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ABSTRACT

A new recursive method used to solve the Ising problem in one
dimension is presented. The solutions for the open and closed chain with
and without external field are worked out.

RESUMEN

Se presenta un nuevo método recursivo usado para resolver el pro
blema de Ising en una dimensidén. Son desarrolladas las soluciones para la
cadena abierta y cerrada con y sin campo externo.

1. INTRODUCTION

The Ising Model is considered the simplest model that describes
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phase transitions in ferromagnetism and binary substitutional alloys and
thermal denaturation and polimerization processes of some biological

systems(] - with an acceptable degree of reality.
The Ising Chain is of interest in Statistical Mechanics bccause
(3,4,5,6)

it can be solved exactly and its closed form solutions can be com-
pared with the behaviour of several physical systems. Also they can serve
as a guide for analyzing the results of approximate methods in higher
dimensions.

We have developed a recursive method which is simple enough that
can be used to solve practical applications of the Ising Model with
relatively uncomplicated mathematics, In this paper we solve the linear
lattice of N sites in the following cases: i) An open chain with and without
external field, and 1ii) A closed chain also with and without external
field. We point out that these four cases are difficult to solve by the
same method (see for instance Ref. 5).

The main motivation of this work is to present a new iterative
method for solving the partition function of the Ising Chain which can
stimulate further search for exact solutions of the two and three dimensional

Ising problem
2. MATHEMATICAL FORMULATION FOR THE OPEN CHAIN

Let us consider the usual Ising model in one-dimension with N
sites:

A configuration €ul = (Hiy e s s » M) is a N-vector whose
i-th component My denotes the spin value in the i-th site and takes the
values +1 or -1. Now for a given configuration {u}, the interaction energy
of the system is given by

~ N-1
Ef{ul=-J NE TR TP H 21 (TH (1
where J is the co;pllng constant and H is the external magnetic field. The
partition function Z is the sum over all configurations of exp ( -8 E{yu} )
and is given by

~ N-1 ~N-1
Z=17 exp(-B E{p}) =) exp (BJ Z WM, + B E W), (@)
{u} {u}
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where B = 1/kT, k is Boltzmann's constant and T denotes the absolute

temperature.
Using the equality

& = § £'
30 3
2n+1 .
and noting that u; = 1 and W= My, we obtain
N-1 N
=K J 00 O regu,) T 0 +wep) 4
{u} i=1 i=1

with J = B8J, H = BH, wy = tanh J, w, = tanh H and
= (cosh H™" (cosh H)Y
Let us consider all terms containing u; :

N-1
Z=K } l: IO +emu)0 +o u1):[ Tl (1 + wuu,,)
{u2} +
u1=*1

N

._H (1 ok mHui) 2 (5)
i=2

where the first sum is taken over all the configurations {u®} = {uz,u3,...,uyl.

Performing separately the sum over M in the above expression, we obtain

N-1 N
z=2K 53 [ 3 ( +8mu) I (0 +wpp. ) I (1+wu)]
3} lp=t1 1 152 i=2 J i i+1 i=2 H i
=2K L1 (o +Bu)0 +wpu)(+um)]
{u 3} M=t
N-1 N
L R TP T I | (1 + wguy) (6)
i=3 i=3
2 ¢ % R
S {ﬁ3} [lal . Blmﬂ) * (Ble * o H)“aj I (1 * 't 1+1) H (1+w My )’
where a = 1 and B1 = Wy Defining
a, = o ¥ Bw, and g, = By wy Toawwy s Q)
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the partition function becomes

N
z=22k] [ I (q +qun O+opu J0 (0 +eu)]
{u*} Hy=11 i=3 i=3
Repeating the procedure for Mys M,y «.. Up toO My with j < N-1
one obtains the recursive formulas
%41 =@ * By, and B, = Busoun (9)

Then, we have

N-1 N
) T (1 +w M ul+1) I (1 +w i ) (10)
i=3+1 =j+1

J
= K ‘
g {E]+1 (aJ $M341

for j < N-1. In particular, for j = N-1, it follows that

MK Y (@
e

N _ 5N
27 K (QN_1 + BN-1 wH) =2"K oy

Z Bty (1 + wi)

3 +
N- H' N an

In order to obtain an explicit expression for o, we note that
(9) can be rewritten in the following matrix form

o 1 w o 1 w & o
i+1 H 1

(12)

We now consider the different cases:
Case {-a: Open chain without maghetic gield.

In this case, the soluticn is straightforward since wy = 0.
Therefore, from (12)

(8)
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Al - , (13)

which gives rise to the partition function

7 = 2% (cosh )V = 2(2 cosh H¥T . (14)

This is the well known solution for the linear chain with open
(5,8)

ends in zero magnetic field
Case <-b: Open chain with magnetic field
To find the partition function, we have to uncouple the matrix A

given in Eq. (12).
Choosing a non-singular matrix € such that

C AC = A= (15)

where A, and A, are the eigenvalues of A. They are given by

(1 *y) ¢ S, -0+ de g
— (16)
2
Therefore
S
Al-g¢ Mel=c g (17)
L0 )\;

The oy can then be determined from Eq. (12).

