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ABSTRACT

Starting with the jellium model we apply a variational princi-
ple varying the background density. As a result we get general conditions
on the background density allowing new physical meaning to the jellium
model. As a particular case, when we use an -independent particle state
function, we obtain the usual assumptions used to define the "deformable
jellium model™.

RESUMEN

A partir del modelo de jalea aplicamos un principio variacional
cambiando la densidad de fondo. Como resultado obtenemos condiciones ge-
nerales sobre dicha densidad,lo cual le da un nuevo significado fisico al
modelo de jalea. Como un caso particular, cuando usamos una funcidn de
estado de particula indevendiente, obtenemos las hipdtesis usuales que se
utilizan para definir el "modelo de jalea deformable".
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INTRODUCTION

The models of particle gases have been very useful in describ-
ing approximately several physical phenomena such as: conduction in met-
als, properties of plasma and nuclear matter, Wigner cristalization in
electron gases, etc.(1’2). In the description of charged particle gases,
a charged background is frequently introduced to assure the neutrality
of the total system, the background is inert and the energy of the sys-
tem is finite. The model is called "jellium model"(z). In case the
background deforms in order to produce local neutrality, the model is
called "deformable jellium model”(s’d). The usual description of this
last model is worked out in the Hartree-Fock approximation. Here the
background has not kinetic energy and it is constructed in such a way
that the background-background energy, the particle-background energy
and the direct term cancel each other exactly. In this work we show
among other things that the last assumption is obtained from a variation-
al principle when it is applied to an independent particle state func-

tion.
THE THEOREM

Let us consider the system of N particles whose Hamiltonian is
written as

Ho= H +H +V m
where
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Here n(R) is the background deniity, ;Ip is the particle Hamiltonian, E!b
is the background Hamiltonian, pr is the particle-background interac-
tion, and the interaction V in (1a), (1b) and (1c) is supposed to be the
same. We are interested in the value of the ground state energy with
the state function y.

The optimum energy, at first order variation in n(R), is ob-
tained when it satisfies

N
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Proof:
The energy of the system is

N
E = CUlH[RY = CuIH o> + G|V wd + V= 21 CIT(r) |ud +

N N
£ 3 1 GIVELE) W - T [ein®ve, R v e -
i# i=1
3 e verwe @

This energy depends on the background distribution. In order to obtain
the optimum energy we perform the first order variation.

The application of the Hellman-Feyman(S) theorem to Eq. (2)
gives us

N
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(3)
which reduces to
N
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This equation is the condition we were looking for in order to prove the
theorem,
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Let us analyze some implications of the theorem. Using Eq.

(4) the energy becomes
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which reduces to
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Now let us assume the particles are fermions and the solution

is written in the independent particle approximation, then
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with the orthonormalized spin-orbitals
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Using Eq. (6) the expression for the ground state energy (Eq. (5)) can

be written as
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where the last term is the negative of the direct term, and thus
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the energy of the system is the sum of the kinetic energy and the ex-
change term. Subsequently, the orbitals are optimized to obtain the
best energy, resulting in the Hartree-Fock equations, but in this case
reduced as in Eq. (8), where the direct, background-background and back-
ground-particle terms in Ea. (7) have been cancelated; that is

g / =
(\d) + (Vbb) 4 (\bp) 0

In the independent particle approximation the condition for
the density n(R) in Eq. (4) reduces to

N
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A particular solution to this equation is

N
R = ) 0P, B, (10)
i=1 —i —i

which means that the "charged' background density deforms according to

the particle density. This is the well known deformable jellium mode1(3).
It is worth while to note that the potential does not need to

depend on the interparticle distances, neither on the form of the inter-

action, as it has been used in the literature.
CONCLUSIONS

Using the condition that the potentials in Eqs. (1a), (1b) and
(1c) are all the same, we found Eq. (4) as the background 'charge" dis-
tribution which gives the best energy for the system. This result does
not depend on the potential neither on the state function, provided the
tellman-Feynman theorem could be applied. In this general case, Eq. 4)
implies in the energy Eq. (5) that the background-background and parti-
cle-background terms add in a single temm.

When ¢ is an independent particle state function, the theorem
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reproduces the usual deformable jellium model, so the use of HF approxi-
mation is not a necessary condition to work with the jellium model as it
is well known.

The way we justified the deformable jellium model, in this pa-
per, allows us to give further physical meaning to it. In this respect
the physical arguments used by Overhauser(b) to support the model are
well and formally established. What is new here is that we based on a
variational principle the hypothesis or approximations claimed to define
the model(7).

On the other hand, according with Eq. (5) when we are dealing
with the exact solution, it is not clear at all how the cancellation of
the energy terms occurs so the physical arguments that define the model
are valid exactly only when independent particle state functions are
used.
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Even nowdays the physical implications behind the jellium model are

not well known. See for instance the pretty work about "Density func-

tional theory" by M. Schliiter and L.J. Sham, Phys. Today, Feb. (1982)
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