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ABSTRACT

In this paper we derive an exact kinetic equation for the con-
ditional probability that certain dynamic events occur at a given time in
a many body system. This equation is applied to the very specific case of
the "slow" decay of spontaneous fluctuations around an equilibrium state.
The results are contained in three non-Markoffian equations, one which is
of the Fokker-Planck type for the conditional probability itself, one for
the coarse grained (mesoscopic) variables that turns out to be of the same
structure as the phenomenological generalized regression of fluctuations
law and a third one for the transport equations. These results may be re-
garded as the microscopic basis behind the equations given by Zwanzig
some years ago in his generalized treatment of the Green-Kubo formula. We
also show explicitly how the transport (Green-Kubo) matrix is related to
the microscopic phenomena and discuss the comparison with Zwanzig's re-
sults. As a final point we indicate how the linear equations of non-equi-

librium thermodynamics are recovered when the process is assumed to be a
Markoffian one.
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RESUMEN

se deduce una ecuacién cindtica exacta para la probabilidad con-
dicional de que ciertos eventos dinimicos ocurran en un sistema de muchos
cuerpos a un tiempo dado. Esta ecuacién se utiliza en el caso especifico
del "decaimiento lento" de fluctuaciones espontdneas que ocurren alrededor
de un estado de equilibrio. Los resultados se expresan éen tres ecuaciones
no-markoffianas, una del tipo Fokker-Planck para la probabilidad condicio-
nal, otra para las variables de grano grueso o mesoscépicas que tiene la
forma de una ecuacién de regresidn fenomenoldgica generalizada y una ter-
cera para los coeficientes de transporte. Estos resultados pueden consi-
derarse como las bases microscépicas de las ecuaciones propuestas hace va-
rios afios por Zwanzig en su tratamiento generalizado de las relaciones de
Green y Kubo. También mostramos explicitamente coémo la matriz de trans-
porte (Green y Kubo) estd relacionada con fendmenos microscdpicos y com=
paramos los resultados con leos obtenidos por Zwanzig. Finalmente indica-
mos cémo se recuperan las ecuaciones lineales de la termodindmica irre-
versible cuando los procesos son markoffianos.

T. INTRODUCTION
lhe purpose of this work is to give a microsconic basis to the

(1

tutes an extension of the regression of fluctuations assumntion of linear

results obtained in a beautiful paper bv R. lwanzig and which consti-

non-equilibrium thermodynamics(z) and the well known Green-Kubo time cor-

(3,4) to a non-markoffian

relation formulas for the transport coefficients
process. Further, it was shown in that paper that these results reduce to
the ordinary ones for a markoffian process only when the process is ''very
slow". The full meaning of a slow process is clearly stated in Zwanzig's
paper and other sources in the literature(4) and we shall come back to it
at a later stage of our work.

An exact non-markoffian kinetic ecuation for the probability
distribution of the numerical values of the set of phase space functions
chosen to describe the state of the svstem, has also been derived(s).
Furthermore when the phase snace functions are assumed to change slowly
in time the exact kinetic eauation can be approximated bv a still non-
markoffian equation. Using the concept of a ''slowness parameter &' Mori
g;_gl.(6’7] obtained Zwanzig's kinetic eauation(7) and found a more svs-
tematic way of expanding the relevant quantities in mower of &. This ex-
pansion has been closely examined recently(S} and compared with other an-

proaches to the prohlem of deriving exact kinetic eauations. However, the
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precise way in which the non-markoffian regression equation arises from
the exact kinetic equation and the subseguent analysis leading, via the
kinetic equation, to the slow process approximation has, to our knowledge,
never been discussed. This is the main task of this paper.

The general idea that we want to follow is to find the kinetic
equation for Peq (g,tIB), the conditional probability that the phase
space functions A(T,t) have values between a and 3 + da at time t given
the initial time values K(F,O) = B. This equation allows one to obtain an
exact form for a law of regression of fluctuations which under well speci-
fied conditions it reduces to the linear non-markoffian expression used
by Zwanzig. Also, the limiting form for the kinetic equation under the
slow process approximation is easily obtained.

