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In this paper we derive an exact kinetic equation for the con-
ditional probability that certain dynamic events occur at a given time in
a many body system. This eouation is applied to the very specific case of
the "slow" decay of spontaneous fluctuations around ao equilibrium state.
The results are contained in three non-Markoffian equations. ane which is
af the Fokker-Planck type for the conditional probability itself, one for
the coarse grained (mesoscopic) variables that turns out to be of the same
structure as the phenomenoloqical generalized regression of fluctuations
law and a third ane for the transport equatians. These results may be re-
garded as the microscopic basis behind the equations given by zwanzig
some years ago in his generalized treatment of the Green-Kubo formula. We
also show explicitly haw the transport (Green-Kubo) matrix is related to
the microscopic phenomena and discuss the comparison with Zwanzig's re-
sults. As a final point we indicate how the linear equations of non-equi-
librium thermodynamics are recovered when the process is assumed to be a
Markoffian ene.

* AIso at the Escuela Superior de Física y Matemáticas del IPN, México
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Se deduce una ecuaClon cinética exacta para la probabilidad con-
dicional de que ciertos eventos dinámicos ocurran en un sistema de muchos
cuerpos a un tiempo dado. Esta ecuación se utiliza en el caso específico
del "decaimiento lento" de fluctuaciones espontáneas que ocurren alrededor
de un estado de equilibrio. Los resultados se expresan en tres ecuaciones
no-markoffianas, una del tipo Fokker-Planck para la probabilidad condicio-
nal. otra para las variables de grano grueso o mesosc6picas que tiene la
forma de una ecuación de regresión fenomenológica generalizada y una ter-
cera para los coeficientes de transporte. Estos resultados pueden consi-
derarse como las bases microscópicas de las ecuaciones propuestas hace va-
rios años por Zwanzig en su tratamiento generalizado de las relaciones de
Green y Kubo. También mostramos explícitamente cómo la matriz de trans-
porte (Green y Kubo) está relacionada con fenómenos microscópicos y com-
paramos los resultados con los obtenidos por zwanzig. Finalmente indica-
mos cómo se recuperan las ecuaciones lineales de la termodinámica irre-
versible cuando los procesos son ~arkoffianos.

1\T~nnliCTI0\

the nurpose of this ,,'orkis to dyc a ITIicrosconichasis to the
results obtaincd in a beauti+u1 naoer h\"~. ::',onzi.Q:(1)and ",'hichconsti-
tutes 3n extcnsion of thc reQression of f1uctuations assumntion of linear
non-equilibrium thennodvnamics(2) and the ,,'ellkno,,"nr.reen-Kubo tiJ'Tlecor-
rclation formulas for t~e transport coefficients(3,4) to a non-maryoffian
process. Further, it was shown in that naper that these results reduce to
the ordinary ones for a markoffian process on1y when the process is 'vcry
slow'. The full meaning of a slow proccss is clear1y stated in Zwanzip's
paper and othcr sources in the literature(4) and we sh311 come hack to it
at a 1ater stagc of our wark.

An exact non-markoffian kinetic e~uation for the probahility
distribution of the numerica1 va1ues of the set of phase snace functions
chosen to describe the state of the system, has a1so heen derived(S) .
Furthennore when thc phase snacc functions are assUfTledto chanpe slowly
in time the exact kinetic eauation can he apnroximated hv a sti11 non-
markoffian equation. Usin~ the conceot of a "slowness parameter 6" ~bri
et al. (6,7) obtained Zwanzip's kinetic eouation(7) an~ round a more sys-
tematic way of expandin~ the relevant quantities in power oí ó. This ex-
pansiDo has heen closely examined recently(8) ano comnared with other an-
proachcs to the proh1em of deriving exact kinetic eouations. Howcver, the
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precise way in which the non-markoffian rcgression eouation arises from
the exact kinetic equation and the subsequent analysis leadinp. vía thc
kinetic equation, to the slow proccss approximation has, to OUT knowlcd~e.
never beco discussed. This is the main task of this naper.

