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ABSTRACT

Angular distributions for the 12¢(p,t)10¢c reaction for E_=80 MeV
are analyzed within the framework of the zero-range distorted-wave Born
approximation (DWBA). An approximation is formulated to account for cen-
ter-of-mass (CM) effects in the 10c42n form factor. The CM approximation
can be implemented by altering the input to DWBA codes such as DWUCK or
MERCURY. Form factor CM corrections lead to significant improvements in
the shape of the calculated 12¢(p,t) angular distribution for the ground
and excited state transitions. In addition, improved normalizations are
obtained for heavier mass target reactions such as “O0ca(t,p) and “0fPbi(p,t).

FR.SUMEN

Se analizan las distribuciones angulares para la reaccidn 1ZC(p,t)]"*f'
para E =80 MeV en el contexto de la aproximacién de onda distorsionada de
Born eh el rango cero (DWBA). Se formula una aproximacién que considera
los efectos del centro de masa (CM) para el cdlculo del factor de forma
del 10c+2n. La aproximacién de (M puede llevarse a cabo alterando la infor
macidén de entrada de DWBA usando, por ejemplo, DWUCK o MERCURY. Las correc
ciones del factor de forma por el CM mejoran significativamente la forma
de la distribucidn angular para el fondo y las transiciones de estados exci
tados, calculadas para 12c(p,t). También se obtienen mejores normalizacio-
nes para reacciones con blancos més pesados, tales como Y0ca(t,p) vy
208pp (p,t) .
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I. INTRODUCTION

In a recent paper, Shepard 92_21:(1) have shown that single-
step zero-range distorted-wave Born approximation (ZRDWBA) calculations
failed to adequately reproduce the 12C(p,t)}!°C data at 80 MeV proton ener-
gy. The ZRDWBA calculations of Ref. 1 led Shepard et al. to conclude
that the discrepancies between experiment and DWBA results are not wholly
attributable to an improper treatment of finite-range effects and that it
is possible two-step mechanisms could account for the discrepancies. This
interpretation should not be evoked until all single-step issues have been
addressed. One major unresolved issue is the proper treatment of the cen-
ter-of-mass ((M) motion in the 10C+ 2n two-nucleon form factor.

The importance of M effects in the zero-range form factor for
two-neutron stripping was noted by Pinkston(z) and Pinkston and Iano(S}.
Feng gE_gl.(4] also observe improved DWBA results with the proper treat-
ment of the nuclear structure.

The implementation of the aforementioned (M correction approaches
requires the modification of DWBA codes. It would be highly desirable to
have a (M correction method, even if it is only an approximation, which
could be implemented within the framework of existing codes by only alter-
ing the code input. Such a model would permit estimates of (M effects
without significant effort.

The present paper will attempt to accomplish this task. Specif-
ically, our approximation will be compared with a more rigorous method(z]
of obtaining the core plus two-nucleon form factor. In addition, the
present approach will be applied to the '°C+2n form factor in order to
determine the effect of (M corrections on the !2C(p,t)10C reaction. Heav-
ier systems, “%Ca(p,t) and 298Pb(p,t), will also be considered. Thus, it
is the intent of this paper to resolve the (M issue in the 12C(p,t) and
other reactions. Moreover, the resolution will be provided within the
frame-work of an easily applied (M correction approach.

IT. FORMALISM

The DWBA differential cross section may be written 35(5)
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do _ _Ei_lﬁi_ Eﬁ. [T |2 1
da (2mh2)2 k;  fi ¥ (1)

where i labels the entrance channel, f labels the exit channel, 1 is the
reduced mass, and k = uv/h, where v is the particle velocity. T is the
transition matrix element which is defined as

Ty = [d’fi [ dr, xf‘"*(if,?’f) (B,b[V[A,a) xxi‘”(ﬁi,?’i) . (2)
The wave functions X;+) and Xé_) describe the relative motion of the clus-
ters in the entrance and exit channels. The X's are distorted waves aris-
ing from the Coulomb and nuclear interactions which are generated from op-
tical potentials that describe appropriate elastic scattering data. The
overlap (B,b|V|A,a) is the transfer form factor representing the core
plus transferred cluster wave function. The coordinates ?i and ?f are

the entrance (B+b) and exit (A+a) channel coordinates.