For the sake of completeness we shall devote section II of this
paper to summarize Zwanzig's analysis. Section IIT contains the time evo-
lution description for the coarse grained (or mesoscopic) variables of a
system from a constrained eauilibrium state onto a less constrained equi-
librium state. This analysis is extended to the study of the fluctuations
in the system around its equilibrium states, and will lead to the afore-
mentioned kinetic equation for Peq (E,tlg) and to the regression of fluc-
tuations equation. Their particular forms in non-markoffian regimes for
linear and slow processes are derived. These results have the same struc-
ture as those obtained by Zwanzig. The last section is devoted to a de-
tailed comparison between our results and the ones obtained by Zwanzig.
We also point out here what is the structure of mesoscopic dynamics for a
very slow process.

IT. RESUME OF ZWANZIG'S ANALYSIS

The essence of Zwanzig's work is to remove the assumption that
a process is markoffian in the derivation of the time correlation formulae,
the Green-Kubo expressions, for the transport coefficients. This is done
through the following steps:
a) A strictly phenomenological linear non-markoffian regression law is
proposed_EELq$scribe the time evolution of well defined mesoscopic quan-
tities, 3(t) . This equation reads,
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b t b
= -| at g(t').E(t-t-) )

&6

where V(t) is the time denendent matrix for the transport coefficients

and

:—b e >
alt) = ‘ da a Peq (a,t[gl (2)

where P__ (3,t|B) is the ouantity defined in the previous section. The

b . . 9
variables &(t) were first introduced by Onsager( )
average equilibrium fluctuations in an aged system.

to characterize the

The correlation matrix C is now defined as,

_b+
ce) = Jd‘ggeq Balt) b (3

where - (b) is the equilibrium distribution of the coarse grained va-
riables {b}. Multiplication of Ea. (1) by : (B)b and integration over
db leads at once to the time evolution equation for C(t), namely,

t

dc(t)
St = -| ds Y(s)-C(t-s) (4)
o

from which f(t) is readily obtained,

t .
aZc() =
- = -Y(£)+C(0)+ [dt, |at, Y(t)) ¥ (ty)+C(t~t)-ty) (5)
(o] (o]

b) The microscopic equation for the matrix C is found in terms of the
time derivatives of the phase space functions {A(T)}and from it a cor-
responding equation for C(t) is obtained. This is accomplished starting
(10)

with the definition of a time correlation function, namely

c) = Jdr Peq(™ A(r,0 A(r,0) = [A(T,b), K(r.m) (6)

where the scalar product (A,B) is defined in the usual way,
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(A,B) = de‘ - (T) A(T) B(T) (N

Then,

since because of Eq. (7), Eq. (6) is invariant under time inversions. If
we denote by I the time inversion operator If(T,t) = £(I'',-t) where

I's= (3,5} and TY = (3,-3), then FK(P,t) = Q-K(F',+t) where Eij = Siaij
and g, =21 the plus sign corresponding to even functions and the minus
sign to odd functions of time. Since C(t) is invariant under time inver-

sions,

Clt) = {ni’cr,m. ni(r,-t)] = g+ [i(r,m, K(r,t)]-g (9)
and hence

C(t) = —¢ [ﬂ’(r,o), ﬁ(r,t)]-g = —ge0(t)eg (10)

where ¢ is referred to as the time correlation matrix. If one further as-

sumes that all the components of the vector K(P,t) are of the same parity
under time inversions

Cit) = -o(t) (11

and C(t=0) = 0 according to Ea. (9)

c) The matrix for the transmort coefficients is obtained by simply set-
ting the two expressions for §(t) in (a) and (b) equal to each other.
This relates ¥(t) to g(t). If one takes the Laplace transforms of Eas.
(5) and (11) one gets immediately that

. ; v2 (p)
o(p) = |V(p) - —=——| « C(0) ’ (12)
8(p l:. e g(p)] ¢

where #(p) = [dte-ptf(t) and 1 the unit matrix.
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d) The next step consists in studying the conditions under which the
Green-Kubo formulae are valid by assuming that Y(t)is governed by a "slow-
ness parameter'. Then the idea of a very slow process may be set forth in
a precise language. This leads also to the behaviour of C(t) for slow
processes when the microscopic behaviour of g(t) is extracted from its
macroscopic counterpart.