The general idea that we want to follow is to find the kioetic
equation for P (a,tib), the conditional nrohability that the phase

. eq... -.. ..• -+space functlons A(f,t) have values between a and a + da at time t given
the ioitial time values A(r,O) = b. This equation allows one to obtain an
exact form for a law of regression oí fluctuations which under well speci-
fied conditions it reduces to the linear non-markoffian exnrcssion used
by Zwanzig. Also, the limiting forrn far the kioetic cauatíon under the
slow process approximation is easily obtained.

For the sake of completeness we shall devote section 11 of this
paper to summarize Z~anzig's analysis. Section lIT contains the time evo-
lution description for the coarse grained (or mesoscopic) variables of a
system from a canstrained eauilibrium state onto a less constrained equi-
librium state. This analysis is extended to the study of the fluctuations
in the system around its equilibriurn states, and will lead to the afore-
mentioned kinetic eauation for P (a,tlb) and to the reRression of fluc-

eq
tuations equation. Their particular fo~ in non-markoffian re~irnes for
linear and slow processes are derived. These results have the same struc-
ture as those obtained by Zwanzi~. The last section is devoted to a de-
tailed comparison between our results and the ones obtained by Zwanzip..
We also point out here what is the structure of wesoscooic dynamics for a
very slow process.

Ir. RESUHE OF ZWANZIG'S A'lALYSIS

The essence of Zwanzig's work is to remove the assumption that
a process is markoffian in the derivation of the time correlatían formulae,
the Green-Kubo expressions, for the transOOTt coefficients. This is done
through the fol10wing steps:
a) A strictly phenomenoloRical linear non-markoffian re~ression law is
proposed to describe the time evolutian of well defined mesascopic Quan-

-~-btities, a{t) . This equatían reads,
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~b

dt
---b

V(t').;;(t-t'} (1)

where V(t) is thc time dependent matrix for the trans~rt coefficients
and

,..--b
a(t) f

~ ~ ~ I~da a P (a,t b)eq
(2)

whcre P (a,tlb) 15 the auantity defined in the pTcvious section. The
variabl:i a(tf wcre first introduced by Onsager(9) to characterize the
avera~ecauilibrium fluctuations in an a~ed system.

The correlation matrix e is now defined as,

f
~ ~,..--b~C(t) = db geq (b)a(t) b (3)

wherc g (b) is the equilibrium distribution of the coarse ~rained va-
eq .+riablcs lb}. ~~ltiplication of Ea. (1) bv g (b)b and integration over. 'eq

db leads at once to the time evolution equation for C(t), naJ!lely,
t

dQ(t) 1-at= - da ~(s).£(t-s)

o

frcm which £(t) is readily obtained,

(4)

(5)

b) The miCToscopic eauation for the matrix £ is found in terms of the
time derivatives of the Dhase snace functions (A(r)}and from it a cor-
responding equation for £(t) is obtained. This is accomplished startin~
with the definition of a time correlation function, namely(10),

Q(t) = J dr p (r) A(r,O) A(r,t)eq
(6)

whcrc the scalar product (A,B) is dcfined in thc usual way,
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(A,B)
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(7)

C{t) = r~(f,t), A(f,O)] (8)

sinee beeause of Eq. (7), Eq. (6) is invariant under time inversions. If
we denote by TI the time invcrsion operator TIfer,t) = fef',-t) where

.•.• .• -+ -+ ..•..
f = (q,p) and r' = (a,-p), then PA(r,t) = e-A(f',+t) where £.. = £,<1 ..

- 1) 1 1)and c. : !1 the plus sign correspOndin~ to even functions and the minus. .

sign to odd functions oí time. Since f(t) is invariant undcr time invcT-
sioos,

and hence

£ (t) (9)

(10 J

where 2 is referred to as the time corTelatían matrix. If one fUTthcr as-
sumes that all thc eomponents of the vector A(r,t) are of the same parity
under time inversions

Q(t) = -Q(t) (11 J

(12)

and £(t=O) = O aeeordin~ to Ea. (9)
el The matrix for the transnort eoeffieients is obtained by simoly set-
ting the two cxpressions for £(t) in (a) and (b) equal to eaeh other.
This relates ~(t) to Q(t). If one takes the Laplaee transforms of Eas.
(S) and (11) one gets irnmediately that

• ~. y2 (p) Ja{p) = Y(p) - - • CíO)- - . p! + ~(,,) -

where f(p) = fdte -ptf (t) and t the uni t matrix.
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d) The next step consists in studyinF the conditions under which the
Green-Kubo fonnulae are valid by assuminF that r(t)is governed by a "slow-
ness parameter". Then the idea of a very slow process maybe set forth in

a precise lanFUaFe. This leads also to the behaviour of £(t) for slow
processes when the microscopic behaviour oí g(t) is extracted from its
macroscopic counteroart.

