Revista Mexicana de Fisica 28 no. 4 (1982) 627639 627

THE ZERO-POINT TERM
IN CAVITY RADIATION. II

J.L. Jiménez
and

G. del Valle=

Departamento de Fisica. Facultad de Ciencias, UNAM
Apartado Postal 21-939. 04000 - México, D.F.

(recibido octubre 26, 1981; aceptado noviembre 9, 1981)

ABSTRACT

(6) Following the same line of approach established in a previous
work we derive, using heuristic arguments, Planck's distribution law
for cavity radiation employing classical fluctuation theory for the fluc-
tuating zero-point field with a power spectrum proportional to the cube
of the frequency. To do this we make no use of the interaction between
particles and the cavity walls.

RESUMEN

Continuando con la misma linea de razonamiento establecida en
un trabajo previo(6) derivamos, usando argumentos heuristicos, la ley de
distribucién de Planck para radiacién de cavidad, empleando la teoria
cldsica de fluctuaciones para el campo de punto cero fluctuante con un
espectro proporcional al cubo de la frecuencia. Para ello no considera-
mos la interaccidn entre las particulas y las paredes de la cavidad.

* PSPA Scholarship.
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I. INTRODUCTION

Mm

charged particles in a random electromagnetic field has properties com-

It has been shown recently that the motion of classical
monly associated with a quantum behaviour. This kind of motion depends
crucially on the use of a radiation spectrum which at zero temperature,
is proportional to w?. It must be emphasized that, unlike some points of
view on the vacuum field of quantum electrodynamics, this is a real
field(z) arising from the incoherent superposition of the radiation emit-
ted by all the charges in the universe. In this case we can analyze some
phenomena arising from the electromagnetic field fluctuations which sub-
sist even at T=0. Bearing this in mind, Einstein's work in the early
vears of this century, concerning the analysis of the equilibrium condi-
tions for the radiation inside a cavity (blackbody radiation), may be fo-
cussed from a new point of view. Some years ago, in a particularly inter-
esting and suggestive work, Boyer(S) analyzed Einstein and Hopf's 1909

work(4).

In that paper Boyer took into account both the fluctuations of
the background field and the particle collisions against the cavity walls
to derive Planck's distribution law. In such derivation, the role played
by the cavity walls is fundamental for the equilibrium to be established
since, when the particle hits the wall, it dissipates the absorbed energy
from the zero-point field. The proposed theory seems to predict that, in
the absence of collisions, the particles would increase their energy in-
definitely(s). However, given the independence of the distribution law
on the cavity size, in a recent hork(ﬁ}, hereafter to be referred to as I,
some doubts have been raised about the need of introducing cavity walls
in order to reach equilibrium. In I, we started with the Einstein and
Stern's 1913 analysis(7] and were able to derive Planck's law using only
the hypothesis of the existence of the w® spectrum for the background
field. This paper is devoted to a discussion of some further arguments
in that direction.

In the following section we derive Planck's distribution law
using fluctuation theory. In section ITI we discuss the third law of
thermodynamics. TIn the next section we discuss the discrete energy lev-

els, and in section V we finish with some remarks.
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IT. DERIVATION OF PLANCK'S LAW USING THE THEORY OF FLUCTUATIONS

As it was pointed out above, when analyzing in I Boyer's deri-
vation(s) of Planck's law, some questions arised on the true relevance of
the particle collisions against the cavity walls as a dissipation mecha-
nism by means of which it would be possible to reach an equilibrium state.
This was mainly due to two reasons: first, in such derivation the cavity
size does not appear anywhere, and second, Boyer supposes that momentum
exchange during collisions does not depend on temperature. As it will be
shown here, it is possible to derive Planck's law not only avoiding the
use of the cavity walls, but also without using the particular model im-
plied in the above mentioned derivation: a dipole oscillating harmonical -
ly. This also eliminates the tiresome calculations of R and (A2 *. 1In
order to do this, we shall use both the existence of the zero-point ener-
gy fluctuations with a spectrum proportional to w3 and the results of the
theory of fluctuations, which can be found in any text book(s). It is
important to recall that fluctuation theory date back to the works of
Eins%$%?(9) and Gibbs(lo). There exist other attempts in this direc-

tion , but our approach has the advantages of simplicity and brevity.