To do this one introduces the ''slowness parameter ¢'' in such
a way that

<>

(P = zulz,p) (13)

and u(z,p) is acontinuous function at u(0,0). Further, the Laplace trans-
form of Eg. (4) gives that

Co) = [pLl+ym]tco) . (14)

Substitution of Egq. (13) into Eq. (14) and inversion of the
Laplace transform leads at once to
1

== XT -1.
ct) = T dxe™ [x1 + u(z,zx)] +C(0) ¢ (15)

where x = ¢ 'pand T =zt .
A very slow process is now defined as one in which the limit of
¢t + 0 keeping 1 constant. Then,

lim C(t) = e 2(0O0T.cqo) . (16)
0
T=const.

If the behaviour of C(t) for long times, C (t), is now
2 ~macro

identified with the limit expressed by Eq. (16), then it implies that

(t)

= —u,02C_  ®) -, (17)

C
~“macro
dt

which is nothing else than the equation for the time correlation matrix
which one obtains when Onsager's linear regression-assumption is used.
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Thus CE(0,0) is the time independent transport correlation matrix.

e) The last step is to calculate the time independent correlation matrix
E(0,0) in terms of the microscopic quantities and thus obtain the Green-
Kubo formulae. To do this one uses the '"slowness' assumption as given by
Eq. (13) in Eq. (12) relating the micro and macroscopic matrices. Thus,
-1 22 (z,0)

= uEp - ——— (18)

-1a
z “a(p)+C(0)
P p1+ zu(z,m)

Now take first the limit as £ - 0 and next the limit when p + 0. Then,
u(0,0) = lim lim ™! S(o)-C~l(0) . 19
- p*0 £~+0 - = L

Using now the fact that(z)

- W T

geq(a) = C exo [ 5 g:aa ' (20)

where g, ., = [——EEEL—J S being the eauilibrium entropy and k_ Boltzmann's
ij da; da, . : ' : B

constant, we get that C™'(0) = fzslg . Finally,

(0,0) = 1 1im lim "t A(I‘ 0, A, t)]dt- , N

sz 0 .30
o

which is the Green-Kubo exnression for the transrmort coefficients.

III. MESOSCOPIC DYNAMICS

Using the projector operator method introduced by W!mu(11
shall derive an exact kinetic eguation for the conditional nTSEEPllltY
P(;,t]ﬁ) as well as the equation of motion for the variables a(t). In

the latter case only a brief outline of the calculation is given since
the full details have been published elsewhere(12). Let {Aj(F,t)} = K(r,t)
denote the vector formed by all the nhase space functions associated to
the macroscopic observables of the system al). Clearlv,



64
alt) = Jdr-p(r,m A(r,t) (22)

Assuming that the initial state of the system is a constrained equilib-
rium state described by K(T,O), we have that

p(r,0) = W(I) v{A’(r,m] (23)

where W(I') is a real function of the system's invariants and v{K(F,O)] an
arbitrary function of A(r,0).

Each time we observe the state of the system, the vector A
takes a numerical value a, which is taken to be a stochastic process.
Thus one is interested in the probability distribution q(a,t)dg repre-
senting the probability that at time t the numerical value of R lies in
the range a,a+da. Also(s)

5
R — ) JdI‘ p(r,0) G@,,t)...6E ,t) ., (24)
where G(@,t) = I's [Ai(l",t)-ai] = 5{K(r,t)—§] is the well known characteris-
b 1 2
tic function for the hvpercell in phase space at time t.
The quantity that is of our interest here is the conditional
probability P(a,t|B) which is in peneral defined as(10)

PEtlB) = q] 3,0 g,@t;5,0) (25)

and may also be written in a more compact way using Ea. (7) but with W(T)
as a weight function instead of p_ (). Then, calline [G®,0)] =

= [1,G(B,O)] = Jdr w(r) 6(B,0) and using the expression for the average
of any phase space function £(I') over the hypercell,

( £; by = [66B,0]7" [f(r), GU’S,U)} (26)
we get that

P(3,t|B) = ( G(A,t); B) (27)
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Furthermore, the exact equation of motion for the characteris-

tic function G(a,t) has been shown to be given by(B)
LB - 2@0 cE b +rEb (28)

where Z(E,t), Zwanzig's operator (Z0), is a kinetic operator whose ex-
plicit form is at present irrelevant (see Eq. (36) in Ref. 8) and F(a,t)
is a function satisfying the property that