To do this ane introduces the "slowness pararneter 1;" in 5uch
a way that

A

r(p) = 1;~(1;.P) (13)

and ~(s,p) is acontinuous function at ~(O,O). Further, the La~lace trans-
fonn of Ea. (4) gives that

Substitution of Ea. (13) into Ea. (14) and inversion of the
LapIace transform leads at once to

(14)

£ (t) = ~ JdxeXT ro 12!li l.x_ J-1+ ~(1;,1;x) • £(0) ( 15)

-1where x = e p and T = et
A very slow process is now defined as ane in which the l~it oí

e ~ o keeping T constant. Then,

lim C(t)
,->Q -

T=const.

lf the behaviour of C(t) for long times, C (t), is now- ~macro
identified with the limit expressed by Eq. (16), then it imPlies that

(16)

= -u(O,O),C (t)- -macro
(17)

which is nothinp. eIse than the equation far the time correlation matrix
which ane obtains when Onsagerls linear rep.ression.assumption is used.
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Thus ~u(a,Ol is the time independent transport correlation matrix.
e) The 1ast step is to ealculate the time independent correlation matrix
~(O,O) in terms of the microscopic quantities and thus obtain the Green-
Kubofornulae. To do this one uses the "slowness" asstunption as ~iven by
Eq. (13) in Eq. (12) relating the micro and macroscopic matrices. Thus,

•

(18)

Now take first the limit as ~ ~ O and next the lDmit when ~ ~ O. Then,

~(O,o) (19)

Using now the fact that (2)

9 (a)eq = c~ [_ ..l... q2. -'a
~~Jaa (20)

where giJ' = [ a
2

s J S heing the equilibrium entropy and ~B Bolt~ann'sda. Cla. '
constant, we ge~ thlt ~-1(0) = ";l~ • Finally,

~(O,O) = l:...1im 1im ,_1 r:-rt[i1r,0), i(r,t)Jdt.~ (21)"a P"'O ,~
o

which is the Green-Kubo exnression for the transnort coefficients.

111. ME."Q.."Corlc DYN.AHIC~

Using the projector operator method introrlucedby MOri(11) we
shall derive an exact kinetic eauation for the co~jtional nrobabilitv

, '--b '
p(a,tlb) as wel1 as the enu1tion of motion fOT the variahles a(t). In
the latter case only a brief outline oí the calculation is ~iven since
the full details have been pubIished elsewhere(12). Let lA, lr,t)} = A(r,t)

. )
denote the vector formed by a11 the nhase space functions associated to
the macroscopic observables of the system a(t). Clearly,
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;;(t) J df p(f,O) A(f,t) (22)

(23)

Assuming that the ioitia1 state of the system is a constrained equilih-
rium state described by A(f,O), we have that

p(f,O) = W(f) V[A(f,O»)

~here W(f) is a real function of the system's invariants and V(A(r,O)) an
arbitrary function of A(f,O).

Each time we observe the state oí the system, the vector A(n
~takes a numerical value a, which i5 taken to be a stochastic process.

Thus ane is interested in the probabilitv distribution q(i,t)di reore-
~senting the probabilitv that at time t the nt~rical value of A líes in

the ran~e a,a+d8. Also(5).

(24)

where G(a,t) = [-Ó[A;(f,tl-a;] = Ó[A(f,tl-a] is the well known characteris-
tic function for the hypercell in phase space at time t.