Let us consider radiation in thermal equilibrium. For this
analysis it is sufficient to know the statistical properties of the ra-
diation field, i.e., of C(k,)) in the equation for the electric field E,
namely

> - T T
E = Re | f d3kE(k,A) C(k,n)etErr-wt) (1)
A=1

Since Maxwell's equations do not couple the amplitudes of the
fields, we can consider them as being statistically independent. Further-
more, if we take into account that C(k,)) is a random variable formed by
the incoherent superposition of many waves produced by all charges in the
universe, use can be made of the central limit theorem of probability
theory to argue that the distribution of C(k,)\) is a gaussian one(12}. As
a consequence, the canonical field variables q and p are also gaussian.

* where (A%) are the dipole momentum fluctuations due to the field fluc-
tuations and R is the coefficient in the dissipative force.
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We shall also assume that the fluctuations of the zero-point field are
independent of the fluctuations of the thermal field.

According to the well-known result of the theory of fluctua-
tions (see appendix I)

AUy o 8
1L (2

where "1 =kT, (U) is the mean energy and o? the dispersion:
o2 = ({U2) -A(u») : (3)

We can rewrite the dispersion ¢? in temms of (U), using the
fact that we arc dealing with a gaussian distribution for the field ca-
nonical variables, and thus obtain from Eq. (2) a differential equation
for {U» . The procedure may be outlined as follows:

Equation (3) in terms of the field variables q and p takes the
form

2
02 = ({3 +wa?))- (G2 + w??)?) . @)
For a gaussian distribution,
(p*) = 34p2)’ (q)=3(g2)2 (5)

but on the other hand, since we are dealing with the oscillators of the
clectromagnetic field,

{p2) = w2{g?) : (6)
Also, since q and p are independent variables

(p2q2) = (p2){(q?) . @)

Substituting Eqs. (5) to (7) into Eq. (4), we have

g2 = (%(pz + w2q2)) 2

(uy? . (8)
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The above result allows to transform Eq. (2) into the differen-
tial equation

_giyj = ({yy?

a8 ) (9)

whose solution is

(o) = " (10)

1
B
i.e., the Rayleigh-Jeans law.

Analyzing this situation in a similar way as that we did in I,
we can see that the left-hand side of Eq. (2) is temperature-dependent.
If one accepts the existence of an energy T=0, then the non-thermal com-
ponent involved in is eliminated by deriving it with respect to 8. Nev-
ertheless, the right-hand side of Eq. (2) still contains the part of (U)
independent of temperature. It would seem then, that Eq. (2) is incon-
sistent. However, on the basis of the generalitv under which it was de-
rived, we could expect its validity would remain for thermal fluctuations

(see anpendix I), i.e.,
, (n
¥
where o~ is
L
o2 = o - g? . (12)
5

since we have assumed that the zero-point field fluctuations and those
corresponding to the thermal field are independent. Thus, using the re-
sult obtained in Eq. (8) and the one for the zero-point fluctuations, one

obtains

n

a2

(U2 (U2 : (13)
b T=0

and, using this dispersion in Eq. (11), one gets that

SR w  JfiE e e , (14)
T=

0
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which can be readily integrated, and since

Lin (U = (W) (15)

B

then, the solution is
Z(U)T=

(il & =——serites = {if . (16)
28(U T=0
e )P=D-1

Since Wien's law establishes that

(n = ww(%) : a7
Then,
(U)T=0 = constant w . (18)

must be satisfied. This is in full agreement with the assumed spectrum.
In the constant in Eq. (18) is taken to be

constant = h s (19)

1
2
then Eq. (16) is, in fact, Planck's distribution law. As it can be seen,
the constant fixes the fluctuations scale at zero temperature.

It is important to point out that in the foregoing derivation
no use has been made of the cavity containing the radiation.

ITT1. THE RELATIONSHIP BETWEEN THE BACKGROUND FIELD AND THE THIRD LAW OF
THERMODYNAMICS

The analysis performed in the preceeding section shows that it
is possible to obtain Planck's distribution law by applying classical
fluctuation theory to the zero-point fluctuating field. With the same
ideas it is possible to show that the zero-point field is in agreement
with the third law of thermodynamics. For this purpose let us again
begin with the hypothesis of the existence of a fluctuating zero-point
energy. Since at T=0 this would be the only available energy, it fol-
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lows then that

limF = (U , (20)
0 P

where F is the Helmholtz free energy. On the other hand, we know from
thermodynamics that if U is the internal energy

3RF
38 ’

(21)

so identifying (U} with U and substituting the value of (U} given in
Eq. (16) and the condition expressed in Eq. (20) into Eq. (21), one ob-

tains

s A ; s
F = = £n (2 senh B (U)T=0) . (22)
Since
i 5
5 3T 5 (23)
we obtain
5 = = 9 g
S k (B{U) - £n |2 senh B (U>T=O{) s (24)
which satisfies the condition
limS (U) = 0 (29)

T-0

that is in agreement with the third law of thermodynamics.