>
( Flat): by = 0 (29)

From Eqs. (27) and (28) it follows at once, using Eq. (29),
that

> >,
@b . 23,0 2@ eld) (30

dt

Equation (30) is similar in structure to the kinetic equation derived by
IZwanzig who obtains the time evolution eguation for gl(a t) when Ea. (28)

(5)

is averaged with o(T,0) . For future purposes, we shall choose, among

the various possible exnre551ons for ZO(SJ, its Generalized Kramers Moyal

(GKM) form which is given by 8,14)

z(3,t) £@,t) =¥ [-_B_]PL] dsK @,s) £(a,t-s)
n=y=0 kz fzz aay, ho"'hs
n

(31)

where the functions Kk kg (a S) are summarized in the appendix. Equa-
tions (30) and (31) constitute our sought kinetic equation for the proba-
bility function P(a,t|b).

In order to obtain the microscopic form for Fa. (1), we start
from the definition of a coarse grained variable as the first moment of

the function P(a,t|B), namely(10),

e +
alt) = |daaa p@a,tlb) = ¢ A(r,b); b) (32)
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where the last equality follows from Fa. (27) and the obvious identity
K(I‘,t) = [dgg G(E,t). Tt also shows that the coarse eorained variables
are given as averages taken over the hvpercell in phase snace of the
phase space functions A(r,t). From Eqs. (30), (31) and (32) it follows
at once that

gl t i
% = [ ds [ da K(3,s) P(3,t-s|B) , (33)
o

- -+
where K(3,s) is the vector whose components are the functions K, (a,s)

‘o
appearing in Eq. (31). Equation (33) is our desired goal, it gives the
microscopic form of the time evolution of the coarse grained variables
:p—b
a(t) .

Finally, if we substitute Eg. (23) into Fq. (22), we make use
of Ea. (32) and recognize that v[A(1,0)] = (@ v(®) 53,0 , ve find that

e > - s b
alt) = Jde(b) G®,0]a) (34)

is a useful relationship betwgen the macroscopic variables a(t) and the
coarse grained variables a(t). Indeed the time evolution ecuation for
the former ones is now easily derived using Fq. (33) obtaining that

t

dtt) < [ds (da K(3,9) Jd'ﬁ vd) GB,0] PEt-sB) . (G5

dt

Recalling that from Fq. (24) g, (5,00 = v®) [G(B,0)] and car-
rying over the last integral, Eq. (35) reduces to

da(t)

t
26 = ’ ds [ da K(a,s) g, (a,t-s) 4 (36)

o

This result is the non linear transport eauation describing the
time evolution of the macroscopic set a(t). As we shall show later on, it
will reduce under suitable approximations to the ordinary linear eauation
of irreversible thermodynamics for a non-markoffian process.
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TV. FLUCTUATIONS AROUND AN EQUILTIBRTIUM STATE

The results derived in the previous section are used here to
study the decay of spontaneous fluctuations around an equilibrium state.
For such a state, p(T,0) is now chosen to be the eguilibrium distribution
function corresponding to the choice W(T) = peq(r) and \}Ei(F,O)] =1 . Ih
this case the stochastic process describing the behaviour of the a's is a

stationary one, namely,
EC{" 2 - = eq-) % -
9, (al,tl,...an,tn) =g, (a,t; + 7 ...an,tn + T) (37)

as it follows at once from Eq. (24). This means that g?q(s) is a time in-

dependent function which describes the distribution function of the fluc-

tuations around equ111br1um. Also ES(b 0] = Year (B) and g§°(§ t : b, t,) =
=iy (a t, tz,b 0) so that P (a t]b) given bv Eq. (27) 1nv01ves now an

average over the hypercell but hlth Deq(T) as the weight function and its

time evolution equation is given by Ea. (?0). Fauation (32) for the coarse

grained variables involves now Peq(;'tlg) and is identical to Ea. (2),

the variables defined by Onsager. Equation (33) becomes then the genera-

lized regression of fluctuations equation which is exact in the sense

that the full microscopic dynamics is contained in the vector i(g,s).