The auantity that is of OUT interest here is the conditional
probability p(a,tlb) which is in ~eneral defined as(lO)

_1 -+ -+-+
= g¡ (b,O) g2 (a,t;b,O) (25)

ana may a150 be written in a more compact way using Eq. (7) but with W(f)
as a weight function instead of p (r). Then, callimr rG(b,O)] ~eq . ~

= [l,G(b,O)J = Jdf W(f) G(b,O) and using the expression for the avera~e
of any phase space function f(f) over the hypercell,

we get that

(26)

( G(a,t); b) (27)
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Furthermore, the exact equation of motioo far the characteris-
tic function G(a,t) has been shown to be given by(8)

dG(a,t)
dt Z(~,t) G(~,t) + F(~,t) (28)

where Z(a,t), Zwanzig's operator (ZO), is a kinetic operator whose ex-
plicit form is at present irrelevant (see Eq. (36) in Ref. 8) and F(a,t)
is a function satisfying the proverty that

F(a, t); b ) = O (29)

From Eqs. (27) and (28) it follo\V's at once, using Eq. (29) ,
that

dP(a,tlbl = Z (a,t) p(a,tlb) (30)dt

Equation (30) is similar in structure to the kinetic equation derived by
~Zwanzig who obtains the ti~ evolution equation far 91 (a,t) when Ea. (28)

is averaged with o(r,O) (S). For future ournoses, we shall choose, among
the various possible expressions far ZO(8), its r~neralized Kramers ~yal
(GKM) form which is given by(7,8.14)

00

~ ~ í.Z(a,t) f(a,t) = .
n=O

í ... í
k ko n

~f(a,t-s)

(31 )

~
where the functions Kk.

o
"'ks (a,S) are 5UJT1T1arized in the appendix. Equa-

tions (30) and (31) constitute our sought kinetic equation for the proba-
bility function p(a,tlb) .

In arder to obtain the micToscopic form for Ea. (1), we start
fTom the definition of a coarse grained variable as the first moment oí

. ~ I~ (10)the functlon P(a,t b), namely ,

.--b f ~~ ~ I~a(t) = d aa P(a,t b) (A(r,t);b) (32)
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where thC' last equality fol1ows from Eo. (27) ,me\ thC' ohvious i~('ntjt~.

A(f,t) = f daa: G(a,t). Ir <lIso shm..'s that thc CO<lTse 9rainC'd \';:¡rirlhlC's

are givcn as avcra,ges takcn aver thc hv!,crccll in ~hasc snacc of thc
phase snace functions ¡(f,tl. From Eqs. (:18), (31) and (32) it follol,s
at once that

,.--b
da(t)
dt f~s f da K(a,S) P(a,t-sib)

o

~~ ~where K(a,s) is the vector whose components are the functions K~ (a,s)
"o

appearinR in Eq. (31). Equation (33) is our desired Roal, it gives toe
microscopic form Of the time evolution of the (oarse grainec variables
,..-b
a(t) •

Finally. if ","'C substitute EQ. (23) into Fq. (22), \0,'(' make use
of &l. (32) and recoRnize that veA(f,O)] = Jdb v(b) r,(b,OI , "e fin<! that

~ J ~ ~ r; ~ ,.--b
(l(t) = db v(b) ,.s;(b,OI]a(t) (3.1)

is a useful relationship between the ~acroscoDic variables ~(t)and the
:::;-- bcoarse Rrained variables a(t). Tndeed the time evolution eou1tion far

the former ones is now easily derived usin? Fq. (~3) obtaininR that
t

d:~t) = IdS Jda I«a,s) Jdb v(b) ~(b,O)] p(a,t-slb) (m

o

RecallinR that from FQ. (24) 91 (b,O) = v<b) [9(b,O)] and car-
ryin~ over the last inteRral, Eq. (35) reduces to

da(t)

dt J
~ ~ ~ ~
da K(a,s) 9, (a,t-s) (36)

'Ihis result is the non linear transrort eauation dcscribin~ the
time evolution of the macrosconic. set a(t). As ~e shall show later on, it
will reduce under suitable annroximations to the ordinary linear eallatíon
of irreversible therwodynamics for a non-markoffian Drocess.
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IV. FWClUATlONS ARUJND AN E(UILIBRlU'l STATF

The results derived in the previous section are used here to
study the decay of spontaneous fluctuations around an equilibrium statc.
For such a state, p(f,O) is now chosen to be the equilibrium distribution
function correspording to the choice Wcrl = P crl and "Qi(f,O)] = 1 . In

eq
this case the stochastic process describing the behaviour of the a's is a
stationary one. namely.

