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(6) Foll~wing the same line of approach established in a previous
work we der~ve, using heuristic arguments, planck's distribution law
for cavity radiation employing classical fluctuation theory for the fluc-
tuating zero-point field with a JXlwer spectrum proJXlrtional to the cube
of the frequency. To do this we make no use of the interaction hetween
particlcs and the cavity walls.

RESlJ}!EN

Continuando con la misma linea de razonamiento establecida en
un trabajo previo (6) derivamos, usando argumentos heurísticos, la ley de
distribución de Planck para radiación de cavidad, empleando la teoría
clásica de fluctuaciones para el campo de punto cero fluctuante con un
espectro proporcional al cubo de la frecuencia. Para ello no considera-
mos la interacción entre las partículas y las paredes de la cavidad.

* PSPA Scholarship.
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¡. mfRODllCfION

It has becn sho~TIrccently(l) t~~t the motion of classical
charged particlcs in a random clcctromagnctic field has propcrtics com-
manIy associated ,",ti th a quantum behaviour. lhis kind of motion dcpends

crucial1y on the use of a radiation spcctnon which at zero tcmpcrature,

is proportional to w3• It must be emphasizcd that, unlikc sane points of

view on the vacuum field of quanbum electrodynamics, this is a real
field(2) arising from the incoheTent superposition of the radiation emit-

ted by all the charges in thc universe. rn this case we can analyze sorne

phenomcna arising fTem the clcctromagnctic field fluctuations which sub.
5ist cvcn at T= O. Bcarin~ this in mind, Einstcin's ~rk in thc early

years of this ccotury, concerning thc analysis of the equilihrium condi-
tions [01' the radiation inside a cavity (blackbody radiation), may be fo-
cusscd from a new point of view. Sorne year5 ago, in a ~~rticularly intcr-
esting and suggestive work, Royer(3) analyzcd Einstein and lbpf's 1909
work(4), In that papel' Boyer took into account both the f1uctuations of
the backgrouID field and the particlc col1isions against the cavity walls
to derive Planck's distribution law. In such derivation, the role playad
by the cavity walls is fundamental for the cquilibrium to be cstablished
since, when the particle hits the ~all, it dissipates the absorbed cncrg)'
from the zero-point field. 1he proposcd thcory secms to prcdict that, in
the abscncc of co11 isions, the partic1es v.ould increase thcir energy in-
definitely(S). ~bwever, given the independcnce of the distribution law
011 the cavity size, in a recent work(6). hereafter to be refcrred to as 1,
sorne doubts ~~ve been raisod about the nccd of introducing cavity ~~lls
in order to reach cquilibrium. In 1, wc st3rted with the Einstein and.
Stem's 1913 analysis(7) and were able to derive Planck's la\<"using only
the hypothesis of the existcnce of the w3 SpectruM foy the background
field. This papel' is dcvoted to a discussion of sorne further argtuncnts
in that direction,

In the following scction we derive Planck's distribution law
using fluctuation theory. In section-TII wc discuss the third law of
thenmodynamics. In the next section we discuss the discrete energy lev-
els, and in section V we finish with sorne rcmarks.
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II. DERIVATION OF P1ANCK' S L<\I;USINGTIlE TIlEORY OF FWCl1JATIONS

As it ~as pointed out aboye, when analyzing in 1 Boyer's deri-
vation(3) of Planck's law, sorne questions arised on the true relevance of
the particle collisions against the cavity walls as a dissipation mecha-
nism by means of which it huuld be possible to reach an equilibrium state.
TIlis was mainly due to thO reasons: first, in such derivatían the cavity
size dces not appear any"nere, and second, Boyer supposcs that momentum
exchange during collisions dces not depend on tcmperature. As it will be
shown here, it is possible to derive Planck's law not on!y avoiding the
use of the cavity walls, but a150 withaut using the partiOllar model im-
plied in the aoove mentioned derivatían: a dipole oscillating hannonical-
ly. This a150 eliminates the tiresome calQ11ations of R and (ll.Z) *. In
order to do this, ~e shall use both the existence oí the zero-point ener-
gy fluctuations ~ith a spectnum proportional to 003 and the results of the
theory of fIuetuations, .toieh can be found in any text book(8). It is
important to recall that fluctuation theory date back to the works oí
Einstein(9) and Gibbs(lO). There exist other attempts in this direc-
tion(11), but our approach has the advantages of simplicity and brevity.