We shall now analyze the dynamics of fluctuations for the case
in which the time rate of change of the dynamical variables A(r,0 is
controlled by a slowness parameter &, namely, A(T',0)~8, 6<1. Also we
shall only consider all terms which are at most of order 6% both in the
kinetic equation and in the regression of fluctuations exvressions. In
the Appendix we show in full detail that the functions that appear in the
GKM form for Z(3,t) satisfy the property that Kh ky @,t)~8"". Thus
only K‘2 (a,t) and K, by @,t) give relevant contrlbutlons to the process
when it"is slow. Furgher it is explicitly shown that

k{51 @,6) = 2v, Qs +cP@En (38a)
Ke,, by, Ry
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(s) (2) 2., f1 = . }} + -
K =L = 6214n T,t r,00;a)p-v, (A)v, (@)
k. b @,t) b, k (a,t) éfgig(%o( )Ab-l( a vk0 b,
(38b)

where

vp @) = (A, 1,07 & (39)
and

- 2
G Grt) = gz @ 5 2g @ 1y, Go (40)

Use of Egs. (31), (38a) and (38b) in Eq. (30) leads to the ki-
netic equation in the slow process approximation, namely,

3Peq(d,t|B) _ ) [_ 3 ]

t
[ds ¥ @,s) P o @rt-s[B) +

at b, 5,
2 o
t
] ]
+kE kI [aa ] [T] [ds K(S)h @,s) L (a t-s|b) 4n
o *1 Ry k, A

The reg*ression law, Ea. (33) with Kl (a s) whose onlv compo-
nents are Ké:) (a,t) defined in Fa. (38a), is clearly seen to be a non
linear eguation in the a's since both the drift term v(a) defined in
Eq. (39) and the term &°) (3,t) defined in Fa. (40) contain contributions
to all orders in a.

We now introduce another anproximation, namely, that a slow
process is also a linear one. To accomplish this we define a mesosconic
linear projector P (, 13)

+ > o]

Po= by - BByB (42)

F——Db
where b = a(t=0) and an inner product defined by

(C£(B), h(B) »» = | db g, (B £6) hd) (43)
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for arbitrary functions h(®) and £(b).
Using Eqs. (32) and (43) it is easy to see that

b
£ g-(?)l' B}) - [K(rnt)a K(Plo)] = g(t) (44)

is the time correlation matrix (see Eg. (6)) in the coarse grained lan-
guage. With the aid of Eaq. (44), Eq. (42) may be also written as

P, =« , by +CT(0B | (45)

A slow linear process is now defined as one in which only the

linear part of K,* (3,t) is retained and K,>), (&,t) is substituted by
(o L |

Gt " o}
its equilibrium average.

Formally,
(L) 2 - (s) 2
Ke, (a,t) = P Ky (@8) (46)
and
(L) A o ) I 2 (47
K ke, () Jda Ke- b, @rt) 9, @) )

The effect of applying the linear operator P_on Ea. (38a) is
readily calculated. In fact, using Eqs. (39) and (43) find that

(( V@), ay = [ﬁ(r,m, K(r,m] = ¢(0) (48)
and also from Eqs. (40) and (43) we find that

« 3, 3y = -{di L2 3,0 geq(;) = - 1% ). @9)
Hence, Eas. (48) and (49) show that

p, K @0 = 26O s - L2 ®]-c 03 (50)
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Also Fas. (38b) and (47) vield that

B v(a)] {Pa v(a)], (51)

KM (t) =+ i(zi(t) » 52%&2 ff 5(t) —ldz geq(E)
where o(t) 1is defined in Fa. (10). The last term in Ea. (51) arises from
the fact that we are only interested in keeping those terms in ¥(3) which
are linear in the a's.

