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ABSTRACT

Trinucleon wave functions, based on the Lane-Robson R-matrix
formalism, have been previously_shown §o provide representative binding
energies and rms radii for the "H and "He systems. Herein, calculations
of asymptotic normalization constants are found to be within 15% of Fa-
ddeev, forward dispersion, and one-boson-expansion predictions. The
model results indicate that the calculated wave functions yield repre-
sentative A=3 properties and may be useful in studies of two-nucleon
transfer reaction calculations involving 3H or 3He.

RESUMEN

Ha sido demostrado anteriormente que las funciones de onda
de un sistema de 3 nucleones, basadas en el formalismo de la matrix R
de Lane Robson, proporcionan valores regresentativos para las energias
de ligadura y radios r m s del 3n vy el “He En este trabajo se calculan
las constantes de normalizacién asintdticas y se encuentra que no difie-
ren en mis de 15% de las predicciones de los métodos de Faddeev,
dispersién hacia adelante, y desarrollo de un bosdén. Los resultados
del modelo indican que las funciones de onda calculadas dan propiedades
representativas para A = 3, y pueden ser de utilidad en el célculg de
reacciones de transferencia de dos nucleones que involucren 34 & “He.



48 I. INTRODUCTION

The calculation of transfer reaction cross sections within
a distorted-wave Born approximation format is often limited by nuclear
structure information(1'1s). Some of the most studied processes are
(p,t) transfer reactions which require both core plus two-neutron and
triton wave functions as input. As an example, reactions involving
160(1-]0) 40Ca(4’9_13), and 208Fb(4’9'13'15) targets have been analyz-

ed by numerous authors, but normalization and shape difficulties between

]

calculations and data persist. The aforementioned (p,t) transfer reac-
tions require triton wave function input, and a study of trinucleon wave
functions is a vital step in resolving (p,t) uncertainties.

For an A=3 wave function to be useful, it should provide a
good representation of trinucleon bound state parameters such as the

(16)_

useful constraints on the A=3 wave function, but additional constraints

binding energy and rms charge radius These quantities provide

are needed to further restrict the trinucleon wave function. Additional
constraints are provided by the S-wave asymptotic normalization cons-
tants for the 3H and 3He systems (CO(SH) and CO(SHe)) which have a sta-
tus similar to that of the binding energy or rms charge radius(17-19).
Since the asymptotic normalization is a fundamental quantity, it pro-
vides an additional constraint on trinucleon wave functions. Thus, a
consideration of Co(sH) and Co(sﬁe) is of interest in assessments of
trinucleon wave functions.

A consideration of trinucleon asymptotic normalization cons-
tants is justified because these quantities have provided much useful
information. For example, considerations of the asymptotic normaliza-
tion constant have led to an improved phase shift analysis of p#sHe
scattering(zn) as well as an improved understanding of nuclear structure

effects on (d,t) analyzing powers(21).

In a similar fashion, asympto-
tic normalization studies have the potential to analyze the effects of
the details of the nuclear structure of transferred narticles or clus-
ters in reactions such as (t,p), (t,d), or (SHe,d) reactions.

The purpose of this paper is to determine the accuracy of
detailed A=3 wave functions derived from a harmonic oscillator basis
{16’22'26). These wave functions have been previously shown to yield
reasonable binding energies and rms radii, and further investigation

into their applicability for use in transfer reactions is warranted.
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The trinucleon wave functions will be assessed by considering the asvmp-
totic normalization constants CO(SH] and C0(3He). The asymptotic norma-
lization constraints when viewed in light of binding and rms radii re-
sults will provide insight into the applicability of harmonic oscillator
trinucleon wave functions in (p,t) transfer reaction calculations.

II. THEORY AND FORMULATION
The model for the A=3 bound states was outlined in Refs.(25)

and (26), and represents an application of the Lane-Robson R-matrix me-
thodology(27). The R-matrix equations can be written in the form

% EAH%-EIAw *EVAc(bwc'bc)ch] Ay =0, &)

where H is the A=3 hamiltonian(zs) and Yeo and bAc are the reduced
widths (?8)
states |l>(25). The expansion states are introduced in order to des-

and logarithmic derivatives associated with the expansion

cribe the nuclear wave function within the interaction region, r.<a,
in all channels. The quantities bc are related to the radial wave func-
tions Uc(rc) in the physical channels(c) by

T dUc o
b = o ' 3]
€ UC 3rc
rC - aC

where Te is the coordinate between the separating clusters and a. is
the channel radius. These quantities provide the connection between
the interaction region and the various two-body break-up channels. The
AA are expansion amplitudes which are to be determined by the solution
of Eq. (1).

