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ABSTRACT

The possibility of abnormal occupation in the plane-wave Hartree-
Fock ground state of helium systems is studied with reference to several
semiphenomenological intermolecular potentials. Also studied is a parti-
cular type of non-plane-wave Slater determinant and found to have lower en-
ergy than the plane-wave determinant but only at very high densities.

RESUMEN

Se aborda la posibilidad de tenerse en el determinante de Slater
de Hartree-Fock con ondas planas una ocupacidn anormal para la descripcién
del estado fundamental de fluidos del helio utilizando varios potenciales
intermoleculares. También se considera el uso de determinantes con orbi-
tales que no son ondas planas, sino que se localizan espacialmente, y éstos
resultan tener menor energia pero sblo a densidades muy elevadas.
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I. INTRODUCTION

The possibility of taking plane-wave orbitals in a Hartree-Fock
determinant to fill momentum space differently from the normal Fermi sphere
arrangement has recently been investigated(1) for several two-body poten-
tials, with the result that such an "abnormal'' occupation may yield, in
some circumstances, energies lower than the corresponding ''normal" ones.

Some criteria have been established in Ref.1 which allow one to
decide, on the basis of properties of the Fourier transform of the relevant
two-body interaction, when such abnormal occupation may prevail energy-wise.

Non-plane-wave Slater determinants (or permanents) have also been
studied recently(z], and found to be superior, energy-wise, to the plane-
wave ones in some special fermionic and bosonic cases. These consist of
spatially localized single particle orbitals constructed in such a way that
the repulsive cores of the particles are avoided, thus lowering the energy
expectation value of the determinant with respect to that of plane waves
where the particles overlap excessively with each other.

It is clear then that, within the single-determinantal approxi-
mation, several instances have been encountered of both Fermi and Bose
many-body systems for which a spatially non-homogeneous ground state leads
to a tighter bound ground state than the homogeneous, plane-wave one.

The purpose of the present note is to study, in the spirit of
Refs.1 and 2, 3He and 4He systems employing several semiphenomenological
potentials in common use, with a view to establish whether: a) abnormal
occupation is favored within the variational class of plane wave determi-
nants; b) a non-plane-wave single determinantal ground state built up with
Wannier-1like functions(z) may be found below, energy-wise, the normal
plane-wave one. Clearly this study is very prelimina(y to the general ob-
jective, namely, to know the best (i.e., lowest energy) single determinantal
state for a given many body system, which is tantamount to having the
unique Hartree-Fock state for that system.

11. FOURIER TRANSFORMS

Consider N fermions (bosons) which interact pair-wise with a
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> >
central potential v(r) with r = |r, - r,| whose Fourier transform is

> >

. Vg = Idar e 19T vy, (M

Studying the properties of this Fourier transform the following theorem
can be proved(1) concerning Fermi systems: If v(q) is monotonically de-
creasing, and hence non-negative since there is no abnormal plane-wave

occupation. A similar theorem that applies in the Bose case reads(1):

If v(q) = 0, ¥q then there is no abnormal occupation.

In order to study the possibility of abnormal plane-wave occupa-
tion in He systems, one rust apply these thecrems on the basis of a giv-
en potential v(r). Consequently, we analyze the Fourier transforms of
the five different semiphenomenological He-He potentials considered in

Ref.3 They are:
(i) the Frost-Musulin potential(a), MEM,

vir) =<1 +cll-vy/r) ] expl e(l<rix) | ; (2)

(ii) the Frost-Musulin potential of Bruch and htGee(S), FDD-1, whose
short-range (r < rg) part is given by expression (2) and whose
long-range one is

Vor(r) = -(csr_6+ car's) forrzr, (3)

(iii) the Morse potential of Bruch and htGee{S), MDD-2, which has a
short-range part
(4

VgplT) = -e<{ 2 exp [e(1-x/ry)]l ~ exp [ 2c(1-1r/1y)] } faor v g Ty,

and a long-range part given by expression (3);
(iv) the Sposito porential(b), S, which has the same analytic form
as the MDD-2;
(v) the Beck potentia1(7), R,

2
vl | aa G (5)

2. 2
T *a

v(r) = A exp(-ar-8r°) — B(r’+ a
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The values of the different parameters are listed in Table II of Ref. 3.
Due to spherical symmetry the Fourier transform (1) reduces to

v(q) = b Imdr r sin gr v(r) . (6)
qO

The calculation of V(q) for the MPM potential is straightfor-
ward and one obtains a simple analytic form,