If all the phase space functions have the same narity o(t) =4 (t)
and ¢(0)==0 so that Fas. (46) and (47) are further reduced to the exmres-

sions,

M@0 = -t w-clo-a (52)
and
kP Eo = 1P@m = 2umton (53)
N g»0 67 7

since the last term in (51) vanishes. Substituting Eas. (52) and (53) into
Ea. (41) vields the kinetic eauation for a slow linear process when the
phase variables all have the same parity, namely,

+ = + >
3p__(a,t[B) BZPec(a,t—t' D) l

t
= |dt"' <(~ ). _?__ = -t ! A U
[ lbg(t ) -3 P @rt-t [b)a + Q(t"):

at jasa |’
(o]
(54)
where
< (t) r
M(t)=J62 lim = o () 5
g & e (0) (55)
and
Q) = 2 [M(®) +C(0) + C(0) +H(®] . (56)

Notice that Eq. (54) is a Fokker-Planck twvre of eaquation but with a memo-
ry. Thus it does not correspond to a markoffian process. The regression
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law on the other hand for slow linear processes is obtained from Fas.
(33), (52) and (55), and is simply given by

b t

da(t)
dt

b
= -| ds M(s) alt-s) , (57)

o

which is precisely of the same formal structure as Fa. (1), the form vos-
tulated by Zwanzig. It remains now to show in detail how Ea. (57) leads
to the results predicted in section I and this is done in the following
section.

It is pertinent to mention here that the transport eauation for
the macroscopic variables a(t) (c.f. Ea. (36)) has the same structure of
Eq. (57). This is readilv seen if we use Ea. (34), the facts that
ES(B,O)] = geq(g) and that qeq(g) is properlv normalized. Then,

- t

= =| ds M ¢+t-
it M(s) - aft-s) (58)

o

which allows us to identify M(s) with the time dependent transport matrix.
V. COMPARISON OF THE RESULTS

The essential result of Zwanzig's anproach to the derivation of
the time correlation formulas for the transport coefficients is Fq. (12)
which relates the Lanlace transforms for the transport matrix ?(o) with
the correlation matrix a(p). Thus we want to compare

V) = [o1 - &) @] p G(m -1 (0) (59)

with Eq. (55) which gives the corresponding relationship but in terms of
the dynamics of slow linear processes. The comparison has to be made ex-
ercising a great deal of care because Eq. (59) is so far free from any
assumptions concerning the slowness of the process involved and only when
we extract from it those terms which are at most of order 62, the two re-
sults will turn out to be identical.
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From Eqs. (10) and (26) it follows that
_ . . - > - . . . , 60
olj(t) [Ai(o), Aj (t)} [da geq(a) (Ai(O) Aj(t),an (67)

which shows explicitly that o, i3 is of order 47 since (A (0) A (t);a)-0(5%)
Thus, Eq. (59) has terms which contribute to c(n) of order g and higher
which must be consistently neglected. To do this we expand its r.h.s. in
powers of _a_(p) §

Y = G - (0 {n ” --U(p) 1) + }
= 52 ;Z g2(n=1) Q(Zn) (5,p) 1)
n=1
where
A( ) n
2(2n’ (8,p) = ElFT l:ggpr.g‘l(o)i} (62)

Equation (61) is just a formal way of exrressing the property
of d(p) indicated in Eq. (A-20). If we now compare Eas. (13) and (61) we
seethati;E(Sza.ndthat

B(ézfp} - E 62(!‘1-1) ?(Zn) (6,[3) (63)
n=1

Hence to lowest order in 6, B(Gz,p) - ?(2) (8,p) . Using this result to-
gether with Eqs. (61) and (62) we find that for slow processes,

Y(p) = 6° um:‘li’- +¢7H(0) = M(p) (64)
§+0

where use has been also made of the Laplace transform of Ea. (55). Eaua-
tion (64) shows explicitly that for slow linear processes the transport
matrix M(t) is identical to the phenomenological matrix Y(t) if only the
terms of order up to &% are kept in the latter one. If we now use the ma-
croscopic definition for M = 6% u(0,0), Eas. (10), (21) and (64), we fi-
nally arrive at the result that
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-]
-pt M(t
M o= azlm[ept'%,?- a (65)
(o]

where M is now the time independent transport matrix. It is important to
stress here that the evaluation of M is explicitly dependent on the mi-
croscopic dynamics of a slow linear process as it is shown bv Egs. (53)
and (55).