Case 44i: Closed chain

Using the same technique, the partition function for the closed
chain is
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N
2= ) exp [ Lo Jupmg, +H ”i]
. )

{ul} i=1
Ju.u (N-1 Hu, + Ju,pu, Hu
=g § e LW [1-1 e i irie ] e N ) (18)
{u} B
where K' = (cosh JJN (cosh H)N and Hepy = ¥y

The iterative procedure proceeds now as follows:

1

N_
K' E}(1 + Wik H) 121(1 agu) O+ o) 00+ o)

™~
]

N-1
K'{EZ} uE=1(1 * gk (1 agu) (1 au)| IO+ o)
1

SO+ w0 O+ o))

N-1
2K {52}(a1 *BH, Yy Y oEu) iI=Iz(1 o) (0 * b )

0 rup). (9

In the second step above we have performed the sum over ')

Z

Here oy =1, B, = W, Yy = and g, = w3

Y%y
Summing over u,, in Eq. (19) we obtain
(
2 ' 5
2> K {53} L(al + mHﬁl) + (mJBI + waHal) Myt (mHgl + 71)“N

[
]

(20)
N-1
v olwge, +wgupy)) “3”N] 123 (0 *wguy) (e ) O+ wu)).

Repeating recursivelly the same procedure j < N-2 times we have

o3
[}

. N=1
2K T oy * Bykgen * gyt egigeny) T (1% )
{UJ} i=j+1

S0 % wgningeg) (0% vy, (21)

where



]
Och UJH 1 Olj )
0 7]
By Wi By Wy | B, B3
Yim| 7 L R (22)
J+1 . 1 wy i 3
Ex
Ej+1 W Wy Ej 3

thus, the (j+1)-thcoefficient can be determined from the h-th coefficients.
For the particular case j = N-2:

_ooN-2 o,
=270 K )y [ Do Gy * Bygbyey * Tyoaby * Syoabyoqtiyd (% wgiy )
(T8 4 TR

= = W, g } (0 + )

-1
- 2 K'u2=+1[(am_1 *Egg) Oy BN-I)“N] L)+ Houg
5 (23)

- »N _ 5N
plaits { gy * Enand * Oyt BN—1)MH} =2 Kiagreg ey s

where in the first step we performed the sum over i and in the second

step we summed over Ky
We now consider the two different cases:

Case ii-a: Closed chain without magnetic field

When the magnetic field H = 0, we have w_ = 0 and the partition function

H
takes on the simple form.
N N
Z 22" (cosh .J) (aN # EN_1). (29)
To obtain the coefficients O and Eyoq » We use Ed: (22) ¢
j
DLj+1 1 0 ]
0
0
Bj+1 & L
= . 25
Y 1 0 0 (25)
g
0
£ 0 W w?
J+1 J J
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from which it follows that O =

o gt (cosh J}N + (sinh J)N y (26)

which is the well known result for this case(**%)

Case (i-b: Closed chain with magnetic §ield

In analogy with the_case of an open chain with magnetic field we

now have a matrix I = ¢ 0 which diagonalizes a matrix B and then
0
uncouples the system (Z2) by means of the equations
|
D B D= 0 , (27)
where
A 0 A 0
B= and @ = ; (28)
0 A 0 A

This case then reduces to that of an open chain since

=1
C A C = A (29)

and the eigenvalues A, and A, follow from Eq. (16).
The elements of the recurrent matrix are related with the
eigenvalues A s through the equations:
»

2 ;
=R = 1 S0 O T
€5 Bj 121 i [ 1)

(30)

o, =Y,
J YJ

AR
jmy B E G
where the coefficients Pi’z are functions of the elements of the
transformation matrices € and C -

Using Eq. (30)we canwrite the logarithm of the partition function
Z, Eq. (23) as follows:
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¥ Z=1n2+1n (coshJ) + Tn (cosh K) + Tn A, +
] [ 2 A 2 By 2 Bo ™!

s+ | § P [—] - [——] £ 1B [—I (31)
N o Wy 21 Ay Wy iE} 1 Ayl

In the thermodynamic 1limit, and recalling that AL >, , we
finally obtain:

Lin L 1n Z=8J + In(cosh gH+ (cosh? BH - 2 exp(-2 J)sinh 287)°"5) |
N> oo N
(32)
where we have used Eqs. (16).
Equation (3Z) is the well known result of this case(7), which
leads to the calculation of all thermodynamic function of interest.

3. CONCLUSIONS

We have presented an iterative method for solving the partition
function of the Ising Chain. Four cases have been treated: closed and open
chains with and without external field. Because these four cases are
difficult to handle by the same technique and due to operational advantages
over the transfer matrix method, we think that the method describe here
provides a new way of searching for analytical solutions of the Ising
problem in higher dimensions.

A second and perhaps no less important characteristic of the
method describe here is that, according to our experience, it permits a
relatively simple treatment of the Ising problem in a Statistical Mechanics

course.
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