1.706 0.388 1.765 32
0.390 1.776 33

(a) 1.84(b) 34
(a) 1.91(e) 35

0.516 1.882 0.486 1.948 Tbis work

al Not provided in the subject reference.
b) Derived from e2 (3He) .

Derived from oe) sum of 5=0 and 5=1 deuteron spio componen ts .

As noted in Ref. 32, ealeulations of Co(~e) are more dif-
fieult tban Co(~I) ealeulations beeause a detailed treatment of the
Coulomb interaetion is required. Tbe RM Co(3He) value is 13\ greater than
Faddeev estimate(32) and 8\ greater tban the forward dispersion estimate(34)
Although the RM estimate is larger than the other estimates, it is not
significantly larger and a11 three calculations are in reasonable a.~ee-
mento

In general, the results sumrnarized in TabIe 1 support the
RM 1H and 1He wave functions. Generally, hanmonic oscillator calculations
do not yield accurate results, but the present model has obtained reason-
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able results with a careful choice of thc model intcraction(16). 111U5,
Co(\1) and Co(3IJe) values add addi tional support for the use of R-matrix
A=3 wavc functions in (p,t) and other transfer Tcaetion studies.

The calculated differences hetween Co(31J)and Co[3lJe) are
small [5t) and clase to the Faddeev differences (3-4t). Nevertheless, t,e
differcnces are measurable in ao accurate experimento Within the scape of
the RJ\1model, the diffcrence i5 due to the Coulomb interaction, but dif-
ferenccs couId a150 be attributed to char~e symmetry violations of the
nuclear force. Since papers concernin~ charge symmetry violations in few

. [22 41-44) (3 d ~-nucleoIl systems perslst' , measurements of Co H) ao CoC-He) may

also prov~defurther clues to the violation cf charge symmetry in the nu-
clear interaction.

IV. CONCUJSIONS

In addition to reasonably accurate A=3 binding energics and
rms r3dii results, R-mntrix cnlculations are sho~n to yield S-wave
asymptotic normnlization constant valucs which are within 1St of other
calculated values. The results are important because they are based on
an int('raction which has been used to ohtain reasonably accurate predic-
tions of scattcrin.e and structure properties in the A=2, 3, 4 and 5 sys-

'fh. . 3 3tcms. 1S con~qstency ;md accuracy suggests tMt fl and 'He h'nve func-
tions ocriveu from our R-matrix model will be lIsefu! in resolving shape
and normalization difficulties in (p,t) and other few nucleon transfer
reaetlon studics.
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