Let us consider radiation in the~11 cquilibrium. For this
ar~lysis it is suííicient to know the statistical propcrties of the ra-

•diation field, i.c., oí C(k,\) in thc equation íor the electric field E,
namely

•
E Re If d3k£(k,') C(k,,)ei(k'r-wtl

,=1
(1 )

Since ~~ell's cquations do not couple the amplitudes oí thc
fields, we can considcr them as being statistica11y independent. FUrther-
more, if we take into account that C(k,A) is a random variable formed by
the incoherent superposition of many waves produced by a11 charges in the
universe, use can be made oí the central lUnit theorcm oí probability
theory to argue that the distribution of C(k,A) is a gaussian one(12). As
a conscqucncc, the canonical [icld variablcs q and pare also gaussian.

* where (ó2) are the dipole momentum fluctuations due to the field fluc-
tuations and R is the coefficient in the dissipative force.
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Nc shall also assumc that the fluctuations of the zero-point ficId are
indcpcoocnt of the fluctuations of the thcnnal [icld.

Acconling to the wcll-kno .•..n Tesult of the theory cf fluctua-

tions (scc appcndix I)

d(lJ)
de -02 ( 2)

.•....hefe 8-1 =- kT, <U> i5 the mean cncrgy aOO 02 the dispcrsion:

02 ( (lJ2) - (lJ)2 ) (3)

Wc can rcwritc the dispersion 02 in tcnns of <U>, using the

r<let that "'C are ocal inf~ \\'1th a gaussian distribution far the ficld ca-

non¡e:!l variahles. <100thus obt.3in froro Eq. (2) a differential equation

for (U) The proCcdUfC may be outlincd as follows:

Equation (3) in tcnns of the ficld variables q aOO p takcs the

form

o' , 2 1
( ( .- (1'2 + w2'l2) ) - (2(1'2 + w2'l2)2) (~)

For a gaussian L1istribution,

2
(1'") = 3(1'2) ( 5)

hu! 011 the othcr hand, sincc wc are dcaling with the osc1l1ators of the

c)C'Ctran..1gnctic ficld,

(6)

,\1 so. since q :lOO pare índcpcndcnt variablcs

Substituting Eqs. (5) to (7) into Eq. (4), \\IC have

(lJ)2

(7)

(8)
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The aboye rcsult allrn.¡s to transfonn F.a. (2) iota rhe differen-

tia 1 equ3 t ion

d(U)
de

v."hose solut ion is

( U ) 1
e

( u ) 2 (9)

(10)

l.e., rhe ~'yleigh-Jeans 1aw.
Analyzing this situatlon in a similar ""ay 35 tha! ""pe did in l.

\~'Ccan scc that the left-hand sirle of Eq. (2) i5 tcmperaturc-depcndcnt.

If ene acccflts the cxistcnce of an cncrgy T = O. rhen the non-thcnnal com-
ponent involved in 15 climinated by dcriving it Nith respect to S. ~ev-

crthclcss, the right-h:md sirle of Ec¡. (2) still contain~ rhe' nart of <U>

indepcndcnt of tcmpCT:lturc. It h'ould sccm then, that Ec¡. (2) is iocon-

sistent. Ilowcver, on rhe hasis cf rhe general ity under which ir \,;as dc-

rived, we cauId cxpcct its validity ~ould remain for thennal fluctuations

(see a~pcndix I), ¡.c.,

d(U)
de o'

T
(11 )

02
T

(1 2)

since ~e havc assumed that thc zero-point field fluctuations and those

corresponding to the thcnn.11 field arc independent. Thus, using the re.

sult obtaincd in Eq. (8) and the one for the zero-point f1uctuations, one

ohtains

o'
T

<U)2 _(U)2
T=O

(13 )

aOO, us ing this d ispcrs ion in Eq. (11). one gets th:lt

d(U)
-da (LJ)2 - < U)2

T=O
(U)



~hich can be readily integratcd, and since

lirn<U>
B~~

then, the 501ution i5

<u> T=O
(15 )

<u>
2 < U)T=O

2B < U lr=o
e -

(16 )

Since Wien' s law establ ishes that

<U> = wlj>(!f) ( 17)

<U> T=O constant w (18 )

mlst be satisfied. This i5 in full agrecment with the assumed spectrum.

In the constant in Eq. (18) i5 taken to be

constant "-h2
( 19)

then Eq. (16) is, in [act, Planck's distribution law. I\s it can be seen,

the constant fixes the fluctuations scale at zera tcmperature.

It i5 important to point out th~t in the foregoing derivation

no use has becn made of the cavity containing the radiation.