Within this framework, the model is defined by choosing a
form for the hamiltonian and a set of expansion states and cluster wave
functions. The hamiltonian which includes the nucleon kinetic energies
and two-body nuclear and Coulomb interactions is specified in Refs. 25,
26 . As expansion or basis states, we utilize a set of properly symme-
trized translationally invariant harmonic oscillator eigenstates(2
The use of harmonic oscillator states facilitates transformations re-
quired in (p,t) transfer reaction studies. The oscillator transforma-
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tion properties endow the [3> states with a favored status when com-
pared with non-oscillator basis states. Additional details of the A=3
formulation is provided in Ref. 25 .
In Ref. 16 , an effective interaction for oscillator basis
states was determined for the two, three, and four nucleon svstems. This
interaction is based on the Sussex matrix elements(SU] and is of the

form

Vmodlfled Sussex _ C VSussex , 3

where C is a strength parameter of order unity. Good fits to A=2, 3,
4, and 5 ground state binding energies and rms radii were obtained from

the modified Sussex interaction (MSI) with the value C=1.168 for the

; . 16,21) . . .
b=1.60 fm Sussex matrix elements d . The MS interaction vielded
2

2 3 L . R | . . 3 ;
H and "He binding enereies within 5% of experiment. The “H rms radius

FIRI

was within 2 of experiment and the

‘1.‘\I

He rms radius was predicted to be
within 8% of data Thusz, the MSI provides representative binding
energics and rms radii for the “H and “He svstems. For completeness,
we note that using a slightlv stronger interaction (C=1.190) leads to

B . . ; - 1)
binding energies in agreement with A=3 data( '

However, we will use
the MSI in calculations presented herein since it provides a consis-
tent description of A=2, 3, 1, and 5 svstems. This consistency is need-
ed if systematic studies of (t,p) and other reactions such as (t,d) or
(a,d) are to be performed.

For binding energy and rms radius calculations, the A=3
wave functions were restricted to a 4hw model space. This truncation
is severe but still provides a 63 component wave function, which is
quite detailed. However, a comparison of our model with previous S-wave
asymptotic normalization calculations(32) requires that the basis be
truncated to only permit ]SO and 381 + 3D1 states in the ?11 coordinate
and S-states in the ?c coordinate (see Fig. 1, Ref. 25 ). 1In this man-
ner, the detail provided by our A=3 wave functions is at least comparable

76 2 ¥
to other treatments(“s’“h'32 35).

ITT. ASYMPTOTIC NORMALIZATION CONSTANTS

As noted in the introduction, the S-wave asymptotic norma-
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lization constant CO is a fundamental quantity which provides an impor-
tant constraint on the A=3 wave function. In this section, we report
calculations of CO(SH) and CO(SHe) and will compare these values with
those recently obtained from Faddeev (32’33), forward dispersion (34 ,

and one-boson-expansionfss)methods.

The A=3 wave functions are written in terms of the internal
coordinates ?12 and ?B(see Fig. 1, Ref. 25). For 3H, ?12 is the coordi-
nate joining the two neutrons and %B is the coordinate between the
centers-of-mass of the dineutron and the proton. The ?%7 and T, coordinates

< B
are chosen to facilitate antisymmetry requirements(zs’ 6). Using the
formalism outlined in section II, the triton wave function is defined

as
- >
¥ (T, Tp) = § Ay IAF g T, 4)

where ) is the number of basis states included in the model, and

A (B, Tp)> = (r;,) (rp) Y (Ty,)
12 TB RN12L12 12 RNBLB B) YL, M, (12

o (5)
'YLBMB(TB) X(S‘IZI 53’ S) '

In Eq. (5), RNL(r) are radial wave functions(SG), YLM(;) are spherical

harmonics normalized over the unit sphere (37), and X(S;,, S5, S) are
wave functions representing the spin coupling structure of the A=3
system. Additional details concerning the formalism of the A=3 wave
functions and their coupling structures are discussed in Ref. 25,26.
As noted earlier, the (?12, ?B) coordinates were chosen to facil-
itate antisymmetry requirements. However, the formulas for C0(32)re-

(25). The desired transformation between

quire the (T13, ?C) coordinates
the original expansion states (?12, ?B) and the recoupled states

(?]3, ?C) are developed in terms of standard angular momentum recoupling
coefficients and unequal mass Moshinsky brackets