5 _ Admece® [ T, 2(1+c) ] ) (N

i rm(q2+c2/r;)

In the case of the FDD-1, MDD-2 and S potentials, since we deal
with different analytic expressions for v(r) depending on whether r is
smaller or larger than r,, the Fourier transform is split into two terms:

V(q) = Vg, (q) + Vg (a) (8)

which arise, respectively, from the short-, v..(r), and long-range,

vy, (r), parts of the potential. The calculation of Vs,(q) causes no
problem. On the other hand, care must be taken when one evaluates

Vir(q) since the corresponding formula contains the sine integral si(qrg),
which can be written as

si(qry) = ~f(qrs)cos qr, = g(qrs] sin qr, (9)

(cf. for example Ref.8). As expression (9) is multiplied by a polynomial
in q for obtaining ¥y,.(q), the main source of error that arises if the
functions f(qrg) and g(qry) are not carefully calculated is a divergence
for larpe q.

Finally, for the Beck potential, B, it is necessary to inte-
grate numerically the first term of expression (5) and for this the
Gaussian quadrature was used.

The results for the Fourier transforms are shown in Fig.1 The

(9)

values ohtained for the MDD-2 potential agree with previous ones



q[R-K]

Fig.1

108 -
10% - =
F :
= 1
|
0* £ E
I ]
10° &
MV
MV
10' - 3
- MDD-2 / i
L S 1
]00 | Ik | | |
0 20 40 60 80 100 120 140
24
q[A")
Fourier transforms of various He-He potentials as a function of

momentum.

95



96

ITI. ZERO ORDER GROUND STATE ENERGY

[
Our purpose is to calculate the ground state energy of 3He and
d. . (10)
He in zero order
states, both in a "fluid" and "solid" phase. So, we shall evaluate the

total energy per particle € = E/N as function of the density p utilizing

, 1.e., with single-determinantal (or permanental)

the potentials analyzed in the preceeding section. The formalism is that
of Ref.2.

The fluid phase is represented by a Slater permanent or deter-
minant of normalized plane-waves. The total energy per particle in the
Bose case is ££1(B) = %ﬂ:ﬁ(o) » as is well-known. In the Fermi case e¢;(F)
can be evaluated usingths. (4) and (5) of Ref.2. Analytical exnressions
can be obtained for t£)(F) in the case of the MM, FND-1, MDD-2 and S po-
tentials, while in the case of the B potential one must recur to numerical
calculations as in the previous section. For instance, using the MFM po-
tential one arrives at

- [ g
ef1(F) = %13— (570)* e eeo g EI0 [ - g1a0))
=0 . &F ; (1)
3 2 19 A3
- —<_ [(1+C)h(M) + 5o [Z_TmE.L)] ]F ,
2477 o J
where
) £ -1+ L2t admin?) -y, )
1+ y
and
) = 3"~ ¥ + (143 In(1%y?) - ay’tany : (12)

In the solid phase we use the non-overlapping Wannier-like func-
tions of Ref. 2 and obtain

2m°h? 1{

Esol = 1/3 12+7 .ﬁ

<RR'|v(n)| RR' > (13)
m [ (K/p)
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where K is a constant which depends on the structure of the solid lattice,
a is a variational parameter and R represents the lattice sites. The sec-
ond term of e€g,3 can be evaluated applying the method outlined by
Bernardes(11), as was done in Ref.12. As an example we give the result
obtained for the simple MFM potential

2n?h? 3 f
eo s = -= 1 [ cQl-rp/fy) + Eo(p) |
sol i [(K/p)lla-a ]2 2 n=1 [O% m’ tn n 5
-exp [c(1-£,/1y) ]
with
- 2(k+k")
Fo(p) = 1+ M} , M Ah.f{ig—m [(K/p)]“-a]]>
(k+k'#0) (19)
(20" (14€) B — crp + (140, ] ,

where.Cn is the number of n-th nearest neighbors, f, = S,/S; , whit S, be-
ing the distance between n-th nearest neighbors, and the A, are defined in
Eq. (45) of Ref.12. For the other potentials the expressions for €50y aTE
more complicated. Moreover, to determine the solid phase energy per par-

ticle, € must be minimized with respect to the variational parameter a.