Il I. 111£ REI.\ TI ON.'iH1P BE11\U_~ 11jE BACKGRar-iD FI ELD A~1J 111E 1111RD U\W OF

111EJ<\IODYNiIl\lI es

The an,:l1ysis perfonncd in the preceeding section shows that it

is possible to obtain Planck's distrihJtion law by applying classical

fluctuation thC'Ory to the zero-point fluctuating f¡eld. With the same

ideas it i5 pos5ible to srow that the zero-point ficId i5 in agrecment

with the third L1h. of thennodyn.amics. For this rurpose let us again

begio h'ith the hypothesis of the existcncc of a fluctuating zero-point

cnergy. Since 3t T=O this \\QuId be the onl)' available cncrgy, it fol-
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lows then that

1 im ro
T-+O

<u> T=O (20)

wherc F is the Helmholtz free cncrgy. On the other hand, v..e kno .•...from

thcnnodynamics that if U is the intern,d energy

aSF
as u (21)

so identifying <u> "dth U aOO substituting the valuc of <u) given in

Eq. (10) ano the coOO1tion cxprcssed in Eq. (20) into Eq. (21), one ob-

tajos

Sinec

\..:e ohta in

F

s

s

1 en(2 scnh 6 <U> )
S T.O

aF
ar

k (S <U> - en 12 scnh S <U>T:01)

(22)

(24)

v.nich satisfics the conditíon

1im S (U)
T~O

o (es)

tn'lt is in agrecmcnt v.:ith the third la .....of thennodyn:unics.

It mus! be cmph3S¡zeu th ..1.t in arder to Oht3 in the aboye result,

use has beco made, of the central 1¡mit thcorcm. Givcn the general ¡ty of

thesc assumptions, \,'C can he confident on the gcneralit)' of the r('sult

cxprcssetl by Eq. (25). frem this raint of vic"., the mere cxistence of :1

fluctuating zera-point ficld leads to 3 r('$Ult consistent ~ith the third

1.:1\"- oC thennodynamics ••..dthout using quantum mechanical .1.rgtunents.

On the other h.-1.nd•••.•.c must note that the third 13\\' of thermody-

namics implies troto if II 15 the cnergy density. tllen
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1" dU
lffi-

T-+O dT

1\5 it has slo\\'Tl in

rUllction in Wicn's

o (26)

1, this lcads to the conclusion tha! the arbitrar)'
1a \.0,' tcnds to he a constan! v;hen T:: O. As this in turn

impl ies the cxistcnt:c of the zera-point cnergy, ••.•'c couId then use this

clase relat iOllshir to bcgin a course on QJantum Mcchanics in the \.;ay dc-

sircd by Planck: starting [rom thennouyn:mlics.

IV. lllSCRI'TE ENERGY L.~"VELS

t\ quC'stion vihich may :Irise 1S: Hmo,'do discrctc cllC'rgy levcls

appcar? To analyzc this question, let lIS considcr the follov,'ing:

SincC' WC' knov; that

- B F -fn Z (27)

whcrc Z is rhe partition function, and using for F the value givcn by Eq.

(2Z), onC' ohtains

1
.2 scnh S <ti> T=O

c-B(U)T=O
-2B(U)T=O

- e

hut, if a>O and x<O,

I}x
l=o

it i5 satisficu. Thus, Ec¡. (28) i5 transfonned into

c-SUT=O Ic-2Sl (U)T=O
l=o

y c-2S<ul¡.,.0 (l+~)

f=o

WC'mll~t rt.'t-:lll th..1t if w(' use the traditional C'xprcssion

(28 )

(29)

(30)
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1,0;(' ohtain Eq. (10) r;ltlwr th:1O Eq. (16). Thcn in arder tri he con:::istcnt

Kith the fC:-;lllt oht;linf.'(j for :. \0,(' mu~t Io.Tite

z f ¡U) e-eu d U (32)

\,"hC'T(' ¡: (ti) rC'pn'sl'llts ,') Jcnsity of statcs l\'ith cllC'rp.y \l. Comr¡¡rin~ Fqs.
(11) ;lnd (30), it rcslllts cvidC'llt th::lt

r (11) í. ;(U • 2([J) (e +.2-))
t=o T=O 2

(33 )

th:lt is, the uellsity of statcs is cqua} to :('1'0 [ol' ;lJ1y valuC' tdlich is

no! in <lcconbncc \",ith the JiSCfctl' level ..• givcn in equ<:tion

U ~(1I) ((+-2',
T=O

1', (X1~CWSlO~S

r:;1)