Following Sasakawa et gl,(32), the 3y asymptotic normalization cons-

tant is defined by the relation
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' G (3H) 1im {¢d (rla)l\y (TH, I'c))

, (6)
/B T + r‘l
c c

exp (-Brc]

where ¢d is the deuteron wave function, ¥ is the triton wave function,
and B is given by

1
o = o (B - [ED]7 )

The overlap in Ea. (6) is onlv a function of Tes and hence the limit only
contains terms involving this coordinate. In Eq. (7), M is the reduced
mass in the d + n channel, h is Planck's constant divided by 2m, |E| is
the model triton binding enersy, and !F | is the model deuteron binding
energy. The 3He asymptotic normallﬂatlon constant C ( He) and wave func-
tion are defined in a similar manner. Details are prov1ded in Refs. 25,
26 and 32.

The results of the R-matrix (RM) A=3 asymptotic normalization
constant (C ( H) and C ( He)} calculations are summarized and compared

with other calculatlons (32-35)

in Table I. Eouation (6), which defines
the °H asymptotic normalization constant, involves the product of a con-
stant factor (1//R) and a limit dependent on the deuteron-triton over-
lap and terms involving T, The constant factor can be compared with
data since the binding energies are known. To date, sufficientdata to pro-
perly define the second factor is not available. However, experimental
data suggests B(3H] = 0.516 and B(3He) = 0.483. These results are in
close agreement with the R-matrix values which are based on calculated
binding energies(16). However, Faddeev resu1t5(32) yield smaller B va-
lues. This is attributed to the triton binding energy which is under-
predicted by the Reid soft-core/Faddeev model(sz). However, the agreement
between the RM model and experimental B values does not imply that the

R-matrix asymptotic normalization constants are correct.

The 3H and 3He asymptotic normalization constants are larger
than their Faddeev coumterparts(sz’ss). However, the RM CO(SH) value
(1.882) lies between the one-boson-expansion (OBE) value (1.910) and the
Faddeev values (1.706(32] and 1.776(33)}. In view of the uncertainties
involved, these results are quite close, and the RM value is within 11%
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(32)

of the Faddeev and within 2% of the OBE values.

TABLE I

Asymptotic normalization constants

B(sHe]

(ﬁ"_l) C0(3PU (fm'l) CO(SHe) Reference
0.421 1.706 0.388 1.765 32
0.390 1.776 — — 33
_ = (a) 1.84® 3
(a) 1.91(¢) = - 35
0.516 1.882 0.486 1.948 This work

a) Not provided in the subject reference.
b) Derived from Cg( He) .
c) Derived from sum of S=0 and S=1 deuteron spin components.

As noted in Ref. 32, calculations of C (3He) are more dif-
ficult than C (SH) calculations because a detalled treatment of the
Coulomb 1nteract1on is required. The RM C ( He) value is 13% greater than

(32) and 8% greater thanthe forward dispersion estlmate(34)

Faddeev estimate
Although the RM estimate is larger than the other estimates, it is not
significantly larger and all three calculations are in reasonable agree-
ment.

In general, the results summarized in Table T support the
RM °H and SHe wave functions. Generally, harmonic oscillator calculations

do not yield accurate results, but the present model has obtained reason-
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able results with a careful choice of the model interaction(15]. Thus,
CO{SH) and CO(3He) values add additional support for the use of R-matrix
A=3 wave functions in (p,t) and other transfer reaction studies.

The calculated differences between CO(SH) and CO(BHE) are
small (5%) and close to the Faddeev differences (3-4%). Nevertheless, the
differences are measurable in an accurate experiment. Within the scope of
the RM model, the difference is due to the Coulomb interaction, but dif-
ferences could also be attributed to charge symmetry violations of the
nuclear force. Since papers concerning charge symmetry violations in few
nucleon systems persist(22’41_44), measurements of CO(SH} and CO(3He} may
also provide further clues to the violation of charge symmetry in the nu-

clear interaction.
TV. CONCLUSIONS

In addition to reasonably accurate A=3 binding energies and
rms radii results, R-matrix calculations are shown to yield S-wave
asymptotic normalization constant values which are within 15% of other
calculated values. The results are important because they are based on
an interaction which has been used to obtain reasonably accurate predic-
tions of scattering and structure properties in the A=2, 3, 4 and 5 sys-
tems. This consistency and accuracy suggests that 3H and 3He wave func-
tions derived from our R-matrix model will be useful in resolving shape

and normalization difficulties in (p,t) and other few nucleon transfer
reaction studies.
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