It must be emphasized that in order to obtain the above result,
use has been made, of the central limit theorem. Given the generality of
these assumptions, we can be confident on the generality of the result
expressed by Eq. (25). From this point of view, the mere existence of a
fluctuating zero-point field leads to a result consistent with the third
law of thermodynamics without using quantum mechanical arguments.

On the other hand, we must note that the third law of thermody-

namics implies that, if u is the energy density, then
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1imd - o (26)

T-+0 T

As it was shown in 1, this leads to the conclusion that the arbitrary
function in Wien's law tends to be a constant when T=0. As this in turn
implies the existence of the zero-point energy, we could then use this
close relationship to begin a course on Quantum Mechanics in the way de-
sired by Planck: starting from thermodynamics.

IV. DISCRETE ENERGY LEVELS

A question which may arise is: How do discrete energy levels
appear? To analyze this question, let us consider the following:

Since we know that
-BF = fn 12 B 27)

where Z is the partition function, and using for F the value given by Eq.

(22), one obtains

C_B (u )T=O
-28{07Y =0

1= e

(28)

but, if a>0 and x<0,

Ax 1
£=0 1 - a* (29)

it is satisfied. Thus, Eq. (28) is transformed into

= C-BUT:O z e-28£ (U)T=0
£=0

[ ]

o 1
_ 59—28<U);‘=0 (£+-j~) ) (30)
£=0

We must recall that if we use the traditional expression



7 = | P

du s (31)
we obtain Eq. (10) rather than Eq. (16). Then in order to be consistent

with the result obtained for I, we must write

2 = [fwe®™ay (32)
where F (U) represents a density of states with energy U. Comparing Egs.
(11) and (30), it results evident that

fu = Z s(U - Z(U)T

1
ErsY) (33)
P 0 2

that is, the density of states is equal to zero for any value which is

not in accordance with the discrete levels given in equation

= 1 &
U= 240 (eel) (54)

V. CONCLUSIONS

We have seen how some of the ideas analyzed by Einstein around
1913 can be modified in order to obtain Planck's distribution law. To do
this, it is enough to take into account the existence of the fluctuating
zero-point field. Such a field, unlike that of quantum electrodvnamics
as usually interpreted, is a real field which represents the incoherent
sum of the radiation produced by all charges in the universe and subsist-
ing even at T=0. Despite the idea of the zero-point energy dates back

(7 (133

to the works of Einstein-Stern and Nernst where they analvzed

Planck's second theory(14), such an idea was abandoned until Braffort
Eljil-(]S} and Marshallflh] provided it with new perspectives in the
field presently known as Stochastic Electrodynamics. Both in paper T and
in the present one we have seen how we can obtain Planck's distribution
law from the existence of a fluctuating zero-point field and the laws of
Classical Physics. This conclusion shows that this approach deserves a
rigorous study and, from our point of view, a deeper understanding of the

new theory: the Stochastic [Electrodynamics.
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APPENDIX T

Here we recall the derivation of Eq. (2) in order to ap-
preciate its generality. The procedure is as follows:

Let us consider a system with entropy S and energy U. The prob-
ability that such a system may be out of equilibrium, due to a fluctua-
tion, can be determined from the entropy change that this would imply
since the probability is proportional to the mumber of states compatible
with the fluctuation.

According to the famous Boltzmann's equation,

S = k&nf y Al
the probability that a fluctuation might occur is
Probad o = e8S/K ; A2

To second order AS is given by

2
SW) - W), = [_gg]eqw+%[%]§kq wn? A3
but since, at equilibrium the entropy is a maximum
-0 (3] :
and therefore
AS = ;—[ggg] (a2 . AS
eq

With this, Eq. (A2) is transformed into the gaussian distribu-

tion s
1 [ a%s ] 2
el (AU)
da = ek L 3U? leg 8 A6
whose dispersion, given by
k
G[ZJ = — 5 A7
%)
au?

eq
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gives, precisely, the energy fluctuations. If Ueq ={(U?), then, using

3S

L S A8
alu) T

we can express (A7) as
" . d(u’ ) A9
u dg

which is, in fact, Eq. (2).