The form factor contains all the nuclear structure information.
For two-nucleon (p,t) transfer reactions the identifications

B = A+x

and (3)

are made in order to facilitate description of the B(b,a)A reaction. The
quantity x in Eq. (3) is the transferred cluster. Specifically, the fol-
lowing identifications can be made for the !2C(p,t)!°C reaction

B=12c, b=p, a=t, A=19C and x=2n . (4)

Following integration over all target and projectile coordinates

the form factor becomes

= * > - g
{B,b|V|A,a) wB(rAx) ViPpd ¥ L) (5)

where V is the effective interaction between b and x, and the u's are the
bound state wave functions which describe the motion of the transferred
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cluster x relative to A and b. For convenience, the spectroscopic
strengths have been absorbed into . The bound state wave functions are
usually anproximated by shell-model eigenfunctions which do not properly
account for center-of-mass effects.

Since the calculation of the form factor and T matrix requires
considerable computer time, it is desirable in (p,t) reactions studies to
introduce the zero-range (ZR) approximation by replacing the radial de-
pendence of V by a delta function

VED v (G = D s (6)

where

D, = [d?bx v(?bx) lpa(?bx] . )

The introduction of the delta function reduces the T matrix to the three

dimensional integral

_ > (=)*, > * > (+) >
Tfi = Do ( dr Xf (Ar/B) wB[r] Xi (r) . (8)

Following Ref. 1, Dg = 25x10% MeV2 fm3. However, the center-of-mass dif-
ficulty of the wC+h1%m1ﬁcmrU%)rmmm&

In order to remove the (M difficulty, we introduce a repulsive
component into the core plus two-nucleon potential which is used to deter-
mine bge The core + 2n wave function is generated from the potential U:

v - 1 df(r,rs 0.’%s.0 )
U = 0 f(r,ro,ao] + Vl f(l",l"l,al) i VCoulornb . m; ar L5

(9

This only requires the addition of a single bound state potential card to
the input for DWBA codes such as TWUCK'®) or MERARY("). 1n Eq. (9), V,
is the central potential, V, is the repulsive component potential, A is
the Thomas spin-orbit term, a, is the diffuseness parameter, r . is the ra-
dius parameter, and Vc ;s the Coulomb interaction herwee; the core

oulomb
and transferred cluster. The factor f(r,ri,ai} has the Woods-Saxon form
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.
f(r,ri’ai) ¥ [] + exp [T-——

-1
] .

» (]J)

where A is the core mass. The values of Vy, r; and a, are chosen to be

Yy # -SVO H V0< 0 R
Ty = ﬂ.44r0 3 ®E
a, = 0.3130

The use of a repulsive notential component leads to a core + 2n
form factor which peaks at a slightlyv greater radial location than the
usual shell-model form factor. Physically, the use of a repulsive poten-
tial arises from a consideration of the Schrédinger equation which is

used to generate the form factor y:
(T+Ww = Ep , (12)

where T is the kinetic energy of the nucleon-nucleus form factor, U is
the nucleon-nucleus potential, and E is the binding energy of the nucleon-

2
nucleus system. According to Pinkston("sl

, the shell-model wave function
is too small in the nuclear surface and exterior regions. Changes to the
wave function can be affected by altering either U or E. Since E is an
experimentally determined value and U is usually a function of adjusted
parameters, it is logical to alter U. The alteration to U must be such
that it reproduces the center-of-mass corrected wave function, i.e., the
surface exterior wave function must be larger than the shell-model wave

(2'4). Previously, it has been noted that the surfuce region and

(8)

function
a fermi or so beyond dominate the (p,t) differential cross section
The desired effect of approximating the tail of the center-of-
mass corrected form factor can be obtained by adding a repulsive tem to
the form factor potential U. The repulsive potential forces the wave
function outside the attractive potential well and increases the magnitude
of the surface region wave function. The strength of repulsive potentinl
is chosen to reproduce the center-of-mass corrected form factor. The
reader should note that V, is determined just as in standard DWBA co-

(6,7)

des Hence, the simulation of the center-of-mass corrected form fac-
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tor is obtained by adding a repulsive component to the form factor calcu-
lation with a strength -5V, and a range of 0,44 T, (see Eq. (11)). The
net result is a form factor which, over the dominant (p,t) spatial region,
provides a good approximation to Pinkston's approach. The application of
Eq. (11) to the 160+ 2n form factor will be discussed and compared with

Pinkston's approach in the next section.
IIT. FORM FACTOR COMPARISON (180 + 2n)

The approach of Eq. (11) is applied to the !®0+2n form factor,
and compared with Pinkston's form factor(z) in Fig. 1. The bound state
parameters are taken from Ref. 2. Both calculations of Fig. 1 assume the
two neutrons are in lds/2 orbits coupled to form a 0" state in '®0.