(37)

. ea ~as it follows at once from Eq. ("-1). TIus means that 9l.(a) is a time in-
depcndent function whico describes the distribution function of the fluc-
tuations arouno equilibrium ..Uso [G(b,O)] = 9ea(b) and 9';'(a,t1' b,t2) =

eq .• -+ •• I~ -
= 92 (a,tl - t2,b,O) so that Pea(a,t bl given by Eq. (27) involves now an
average ayer thc hynercell bu! with Peq(í) as the weight function anrl its
time evolution equation is given by Ec. (~O).Fauatían (32) far the coarse
grained variables involves now Peq<a,tlb) and is identical to [o. (2),
the variables defined by Onsa~er. Eouation (33) becomes then the genera-
lized regression of fluctuations equation which is exact in the sense~~that the full microscopic dynamics is contained in the vector K(a,s) .

We shall now analyze the dynamics o~ fluctuations for the case
in which the time rate of chanRe of the dynamical variables A(f,O) is
controllcd by a slowness parameter ó, narnely, Á(r,O)-ó, 6<1. AIso we
shall only consider a11 terms which are at mest of order 62 both in the
kinetic equation and in the regression of fluctuations exoressions. In
thc Appendix we show in full detail that the functions that anpear in the

~ . ~ n+lCoK'! form for Z(a,t) satlsfy the property that KL L (a,t)-6 . Thus
r,o' .. "1)on1y Kk (~,t)and Kk k (~,t)give relevant contributlons to the process

when itOis slow. Fur£he} it is explicitly shown that

2Vk (a) ó (t) + c~2l (a, t)
° a

(3Ra)
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(s) -+K. • (a,t) =
o' 1

where

(2) ...•.L. h (a,t)
o' 1

2 (1' • } ~ ~- 6 1irn1"7<A¡, (r,t)A¡, (r,O),a) -vh (a)vh (a)
6..•.0 6 o 1 o 1

(38b)

and

< Ah (r,O); a)
o

C~2) (a.t) = 0-1 (a) '.J.-- 9 (a)
" -eq /. da" eqo ( ( -

(2) .•.Lh (a,t)
o'

(39)

(40)

Use of Eqs. (31), (38a) and (38b) in Ea. (3n) leads to the ki.
netic equation in the slow process approxUnation, namely,

[3:h ] [3:h ]
o I

t

J
ds KIs) (a,S) P (a,t-s[b)

ko' h1 eq
o

(41 )

-+ (s) .•.The re~ession law, Eo. (33) with K (a,s) whose onlv compo-
nents are K~)(a,t) defined in F~.(38a), is clearly seen to be a non
linear equation in the a's since both the dríft term ;(;) defined in
Eq. (39) and the term e(2) (a,t) defined in Pn. (4Q) contain contributions
to al1 orders in a.

Wenow introduce another anproximation, narnely, that a slow
process is a1so a linear ane. To accomplish this we define a mesoscopic
linear projector Pb (6,13) ,

-+ -+-+-}-+,b» . « b,b» .b ( 42)

~ ,..------ bwhere b = a(t=O) and an inner product defined by

« f (b), h (b) » = J db geq (b) f (b) h(b) (431
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for arbitrary flIDctions ha;) and f(b),

Using Eqs. (32) and (43) it is easy to see that

r-b ~« a(t), b» rA(f,t), A(f,O)] = ~(t) (44)

is the time correlation matrix (see Eq. (6)) in the coarse grained lan-
RU"ge. With the aid of Ea. (44), Eq. (42) may be also written as

-1 ~
, b» • <:= (O). b (45)

A slow linear process is now defined as one in which ooly the
. (s) ..•.. . {s) ..•..lInear part of Kk (a,t) is retaIned and Kk k (a,t) is substituted by
, 'l'b' o o' 1lts equl 1 Tlum average.