A more general formulation of fluctuation theory can be found
in Kestin's book(g}.

We shall now analyze the consequences of the existence of the
background field on the above deduction. As it was pointed out, this
background field gives rise to a fluctuating zero-point energy depending
only on frequency. Therefore, an energy-dependent variable already in-
cludes the zero-point energy; but, since this latter is a constant, its
derivative with respect to U and the energy differences above considered

are transformed, respectively, into

3 3
. e T i A10
au AU,
and
AU = U-U = AU Al

unless changes in w are considered. Taking into account these two latter
equations, the expression given by Eq. (A6) is transformed into

1 a%s 2
dQ = e A12

where, instead of Eq. (A7), we obtain

2 - 1
o = % s A3
T L auz :
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that is, an expression for the thermal fluctuations. If we use

LR i
RIS {1 '

we will have
dUT

g2 = - (w] Al15
T dB 4

or, if it is desired, using

du,,
20 = P A6
dp

onc obtains

du
2 = - | @l A17
orP [ ] . Al

If, in addition, Ueq = (U) we obtain Eq. (11)

REFERENCES

1. T.W. Marshall, Proc. Roy. Soc., A273 (1963) 475; E. Santos, Nuo. Cim.,
B19 (1974) 57, B22 (1974) 201; P. Claverie and S. Diner, "Localization
and Delocalization in Quantum Chemistry", edited by 0. Chalvet et al.,
Reidel Dordrech (1976) Vol. 2 p. 395 and references given in this
review paper; L. de la Pefia and A.M. Cetto, Int. J. Quantum Chem., 12
(Suppl. 1), 23 (1977) and references given therein.

2. A clear discussion of this two points of view is given by C.P. Enz in
"Physical Reality and Mathematical Description", edited by C.P. Enz
and J. Mehera, Reidel, Dordrech (1974) p. 124.

3. T.H. Boyer, Phys. Rev., 182 (1969) 1374.

4. A. Einstein and L. Hopf, Ann. Phys., 33 (1910) 1105. Translated into
English by S. Bergia, P. Lugli and N. Zamboni, Annales de la Fondation
Louis de Broglie, 4 (1979) 295.

5. A. Rueda, Nuo. Cim., A48 (1978) 155.

6. J.L. Jiménez, L. de la Pefia and T.A. Brody, Am. J. Phys., 48 (1980)
840.

7. A. Einstein and 0. Stern, Ann. Phys., 40 (1913) 551. Translated into



12;

13.
14.

15,

16.

639

English by S. Bergia, R. Lugli and M. Zamboni, Annales de la Fondation
Louis de Broglie, 5 (1980) 39.

. J. Kestin and J.R. Dorfman, A Course in Statistical Thermodynamics,

Academic Press, New York (1971); F. Reif, Fundamentals of Statistical
and Thermal Physics; R.C. Tolman, The Principles of Statistical Me-
chanics, Oxford (1967).

. A. Einstein, Phys. Zeits., 10 (1909) 185.
10.
11

J.W. Gibbs, Elementary Principles of Statistical Mechanics.

T. Boyer, Phys. Rev., D1 (1971} 1526; 0. Theimer, Phys. Rev., D4 (1971)
1587,

M. Bartlett, Stochastic Processes, Cambridge University Press (1960);
L. Mandel and E. Wolf, Rev. Mod. Phys., 37 (1965) 231.

W. Nernst, Verh Dtsch. Phys. Ges., 18 (1916) 83.

M. Planck, Verh Dtsch. Phys. Ges., 12 (1911) 138; Ann. Phys., 37 (1912)
642.

P. Braffort, M. Spighel and C. Tzara, C.R. Acad. Sci. Paris, 239 (1954)
157; P. Braffort and C. Tzara, C.R. Acad. Sci Paris, 239 (1954) 1779.
See references 1, and T.W. Marshall, Nuo. Cim., 38 (1965) 206; Proc.
Cambridge Philos. Soc., 61 (1965) 537. o






