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ABSTRACT

We present a direct derivation of the expression of the angular
velocity vector of a rigid body without using a geometrical construction,
which, at least for the authors,is not self-evident. We use only the
orthogonal transformation properties and the geometrical interpretation is
apparent from the present formalism.

RESUMEN

Presentamos una derivacidn directa de la expresidn para el vector
de velocidad angular de un cuerpo rigido sin utilizar una construccidn geo
métrica, la cual, al menos para los autores, no es evidente por si misma.
Usamos Gnicamente las propiedades de la transformacidn ortogonal, y la in
terpretacidn geométrica es evidente a partir del presente formalismo. -



622

In the following we shall consider only a pure rotation of the
(5 ) s
rigid body. Let |3; and Ki be two orthonormal bases; the first set
defines an inertiaf frame and the other one a comoving frame with the body,

The position of any point in the rigid body is given by

B, ¥¥ B (n

where X, and y, are the coordinates in the comoving and inertial frames
respectively.
The coordinates x, and y; are related by
= 2
Xi Aij }'J s (‘-)
where the orthogonal matrix A is given by

COS|PCOoSH-Ccosfsingsing cosysing+cosgcosysing  sinysing
A = | -sinjcos¢-cosgsingcosy  -sinysing+cosgcospcosy  cosysing| . (3)
singsing -sinpcosg Cosf
Here ¢, 6 and ¢ are the usual Euler's angles, and (Afl)ij = Aji (see, for
example, Ref. 1).

Taking the derivative with respect to time of Eq. (1) and
remembering that X, are the coordinates of a fixed point in the rigid body

we obtain
dﬁi - d)&
B E  adE ' (4)
da,
We can express afi as a linear combination of the base vectors
Ei in the form
d3]’. >
I T : (52
Since [Ei] is an orthonormal base the matrix C is
antisymmetric.

The angular velocity vector w is defined in the comoving frame
by

W = FE, e B
i “Lljk jk >

&l

(6)
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where Eijk is the Levy-Civita symbol. The matrix elements Cjk can be
obtained from the w, through

Coe ™ S ™y - (M
Replacing Eq. (5) into Eq. (4) and then Eq. (7) in the resulting

expression we get
dA

* is 8
Xi%i3 " ? T % X & ’ (8)
where we have expressed the yg in temms of X, using the inverse of the
matrix A, and, since the x; are arbitrary,

> _ = dAis
ii "k 3 T % &
dA.
=, B is
AT o (9)
therefore,
_ is
S ¥ = MNe E ; (10)
and finally
=1l:s A féii (11
Y T T%isfNs @ : )

The components of the angular velocity vector in the comoving
frame are given explicitly by

$sinbsin ¢+ Gcosy -

=
]

$sinbcosy - Bsiny , (12)

=
nN
[

Wy = dcos B+ 5

(2)

which are , of course , the same as those given by Landau § Lifshitz ™,
A geometrical interpretation of Eq. (12) is shown in Fig. 1.
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Fig. 1. Euler's angles.

A direct application of this method in the case of Lorentz
transformation leads us to the obtention of the Thomas precession.
Following the same line of reasoning we consider an inertial tetrad (ou},
= 1, 25 3, 4 ; and [%a a comoving tetrad with a body. We make the
usual convention: greek indices run from 1 to 4 and latin indices from 1
o 3

A 4-vector X can be expressed in any of the two tetrads

(reference frames);

% T Ko T Ra¥a ) (13)
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defining in this way the coordinates of an event X, and Y in the inertial
and comoving tetrads respectively.

Let 3(t) be the 3-dimensional velocity of the moving body as
seen by an observer in the inertial reference frame. The instantaneous
rest tetrad Ry is related to the [Ea by a pure Lorentz
Eransfonnation which can be parametrized by the three components v, of
v(t) ,

Ra = ‘%B LBO.(;;) ) (4
with R Vivj R . YVi
Lij(V) = 6-13- +: [y~1) VT ; Liu(v) = Lqi(\’) e
> 1
Lup(Vv) =y £ ——— (15
A Y1-v2/c? .
From Eq. (14) we obtain
B = falug ) = Rolya(9). (16)

Taking the derivative with respect to the proper time 1 of the

last equation we have

d d e +d o
& A ™ Ra ar Lag() = Ryl () T Lug(M - =

We are interested in the variation with respect to T of the
spatial components of the tetrad Qa]
J

F AL F ) : (18)

Taking into account that By TR, E diag (1,1,1,-1), the
spatial components in Eq. (18) are

d _ d >
(A e® Freh

thercfore

d _ > d > 1 i
( o Qil - Qj Lja(v] I Lui(-v) = (y-1) e (viAj —Lin), (19)

_d
where Ai = H?'Vi[t)
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Writing the spatial components of g?'%i in the usual way g; a
Eq. (19) can be expressed in the following form:

——

2 1
a8 = o0 Lo (20)
v
that suggests the definition of Wi
R —
d _* >
[a;%i]:wxai : @

Replacing Eq. (21) in (20) we obtain

-+ -> >
(W x aj) =ay = €445 Wg (22)
and finally
M e =@aky . (23)
V2

The vector w in Eq. (23) is the angular velocity of the well

known Thomas precession (see, for example, Ref. 3).
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