Formally.

and

J
~ (s) ~ ~= da Kk k (a,t) g (a)

o' 1 eq

(46)

(47)

The effect of applying the linear operator Pa en Ea. (38a) is
readilv ealculated. In fact. using Eqs., (39) and (43) find that

~~ ~« v(a), a»

and also from Eqs. (40)

~(2) ~« e (a,t),

[i(f,O), A(f,o)] = £(0) (48)

and (43) we find that

a» = -f & ~(2) (a,t) g (a) _ - 1'2) (t). (49)
eq

Hence, Eos. (48) and (49) show that

Pa ¡«s) (;;'t)= ~£(O) 05(t)- ~(2) (t)J'<;;-'(O)'a (SO)
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AI50 Fas. (:lSb) and (47) vield that

Ir) °(2) 21"()~ ' (t) = + L (t) = Ó lirn ,. o t6...•0 6 -
(SI)

whcrc q(t) is defined in fa. (lO). The last tenn in Fa. (51) ariscs froo
the faet that we are only interested in keeping those teT1flS in v(a) ",hich

are linear in the a's.
If a11 the ph.'lse space functions have the sarne narity t?'(t) =ª(t)

and ~(o) =0 so that fas. (46) and (47) are further redueed to the exnres"

sions,

and

_ 1,(2) (t)'c;-1 (O)'a (52)

~ILlla,t) 1, (2) (t) (5:11

sinee the last teno in (51) vanishes. Substitutinp Eas. (52) and (S3) into
Ea. (41) yields the kinetic eouation for a slow linear ~Tocess ~hen the
phase variables a11 have the same rarity, namely,

~ I~¡¡P (a,t b)eq
¡¡t

where

¡¡ ~ I~~~ P (a,t-t' b)a + Q(t'):
(la eq -

¡¡2p (a, t-t' Ibl )
ea ~

aiaa J'
(54)

/:!(t)

and

(55)

g(t) = ~ [~I(t) • <:(0) + <;(0) • ~(t)J (56)

Notiee that r~.(54) is a Fokker-Planck tvne of couation but with a me~-

ry. Thus it does no! correspond to a markoffian process. The re~ression
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law on the other hand for slow linear processes is obtained froro Fqs.
(33), (52) and (55), and is simply given by

&;lt) b = -f ~ M(S) ;;lt-s) bdt -
o

(57)

which is precisely oí the same formal structure as Fo. (1), the form pos-
tulated by 2wanzig. It remains now to show in detail how En. (57) leads
to the results predicted in section 1 and this is done in the following
section.

(58)
e;'t)

dt

It is nertinent to mentioo here t~1t the transport cauation for
the macroscopic variables a(t) (c.f. En. (.,6)) has the same structure of
Eq. (57). This is readilv seen if.e use En. (34), the facts that
IGlb,O)] = g (b) and that q (b) is properlv normalized. Then,- eq eq .

t-f ds ~ls) . a(t-s)

o

which allows us to identify ~(s)with the time dependent transoort matrix.

V. CO'l'A'lISON 0<' mE PESULTS

The essenti~l result of Zwanzig's anproach to the derivation of
the time correlation fOITmJlas for the transport coefficients is r~.(12)
which relates the Lanlace transforms for the transport matrix £(0) with
the cOTrclation roatrix q(p). Thus we want te cemoare

• r. • -) ]-1' -1~lp) = ~D~ - 2'11') . c:: la) .p 2'lp) • c:: la) (59)

with Eq. (55) which gives the corresponding relationship but in terms of
the dynamies of slow linear processes. The eomparison has to be made ex-
ereising a great deal of eare beeause Eq. (59) is so far free frem any
assumptions eoncernin~ the slowness of the process involved and only when
we extraet from it those terms which are at mest of order ó2, the two re-
sults will turn out to be identical.
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From Eqs, (10) and (26) it follows that

D
ij
(t) = [Ai (O), Aj (t) 1 = [eh geq(a) (Ai (O) Aj (t) ,a) (6'J)

which shows explicitIy that D .. is of order 6' since (A. (O) A. (t),a)_0(6')
1) 1 3)