The agreement between model and Pinkston's form factors would
initially appear to be quite poor. However, the approaches need only

4

mi or two beyond(g), because these regions dominate the (p,t) cross sec-

agree in the vicinity of the nuclear surface region and possibly a fer-
tion. The equivalence of the two form factor approaches in the vicinity
of the nuclear surface region can be demonstrated by integrating the form
factors over the region

rsurfacegrgrsurface +2fm . (5
The resulting overlaps o(c.f. Ea. (8)),

+
J:'surface = e m 2n

o = J J [ X" E X x 2 sin (0) dr do d¢ , (14)
r:rsl:ncfa.cee=oa =0

are essentially independent of the input (M corrected form factor, i.e.,
Pinkston's form factor approach or the approach utilized herein. The nu-

clear surface occurs at about a radius r :
surface

= ¢ A1/3 4 (15)

: &
surface

where c=1.1 fnl®). For the 160+ 2n system, Eq. (12) places the surface
at about 2.9 fm. The approximation model of Eq. (11) is well within 10%
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Fig. 1 Zero-range two-particle form factors for the 1d§/2 J=0 state in
18p, The solid curve is the form factor obtained in Ref. 2, and
the dashed curve is the approximation of Eg. (11).

of Pinkston's form factor in the vicinity of the 80 surface, and provides
an adequate approximation to the more rigorous approach of Refs. 2 and 3.
Qur approximation method, may now be confidently applied to the lzC(p,t)
reaction to investigate the impact of !C+2n OM form factor corrections.

This will be addressed in the next section of this paper.
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1v. *°C + 2n FORM FACTOR

Pinkston and Innan) find that ™M corrected form factor overlaps
relevant to (t,p) reactions on %0, “OCa and ®%Zr result in amplitude en-
hancements of roughly 40%, 20% and 105, respectively. Model form factor
overlaps have heen calculated to further verify the adequacy of the ap-
proximation of Lg. (11). The results of these calculations are summarized
in Table I and are within 10% of the results of Pinkston and lano. These
results suggest Eq. (11) is providing a realistic solution to the center-

of -mass form factor problem.

TABLE 1

Enhancements due to center-of -mass correction

Nucleus Pinkston and Tano (Ref. 3) This work
160 14 1:30
40y 1.2 1T
30zr 1.4 1.05

Table I Form factor amplitude enhancements for (p,t) transfer reactions
(A=16=-90).

Using the approach of Eq. (11), we calculate the '°C+2n fom
fuctor and sunmarize the results in Fig. 2. The '2¢(!°C+ 2n) surface oc-
curs at a radius of sbout 2.5 fm (Eq. (13)). The (M form factor and shell-
model form [uctor have somewhat different shapes between 2.5 and 3.0 fm,
which may influence the cross section shape. Beyond the nuclear surface
region, the (M form factor is about 40% larger than the shell-model result.
This is consistent with the results of Ref. 3. The effect of the altered
surface shape and form factor enhancement will be discussed in the next

section.
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Zero-range two-particle form factors for the 1p3 5 I=0 state in
12c., The solid curve is the center-of-mass corrected form factor
and the dashed curve is the shell-model form factor.

V. DWBA CALCULATIONS

Zero-range distorted-wave Born approximation (ZRIWBA) calcula-
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tions for the '2C(p,t) reaction were performed within the framework of
the computer code DMMCK(ﬁ). The calculations assume the simultaneous
pick-up of two P3 /o neutrons coupled to Sé}?0¥ith zero relative angular
momentum. The method of Bayman and Kallio was used to compute the
two-neutron form factor. Standard DWBA calculations were compared with
those of Ref. 1 in order to verify the model parameters.