50¢e calculate e¢)(B), €g(F), and e_ ; in the range of densities
0.01 A3 <p<l R—a utilizing the five previously mentioned potentials.
Three different solid structures are taken: sc(K=1) , fec(K=/"2 ) and
bce(K=3 / 3/4) . The results are weakly dependent on the particular po-
tential for both fluid and solid phases. This behavior can be easily un-

derstood in the fluid case. For bosons e_, is fixed by the value of the

Fourier transform at the origin and, as czj be seen in Fig.1, V(o) is very
similar for all potentials. In the case of fermions taking into account
Eqs. (4) and (5) of Ref.2 and looking at Fig.1, one can realize that e, (F)
is mainly determined by the values of the Fourier transforms at small q,
and in that region the V(q) are still very close to one another. On the
other hand, it is interesting to note that -the minimum E,oy 1S attained
for ::1/(1(/9)1/3

crystal structure considered.

=0.8 to 0.9 independently of the potential used and the
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Since the results for all the potentials are equivalent in the
spirit of our search, it is enough to report those obtained with any one
of them. Thus, we plot in Fig.2 the results for the B potential, because

it is currently considered as one of the most popular ones.
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Fig.2 "Fluid" and "solid" energies per particle as a function of density
calculated using the B (Beck) potential. Both Bose and Fermi fluid
curves are shown.

IV. DISCUSSION AND CONCLUSIONS

The simple analytic expression obtained for the Fourier trans-
form of the MFM potential is a monotonically decreasing function. In the



99

case of the FDD-1, MDD-2 and S potentials, oscillating terms appear in the
Fourier transforms due to the splitting of the potentials in two parts
(short- and long-range). However, the oscillations are not strong enough
to change the monotonic behavior, as can be seen in Fig.1.

In short, all five Fourier transforms calculated in this work
are positive definite and monotonically decreasing. Consequently, no ab-

normal occupation is possible, either in the Fermi or in the Bose case,

according to the theorems mentioned in section II.

The possibility has also been investigated of finding, in the
spirit of Ref.2 a Slater determinant built up with Wannier-like single-
particle wave functions which yields a lower energy than the corresponding
plane-wave one.

Fig.2 shows that in the physical range of densities ') 0.015 A’
<o <0.025 A" both bosonic and fermionic €¢, lie below the € ; evalu-
ated with any structure. Only at high densities p Z 10525 3-3 does one ob-
tain lower energy per particle in the solid phase than in the fluid one,
i.e., both for 3He and 4He a crystalline structure is preferred (in zero
order) for densities beyond the physical range.

ACKNOWLEDGEMENTS

We are grateful to Dr. L. Ddhnert for the kind hospitality at
the Universidad Central de Venezuela, during the "IV Latin American Work-
shop on Self-Consistent Theories of Condensed Matter". The assistance of
C. Mostaccio and Y. Pouchou of LABCAN, La Plata, is also acknowledged.

REFERENCES

1. De Llano, M., Plastino, A. and Zabolitzky, J.G., Phys. Rev., C20 (1979)
2418.

2. Cambiaggio, M.C., de Llano, M., Plastino, A., Szybisz, L. and Ramirez,
S., Nucl. Phys., A339 (1980) 277.

3. Bishop, R.F., Ghassib, H.B. and Strayer, M.R., J. Low Temp. Phys., 26

(1977) 669.

Frost, A.A. and Musulin, B., J. Chem. Phys., 22 (1954) 1017.

Bruch, L.W. and McGee, I.J., J. Chem. Phys., 46 (1967) 2959: ibid. 52

(1970) 5884.

6. Sposito, G., Phys. Rev., A2 (1970) 948; J. Low Temp. Phys., 3 (1970)
491.

[0 =



1l.
12.

Beck, D.E., Mol. Phys. 14 (1968) 311; ibid. 15 (1968) 322.

Abramowitz, M. and Stegun, I.A,, Handbook of Mathematical Functions,
Dover, New York, (1965).
Feenberg, E., private comunication.

. Of course, there exist some quite elaborate and interesting papers on

the subject based on the Jastrow-function approach, that go well beyond
zero order, cf. e.g., Hansen, J.P., Phys, Lett. 34A, (1971) 25 and pa-
pers quoted therein.

Bernardes, N., Nuovo Cim., 11 (1959) 628.

De Llano, M. and Ramirez, S., Ann. Phys. (N.Y.) 79 (1973) 186.