It is also pertinent to point out here that in the markoffian
approximation defined by

M(t) = 2M 8(8) (66)

Eq. (57) reduces to the ordinary linear regression law and Ea. (54) is
just the Fokker-Planck equation for a stationary, linear, markoffian proc-
ess(z), namely,

®P  (@tlh) - a%p__(a,t|B)
—asz--|_=uzi_’,,-1: (atlb)é Q:—eﬂ;——i—'—- . (67)
ot ~ Ja = fsasa
where
0 = 1 [arco +co n} : (68)

APPENDIX

Here we consider in detail the steps leading to the main re-
sults of section IV using the GKM of ZO which is given in Ea. (31). The

coefficients K (a t) have been obtained elsewhere (7,14) and for
convenience we onlv T1st here the results.
Thus,
@,t) =2v, (@) &(t) +C, (a,¢) (A-1)
Ty, e ko S ¢

@t = L L @ + @t , (A-2
Ry« -k, Mol the ARy )
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where
c, @0 =gl@ 0 @@L 60 (4-3)
vy 1 p o, ©d o Rps
and
Lko.‘_kn;z(g,t) = ( S(ky...k;t) Ry(0);a) - (A-4)
Here,

i t
n=-1
S(h,. . -kt = ]dtl...[:ltn Ut-t;) (1-Pg) Ilkl(o)..’.U(tn-tnq) (1-P)

o

. ixknw) Ry (&) (A-5)
with u(t) = e""P¢'** and
R, (£) = U(t) (1-P,) A, (0) (A-6)
P being the generalized projection operator defined as

P,=|d ¢ :b) G(b,0) (A-7)

and v, @) being defined in Eq. (39) in the text.

To study the slow process approximation we start by inquiring
on the dependence in the slowness parameter & of the quantities defined
in Eqs. (A-3) and (A-4). Clearly, if I(T) is a phase space function that
changes as &%, then

Co wm™zim ~o@™ - (A-8)
Choose first the quantity S(k,...k ;t). Since Ak(m ~§ then by Fas. (A-8)

and (A-6) R, (t) is at least of 0(§). Inspection of Fq. (A-5) then shows
that
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Slbys skt O™ (A-9)

s Bl
When this result and the behavior of R, (0) are used in Eq. (A-4) we find
that

24 1 n+2 =
Lko...kn;ll('a't) o6 ) (A-10)

so that Egs. (A-10) and (A-3) also show that

c @,t) ~o(s™?) . (A-11)
By ..k

From Egqs. (A-2), (A-10) and (A-11) we see that of the two terms that ap-

5
pear in K (a,t) the lowest in § is L so that
ko ..k " koo by _qiky

n+1

In the slow process approximation we want to retain only those
contributions up to order §% so that, as Eaq. (A-12) indicates, we need
only to keep the first two functions K, (3,t) and Kk Ry (3,t). However
both terms are not per se of order & ang §2 respectwely but contain con-
tributions of order higher in §. We now show how to extract from them the
terms linear and quadratic in 6.

For n=1, Eq. (A-11) shows that the only relevant contribution

to K!a ky (3,t) comes from sz ky (,t) which in view of Egs. (A-4) and (A-5)
is Just given by,

->
L k) = t) R, (0); ¥ A-13
ko!kl(a ) (Rkot ) kl( ):a) ( )

On the other hand from Eq. (A-6),

(1-Pg) iLt

Rko(t) =e (1-p.) Ako(O) = [+ (1-P) 1Lt

2
t ; .
+5 P il (1-P)iL + -] (a-p) AkO(O)
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and using Eq. (A-8) it reduces to

_— A 2 -14
Rkott) = (1-P.) Aho(t} + 0(8°) . (A-14)

Notice that in Ea. (A-14) only the first temm is of order 8 and not lin-
ear in 8. Use of Eqs. (A-14) and (A-8) back in Eq. (A-13) leads to:

-+ _ i . o . . 3 ¥
Lkohl(a,t) =«[@ PG)AkO(t)] [a PG)AkI(O):[,a y+ 0(8%) . (A-15)

Explicit evaluation of the quantities in souare brackets, hv
applying P_ given in Eq. (A-7) reduces Ea. (A-15) to the form:

Lkokl(g,t) =< Ako(t) 5‘121‘0““' (iko(t):a> v, (@) + ogh) , (a-16)
where use has been made of Ea. (39) and two obvious identities,

(A, () G(B,0)7a )= (A, (t); a)6(a-b) and (G(6,0) G(B',0)7a)= 8(B-B")
§(B-a) .