Optical parameters for the p+!2C and t +1°C channels, and the
n+19C bound state are taken from Shepard SE_ElE1}‘ Following Shepard's
analysis, the form factor overlaps were evaluated using the half-separa-
tion-energy ansatz for the single particle wave functions, together with
shell-model spectroscopic amplitudes. Although this procedure neglects
correlations between the transferred neutrons, its impact on the cross
section is small and does not significantly alter the conclusions of this
study (see Fig. 1, Ref. 4).

Shepard gg_gl.(1) have noted that the 12C(p,t]10C[0+,g.s.) tran-
sition is very sensitive to the triton optical potential. Thus, as noted
carlier, care was taken to insure that our parameters matched those of
Ref. 1. The uncorrected DWBA calculation (see Fig. 4, Ref. 1) for the 0"
transition generally reproduces the data for Ban_<20°, but the fit is
poorer beyond this angle. The local minimum at about 22° and the primary
minimum at about 50° are not reproduced by the uncorrected DWBA calcula-
tions.

The uncorrected DWBA calculations of Ref. 1 can be compared
with a (M corrected calculation in Fig. 3. The (M corrections improve the
calculated shape when compared with the uncorrected DWBA model. The re-
sult of Fig. 3 indicates that (M corrections can have a significant impact
on DWBA calculations.

Poorer agreement between experiment and DWBA calculations is ob-
tained for the 3353 keV (see Fig. 4) and 5280 keV (see Fig. 5) transitions.
Both transitions involve 2% states with an angular momentum transfer of 2.
The M corrected DWBA calculations for both transitions are significantly
better than standard DWBA calculations (see Fig. 4, Ref. 1 for comparison).
As with the 0" transition, the (M effects are significant and lead to im-
proved angular distributions.

The normalization N for the 12(C(p,t)10C reaction is essentially
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Fig. 3 Center-of-mass corrected DWBA calculations for the

12C(p:t)IOC(O+,g.s.) reaction at 80 MeV.

The data is from Ref.

The normalization of the calculation is given in Table TII.
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the factor required to bring the DWBA calculations into agreement with

data. The DWBA cross section . M— is related to the experimental cross
section by
a
1/242 2,144y _DWBA
= N DoA0 16
%ot 50 miney A (16)

where 5'/2 is the two-neutron spectroscopic amplitude(11), D, is the zero-
range nomalization factor and L is the angular momentum transfer. The
DWBA calculations of Ref. 1 and those presented herein are of different
shapes. This suggests that normalizations may be guided by personal bias.
In order to avoid this difficulty, we present a modified normalization
factor N':

o -0°
N' = C'MDWBA(Bc.m. o

s (7

“owea (fc.m. = 0°)

where O MDWEA is the (M corrected DWBA cross section. The use of Egs.
(14) and (15) will permit the reader to compare our calculations with
those of Ref. 1 in an unambiguous manner. The values of N' for the tran-

sitions of Figs. 3, 4 and 5 are summarized in Table II.

TABLE II
10C  Final state

B JTI Na) N!b)

X
(keV)

+

0 0 0.863 2.95
3353 " 0.255 1.03
5280 2t 0.255 1.14

a) Table I, Ref. 1.
b) Eq. (14).

Table II Normalizations for the 12C(p,t)]oc reaction.
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VI. EXTENSION OF CALCULATIONS TO HEAVIER NUCLEI

For completeness, calculations have heen extended to the
“0Ca(t,p) and 298Ph(p,t) reactions. CMDWBA calculations were compared
with data (12-15) and standard DWBA calculations. The (M corrected DWBA
calculations have shapes which are very similar to standard DWBA predic-

(8)

. y 5 . 8 5
tions , but normalizations have 1mproved( ]. However, improvements are
not as significant as in lighter tarecet reactions because (M effects be-

come less important as the target mass increases.
VII. CONCLUSIONS

Center-of-mass corrections to the 1°C+ 2n form factor lead to
improvements in the calculated 12C(p,t)10¢ angular distributions. The QI
correction method used to calculate the 10C+ 2n form factor only approxi-
mates a more rigorous method by Pinkston, but can be easily input into
existing DWBA codes. The (M form factor approximation permits a qualita-
tive assessment of M effects, and has the advantage that DWBA code modi-
fications are not required. As expected center-of-mass corrections have
been found to be most important for 1ight systems (12C and !80), but alsc
improve the calculated cross section normalizations for transfer reactions
involving heavier nuclei such as “9Ca and 208ph.,
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