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Starting with the jellium model we apply a variational princi-
pIe varying the background density. As a result we get general conditions
on the background density allowing new physical meaning to the jellium
modelo As a particular case, when we use anindependent particle state
function, we obtain the usual assumptions used te define the "deformable
jellium model".

RESINE.~

A partir del modelo de jalea aplicamos un principio variacional
cambiando la densidad de fondo. Como resultado obtenemos condiciones ge-
nerales sobre dicha densidad, lo cual le da un nuevo significado físico al
modelo de jalea. Como un caso particular, cuando usamos una función de
estado de partícula independiente, obtenemos las hipÓtesis usuales que se
utilizan para definir el "modelo de jalea deformable".
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INfROruCTICN

The models of particle gases have beco very useful in describ-
ing approximately severa! physical phenornena such as: canduetían in met-
a1s, propcrtics of plasma and nuclear matter, Wigner cristalizatían in
electron gases, etc. (1,2). In the description of charged particle gases,
a charged background is frequently introduced to assure the neutrality
of the total system, the background is inert and thc energy of the sys-
tern is [iníte. The model is ealled "jellitun model,,(2). In case thc

background deforms in arder to produce local ncutrality. the model is
ealled "dcfoT1Tl3hle jellium model,,(3,4). The usual description of this

last modcl is worked out in the Hartree-Fock approximation. Hcre the
~~ckground has not kinetic encrgy and it is constructcd in such a way
that thc background-background energy, the particle-baekRrounJ cncrgy
and thc dircct term cancel each other exactly. In this work we show
among other things that the last as~tion is obtained froro a variation-
al principIe ~ncn it is applied to an independent partiele statc func-
tion.

1HE TIiEORE.'1

Let us consider the system of N partieles whose Itlmiltonian is
written 35
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Here n(R) is the background density, H is the particle Hamiltonian, ~
A P

is the background Hamiltonian. Vbp is the particle-background interac-
tion, and the interactíon V ín (1a). (1b) and (1c) is supposed to be the
same. We are ínterested in the value oí the ground state energy with
the state function w.

The optUTIum energy, at first order variatíon in n(R), is ob-
tained when it satisfies
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f n (!9V(~,X)d~

Proof:
The energy of the system is

N

}:
i=1

N

}:
i=1

(1jJIT(r.)I1jJ) +->

(2)

This energy depends on the background distrib!Jtion. In order to obtain
the optimum energy we perform the first order variation.

The application of the Hellman-Feynman(S) theorern to Eq. (2)
gives us

(3)

which reduces to

f n(~')V(~,~.)d~' N

}:
i=1

(1jJlv(r. ,X) 11jJ)
-> -

(4 )

This equation is the condition we were looking for in order to prove the
theorem.
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Let us analyze sorne ilnplications of the theorem. Using Eq.
(4) the energy becomes

N N
1, (wIT(!:;.)lw) + I,~(wIV(.I:;.,;:}lw) -
1: 1rJ

- L (W11 L (w' IV(!:j,!:;.)lw') } Iw) +

+ I I (wl j (w'IV(!:. ,!:'.) Iw') } Iw)
itj 1 1. J

which reduces to

E =

(S)

Now let liS assume the particles are fermions and the solution
is written in the independent particle approximation, then

w = _1_ det Un (!:;.) ]
~ -1

with the orthonormalized spin-orbitals

= In.)-,

(6)

E =

Using Eq, (6) the expressian far the ground state energy (Eq. (S)) can
be written as

N 1 N
L (n.IT(.!:Jln.) + 2" L (n.n.IV(r,r')ln. n.)

i=1 -l. -J. i;tj -1 -:1 - - -l. -]

N-I L (n. n.IV(r,r') In. n.>
i#j 1. ) - - ) 1.

(7)

where the las! tenm is the negative oí the direct term, and thus
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the energy of the systcm is the sum of the kinetic cncrgy and the cx-
change termo &lhsequcntly, the orbitals are optimized to obtain the
bes! energy. resulting in the l~rtTcc-Fock equations, but in this case
rcduced as in Eq. (8), ~hcre the dircct. background-background and back.
ground-particlc teros in Eq. (7) have bcen cancelated; that is

, , ,
(V).(V ).(\') U
d bb bp

In the indepcndcnt particle approximation the cendition far
the density n(R) in Eq. (4) reduces to

J n(!l.') V(~.!l.') 9.R' ~n* (r.) V(!:..D ~n. el:) d!l.
-1 -1

(9)

A particular 501utiol1 to this equation is

N

I ~n~ l!l.) ~ n ;!l.)
i=l -1 -1

(10)

which rncans th:lt the "chargcd" background dcosity dcfom.s according to

the particle dcosity. This is the well kno~n deformable jellium model(3).
It is \<,Qrthwhile to note th"-It the potential does not need to

dcpend on the interparticle distanccs. neither on the form oí the inter-

action, as it has been used in the literature.

CONCWSIONS

Using the condition that the potentials in Eqs. (la), (lb) and

(lc) are a11 the same, we found Eg. (4) as the background "charge" dis-

tribution .•..,hich gives the best energy ror the systcm. This resul t does

not depend on the potential neither on the state function, provided the

Hellman-Feyrunan thcorcm could be applicd. In this general case, Eq. (-l)
implies in the encrgy Eq. (5) that the lKlckground.hackground and parti-

cle.backgrouI~ terms add in a single termo
"'hen W is an independent particle statc function, the thcorcm
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reproduces the usual deformable jellium model, so the use of I~ approxi-
mation is no! a necessary conditlon to work with the jellium moJel as it
is we!! lmown.

The W'dYwe justificd the defonnable jell ium model, in this pa-

per, al10ws us to give furthcr physical mcaning to it. In this respect
the physical arguments used by Overhauser(6) to support the moJel are
we!! and formal1y established. "~at is new here is that we based on a
variational principIe the hypothcsis ay approximations claimed to define
the model (7) .

On the other hand, according with Eq. (S) when we are dealing
with the exact solution, it i5 not clear at a11 how the cancellation of
thc energy tcrms OCCUTS so the physical arguments that define the model
are valid exactly only when independent particle state functions are
used.
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