Now, we have to extract from Ea. (A-16) those terms which are
at most, ouadratic in §. First consider the second term. Since Vi, @-~s
we must find the linear term in & from (Ah (t); a) From Eq. (26) it fol-
lows that

x s . - iLts >l -1 . >
Ay M2y = g @ |, ), G(a.O)]—qeq(a) [A"-O(O)' c@, t)]

(A-17)

Using the identity
-t

AA(T,-t) = A(T,-t) - A(T,0) = {A(r.s)ds

o

we may write that

G@,-t) = § [A(r,-t)-a] = § [A(r,00-a+MA(,-t)]



i

which upon expansion around t=0 yields that

t

G(3,~t) =G(3,0) + ] 5—:— Lds B, T,-5) G(a,0) + O(A) . (A-18)
£ L

Introducing Eq. (A-18) into Eq. (A-17) we arrive at the following expres-

sion,

t
By (©7a) = v, @ + g;:!(;)g‘ 527%:,‘5’[ By (O Ry(-s):a)ds + O

(Q
(A-19)

- . - - . -
so that v, (a) is the linear contribution of this term.
?he first term in Eq. (A-16) is easv to deal with, since we may
always write that

. . . _ ‘_2”(0) - 30313 g
(Ako(t) Akl(o),a y = ¢ Jkokl(a,t) + & Uk by (a ; o [T RN (A-20)

where cé:]kl(g,t) does not devend on 6. Hence the relevant contribution
'
is simnly given by

O, by @t = J;fg 5—2 ( Ah (t) A, (0);a) . (A-21)
When Eas. (A-19) and (A-21) are substituted back into Eq. (A-16)
keeping only the relevant terms, we find that

> (2) = 3
L L) =L ) + 06 A-22
kokJ(a ) kokx(a ) (8%) ( )

and Lézé (3,t) is defined by Eq. (38b) in the text.

Finally, to find the part of K, (a,t) which contributes to the
slow process we notice from Eg. (A-1) tha% on one hand Vk (a) § and on
the other hand Eqs. (A-3) and (A-22) show that

* _ ~(2) 3 _ ol ov D (2) .
Cp (@rt) =Cp " (E,t) +0(8%) =g (a) % 7a, % a, (a) Lko'zta o) (A-23)



78

whence,

éz’ @t = 2v, (3) 6(t) + céz’(a t) (A-24)

which is Eq. (38a) in the text.

Note: Equation (41) in the text is not identical to Zwanzig's equation

for slow processes (see Eq. (33) Ref. 5). The difference arises because
he takes Ea. (A-16) for L(Zk (a,t) and as we have shown here, that ex-

pression still includes terms of order higher than 52

REFERENCES

1. Zwanzig, R., J. Chem. Phys. 40 (1964) 2527.

2. De Groot, S R. and Mazur, P., Non Equilibrium Thermodynamics, North
Holland Publ. Co. Amsterdam (1962)

3. Green, M.S., J. Chem. Phys., 20 (1952) 1281; 22 (1954) 398.

4. Kubo, R., Yokota, M. and Naka]1ma S., J. Phys. Soc. Japan, 12 (1957)
1203.

5. Iwanzig, R., Phys. Rev. 124 (1961) 983.

6

7

8

. Mori, H. and Fujisaka, H., Prog. Theor. Phys. (Kyoto) 49 (1973) 764.
. Mori, H., Fujisaka, H. and Shigematsu, H., Proc. Theor. Phys. (Kyoto)
51 (1974) 209.
. Garcia-Colin, L.S. and Del Rio, J.L., J. Stat. Phys., 16 (1977) 235.
9. Onsager, L., Phys. Rev., 37 (1931) 405; 37 (1931) 2265.
10. Zwanzig, R., Ann. Rev. Phys. Chem., 16 (1965) 67.
11. Mori, H., Prog. Theor. Phys. (Kyoto), 33 (1965) 423.
12. Garcia-Colin, L.S. and Del Rio, J.L., Physica, 96A (1979) 606.
13. Garcia-Colin, L.S. and Velasco, R.M., Phys. Rev., 12A (1975) 646.
14. Del Rio, J.L. and Garcfa-Colin, L.S., J. Stat. Phys., 19 (1978) 109.