\\"c have SC'CIl ho\-: ~mc of the ideas analy:ed by Einstein aroulld

1913 GJ.n he modificd in arder to ohtain Planck's distrit'Ution 1;:)\" To do

this, it is cnough ro takc into ;1ccount the cxistcllcC of the fluctu:lting

zcro-point field. Such a [ield, un! ikC' tl1.::1!of quantum cl('ctrod~l1;:lmics

as usually interpretru, i5 :l re:11 fiell1\\hich rcrrc~cnts the incoilefCJlt

swn of the radiation prodlll.':C'd by :111 charges in the universe and sllb~i~t-

ing even at T= O. I'k.'spite tl1e idea of the :cro-¡XJint cllerg>' d;¡t('~ h:lI..:k
to the ,,:orks of Einstein-Stcrn(i) anJ \:('rn~t(':;) h'11er(' thc\' :1Il:1h':ed

Planck's scconJ thC'Ory(l..J), ~llch;1I1 idca h'as 31x1ll11(llleJIlnt'il Rr.:lffort

et al.(15) :llld Marslvll1(1(1) provilkd it \\'ith I1C'\'pcrspcctivC's in the

ficld presently knowll as Stocl1:1stic Electrodyn~uni('~, Both in papl'f ¡ :1I'k1

in the present Olle \\'e have Sl'efl 110\\'\\'e C30 obtain Planck' s distrihllt ion

la .•...from the exi~tencc (lf a fiuctu:Jting :C'ro-point field and t11e 1:1\\'5of

Classical Physics. '111is conclusion ShOh'S th,H this approach dcsen'es :1

rigorous study 3rld. from our point of \'j('h, :1 dC'ercr llnJer~t;lI1Jin~ of thc

ncv" theory: the 5tochast ic Ufftrod)11amics.
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APPE.'lDIX l

Ilere we recall the derivation oí Eq. (2) in arder to ap-

preciate it5 general ity. The nrocedure is as follows:

Le! us considcr a system váth cntropy S and. cnergy U. The prob-
ability th3t such a systcm may be out of equilihrium, due to a fluctua-
tion, can he determincd fTcm the entropy change that thi5 ~Duld imply
since the probahility 1S proportional to the number of states compatible
with thc £luctuatioo.

According to the famous Boltzmann's equatían,

s = kl"~

the probability th3t a fluctuatían might occur is

Prob a d ~

10 secand arder ~s i5 given by

Al

A2

SeU) - SeU) eq [as] LlU+ 1 [ a'S] (60)'au eq 2' a¡jT eq

oot sincc, at equilihrium the entropy is a maximum

[ ~ ]eq
and thcrcfore

o [~~n< O A4

~ = ~ [~~n(I\U) ,
eq

AS

With thi5, Eq. (AZ) is transformed iota the gaussian distribu-
tion

d~

1

e'k
a's 1 (!lU) 2;mT . eq A6

whose dispcrsion, given by

o'u k

[ a's ]aU2 eq

A7



gives, preciscly, the encrgy fluctuations. If U = (U) , then, usingeq
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oS
o (U>

1
T

A8

we can express (A7) as

o'U d(U>
da A9

",ttich is, in faet, Eq. (2).
A more general formulation oí fluctuation theory can be found

in Kestin's book(8).
We shall now analyze the consequences oí the existcnce oí the

background ficId on the aboye deduction. As it was p::>intedout, this
background ficId givcs rise to a fluctuating zera-poiot energy depcnding
only on frequency. Therefore, an energy-dependcnt variable alrcady in-
eludes the zera-point energy; but. since this latter is a constant. its
derivativc with respect to U and the energy diffcrcnces aboye considered
are transforrncd, respectively. into

and

o
oU

IlU U - Ueq

AlO

All

unless changes in w are considered. Taking iTIto account these two latter
cquations, the express ion given by Eq. (A6) is transformed into

d n

1
2k

e
r~1dU~ .

A1Z

where, instead of Eq. (A?), we obtain

o'T A13
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tl};lt is, an cxprcssion for the thennal fluctuations. If ....:c use

1
T

v.:c .•.•.i 11 h:lvl'

¡dl1 ]
a~ '" - de

T
eq

or, ir it is dcsircd, using

Il

olle oht;l ins

If, in addition, U
eq <U> \\"C' obt:l.in Eq. (11)

Al ~

A15

1\ 16

A17

o'
T

d <u)
dB
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