Thus, Eq. (59) has terms which contribute to q(p) of order 6 and hip.her
which must be consistently neglected, To do this we exnand its r.h.s. in
powers of ª (p),

r(p) = ª(!"') • ~-l (O)~!+ ~ £(p) • c,;-l (O) + ••• \
J

where

= 6' 1 6' (0-1)
n=l

y(20) (6 p)- '. (61)

2(20) (6,,,) = ~ 1.0(0) • C-1 (Ol]O
p L7- (62)

Equation (61) is just a formal wav of exnressinp. the nronertv
of ª(p) indicated in Eq. (A-20). If we now compare Eos. (13) and (61) we
see that 1;" 6' and that

= í
n=l

62 (0-1) y(20) (6 )- ,p (63)

Hence to lowest order in 6, ~(6',p) = ~(') (6,p). Using this resuIt to-
gether with Eqs. (61) and (62) we find that for sIow nrocesses,

,
= tHp) (64)

where use has been also made of the Laplace transform of Ea. (SS). Eaua-
tion (64) shows explicitly that for slo~ linear nrocesses the transpcrt
matrix ~(t)is identical to the phenomenological matrix ~(t)if only the
tenns oí arder up to 62 are kept in the latter one. ¡f we now use too ma-
croscapic definitian for 11= 62 ~(O,O), Eas. (10). (21) and (64), we fi-- -nally arrive at the result that
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(65)

where !:! is now the time independent transport matrix. It is important to
stress rere that the evaluation of 11 is explici Uy dependent on the mi-
croscopic dynamics of a slow linear process as it is shown bv Eqs. (53)
and (SS).

It is also pertinent to ooint out here that in the markoffian
approximation defined by

!:!(t) = 2!:f6(t) (66)

Eq. (57) reduces to the ordinarv linear rep.ression law anrl Ea. (54) is
just the Fokker-Planck equation fOT a stationary, linear, markoffian ~roc-
ess(Z), namely,

where

ap (a,tib)ea _ ~at a ~ I~~..,.. P (a,t b)a + Q :
da eq ~ (67)

Q = ~ [!:!. £(0) + £(0) •~J
APPENDIX

(68)

Here we consider in detail the steps leadin~ to the main re-
sults of section IV using the r,KMof 20 which is given in Ea. (31). The
coefficients \, ... k (a,t) have been obtained elsewhere(7,14) and for
convenience we only ~ist here the results.
Thus.

~ ~ ~l), (a,t) = 2vk (a) 6(t) + S, (a,t) (A-1)
o o o
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where

and

..•. -1 -+ \ a -+

COo"'"n(a,t) =gea_(a) L-o (a)l daR. -eq
LL L •• (~,t)
KO" .Kn,<-

(A-3)

~
LL L •• (a,t)

r<:o'" "n/''--
(A-4 )

Here,

S('o""n,t) = Ftl ••.F:~(t-tl) (l-P
G
) ÁL (O) ••• U(t -t _1 )(l-PG)r'1 ~ n n

(A-S)

(A-6)

PG bein~ the generalized projection operator defined as

PG = J clli ( : b) G(b,O) (A-?)

and v. (~) bein~ defined in Eq. (39) in the texto
o To study the slow process approxiMation we start by inQuiring

on the dependence in the slowness parameter 6 of the quantities defined
in Eqs. (A-3) and (A-4). Clearlv, if I(r) is a phase space function that
changes as ór, then

Chaose £irst the quanti ty S ('0" .'n;t). Since Á. (O) - ó
and (A-6) Ro(t) is at least o( Oló). Inspection of Fq.
that

(A-8)

then by Fos. (A-S)

(A-S) then shows
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When this result and the behavior of R¿ (O) are used in Ea. (A-4) we find
that

(A-la)

so that Eqs. (A-lO) and (A-3) also show that

(A-" )

From Eqs. (A-2) , (A-lO) and (A-ll) we see that of the two terms that ap-
pear in Rko •..kn(~,t) the lowest in ó is Lo so that

o'" kn_1 ;kn

(A-12)

In the slow process approximation we want to retain only those
contributions up to arder 02 so that, as Eq. (A-12) indicates, we need
only to keep the first two funetions Rk (a,t) and Rk k Ca,t). Powever

Q 2 o 1both tenns are not per se of arder ó aná ó respectively but eontain con-
tributions of arder higher in Ó. We now show how to extraet from them the
terms linear and quadratic in 6.

For n=l, Eq. (A-ll) shows that the only relevant eontribution
to Ro k Ca,t) comes from Lo k Ca,t) whieh in view of Eqs. (A-4) and (A-S)

o 1 . 0"1is just given by,

(A-13)

On the other hand frem Eq. (A-6) ,
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and usin~ Eq. (A-8) it reduces to

R
k

(t) = (l-P
G

) Ak (t) + 0(62) (A-14)
o o

Notice that in Fu. (A-Id) onlv the first term is of order 6 and not lin-
ear in 6. Use of Eqs. (A-14) and (A-S) back in Fq. (A-13) leads to:

Explicit evaluation of the Quantities in souare brackets. hv
applying PG p,iven in Eq. (A-7) reduces Fu. (A-ISl to the formo

(A-ló)

where use has been made of Fu. (39) and two obvious identities,
(Ak(t) G(b,Ol;a)= (Ak(t); a) 6(~-b) and (G(b,O) <;(b',O):a)= 6(¡;"b')
6(¡;"~).

Now, we have to extract from Fu. (A-ló) those terms which are
at mast, ouadratic in 6. First consider the second termo Since vk (a)~6

,+ 1we must find the linear term in 6 froo (Ak (t):a). From Eq. (26) it fol-
olows that

• () -1 (a+) [ iLt' () (+ 0)1 -1(+) [. (O) (+ ](A
ko

t ;a) = geq e A
ko

O , G a, = qeq a A
ko

' G a,-t)

(A-17)

Usin~ the identitv
-t

óA(f,-t) = A(f,-t) - A(f,O) = IA(f,s)ds

o

we maywrite that

G(~,-t) = 6 [A(f,-t)-~] = 6 [A(f,O)-a+óA(f,-t)]
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which upon expansion around t=O yields that

lt~ ~ a •G(a,-t) = G(a,O) + L - ds A
t

r ,-s)
t aat

G(a,O) + 0( •••2) . (A-lB)

Introducing Eq. (A-lB) into Eq. (1'.-17)we arrive at the fOIIowing expres-
sicn,

f
t

a ~ o

-;:-. 9 (a) (A~ (O)
OQ.( eq o

e
(1'.-19)

50 th3t v~ (a) is the linear contribution of this tenm.
~~e first te~ in Eq. (A-16) is easy to deal with, since we may

al,,"a~.s hTite tJlat

(Ak (t) AL (O) ,a )
"o r~l

_2 (O).... 3 (1) ..•.
: OL L (a,t) + 6 aL L (a,t) + o ••"0"' "0"1 (1'.-20)

(n) ..•.where 0ka,k¡ (a,t) does not denend on o. Hence the relevant contribution
is simnly ~iven by

..•.. l. .
aL L (a,t) = 11m -;2 ( AL (t) A~l (O),a) (1'.-21)Ko,~l 6~ 6 KO

When Eas. (1'.-19)and (1'.-21)are suhstituted back into Eq. (1'.-16)
keeping only the relevant terms, we find that

..•. (2)" 3 (A 22)L~ ~ (a,t) = L~ ~ (a,t) + 0(6 ) -
o 1 o 1

and L~2~ (~,t) is defined by F~. (3Bb) in the texto
o 1 ~

FinaIIy, to find the part of K~ (a,t) which contributes to the
. o ~slow precess we notlce from Ea. (1'.-1)that, on one hand v~ (a)-6 and on

othe other hand F~s. (1'.-3)and (1'.-22)show that

(1'.-23)
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whence,

K~S) (a,t) = 2vk (a) ó(t) + c~21 (a,t)
e e

which is Eq. (38a) in the texto

U-24)

Note: Equation (41) in the text is not identiea1 te 2wanzig's eouation
for slow processes (see Eq. (33) ~ef. S). The differenee arises because
he takes Eq. (A-16) for L~2~1 (a,t) and as we have shown here, that ex-
pression still ineludes te~s of arder hi~herthan 62•
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