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ABSTRACf

A discrete s!?ectrumfor position and a nonlocal equation for the
wave function with its respective solutions are obtained, in a trivial
way, by replacinq the usual position and momentum operators by finite ma-
trices, obtained by truncating the infinite matrices for these operators
in the energy representation. Sorne extremal properties of the energy
eigenfunctions and of the position eigenvalues are shown.

Al reemplazar las matrices representativas usuales de los ope-
radores posición y momento en la representación de la energía por ma-
trices finitas, se obtienen, de manera trivial, un espectro discreto para
la posición y una ecuación no-local para la función de onda con sus res-
pectivas soluciones. Se ~uestran algunas propiedades extremas de las
eigenfunciones de 'la energía y de los eigenvalores de la posición.
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1. UITROOOCfION

In quantum mechanics, the idea that posi tion may have diserete
values has no! stopped being present through its development, and the in-
terest to it has no! been lessened by time. In spite oí that, in the
frame""rk of the theory, it has not been possible to find its place yet.
If sJth a thing would accur, sornechanges in the fUndamental postulates
oí quantum mechanics are e~cted, because without them, it is no! pos-
sible to imagine 5uch a discontinuity in the spectnun oí the "?Qsition
operator. SchrOdinger's equation, far instanee, should be transformed in
another equation, which would take into account this feature; further-
more, if that spectrum would be finite, the quantumcondition [",í' ]=iltl
should be changed too(l), causing al! changes that this could bring with

it.
At this point, it is convenient to make the following conside-

rations about this subject.
As Jit is knmm, the postulates oí quantum mechanics assign ele-

ments of a Hilbert space to states of a physical system, linear operators
to dynamical variables, and eigenvalues of Hermitian operators to possi-
ble results of a measurernent. They do not state anythin~ about the con-
tinuous (discontinuous) nature of the eigenvalue spectrum, and therefore,
in general, we must accept both possibilities except when we deal with
the position case. Here, the postulates give as a matter of fact, the
continucos nature of the X-SpectIUm in the whole range (-<», +<»).

It has been possible to get results agreeing with experimental
data fram application of those postulates to physical prohlems. Never-
theless, suppose for a mament that they would state the existenee of a
di serete soectrum for position, that those problems ccold be hUrked out,
and that the ~easurable results would agree with exnerimental data too;
what would occur then?

One can not cease to ask oneself how quant~ mechanics (the
equations of motion of which were inspired by classical mechanics) lets
energy, in sornecases, to take diserete values while it forbids the po-
sition to do the sarneas those two variables have identical continuous
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nature in classical mechanics? Being quantum mechanics a difíerent thco-
ry, it is evident that it does not have to ~reserve the continuous-conp

tinuous relationship oí that pair oí variables, but neith~r, in rny opin.
ion, it should forbid discontinuity for one of them. ~hat distinguishes
them, since one can take diserete values and the other can not? About
this, the following considerations will be useful.

In the beginning oí quantum rnechanics, !,hysicists wcre busy ex-
plaining a ~henomenon that was facing them: the spectral lines. In arder
to explain it, it was necessary to use the Bohr's hypothesis, which has
no analogue in the contcxt of class kaI mechanics and can be wri tten as

f mXdx = J = nh

The right-hand sirle oí this equation represcnts the ncccssity
oí reproducing the diserete values oí ener~ in the hydrogen atom. The
left-hand side needs the continuity of position and does not have to re-
present any discrete value oí the position since there was no expcrimcnt
which would request it. That was the eauation in which Hcisenber~(2) re-
placed

x(t)

to obtain, first,
~ d

h = m L a -d (aw la 1')a:-» n n a

and thcn. thc follJUJla which Bom and Jordan (1) wrote as
h
r

and that, finally, became the ouantum condition:

[ x,¡; ] ihl

Imagine now, for a JTK)J'J1ent,that an exneriment requiring dis-
crete values oí position would existo This condition and the SchrOdin~er
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equation are expected to change. l'!hat should the cQI!flIUtator[x,p ) be
equal to? ~'hat ""uld the form of SchrOdin,~er'5 equation be? One of the
requisites fay development oí the theory is to know the answers oí these
questions.

The lXJrpose of this ""rk is to show that if a discrete spectrum
far position in the hannonic oscillator is assumed, the Schrooinger equa-
tion is transfonmed ioto an ncnlocal equation (the usual differential
operator does no! appear) compatible with certain extremal ~roperties.
We work with the linear harmonic oscillator because it is a simple prob-
lem írom which we can get a lot oí information.

In section 2 we state the basie hypothesis. The key idea is
to substitute the representative matrix oí each opcrator hy one oí its
blocks. In section 3 we show that the POsition cipenvalues turn out to
be the Hcnnite JX>lynomialsI roots, TOOreover, we obtain t~ wave functions;
sorne oí its algebraic properties are shown in the next section. and in S,
the momentum eigenfunctions are obtained. In section 6 we get the fom
of the SchrOdin~er equation and in section 7 we show its extremal proper-
tieso Finally, in section 8, we make sorne remarks about possible exten-
sions of the \~rk.

2. "!HE IlYP01llESFS

Let us bcgin by considering the question: in which way can we
induce a discrete spectrum for the position of the oscillator? This
question carries its answer and the Heisenberg representation leads us to
it.

'Ole Hamiltonian of an hannonic oscillat6r of mass In and angular
frequency w is

fl
,The usual treatment oí the H-eigenvalue nroblem is as follows.

Let us obtain the representative matrices of x and ~ in the basis where
H is diaRonal. It is known that, as time is disreRarded,
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and

Here Ek is the k-th energy eiRcnvalue and the brackets denote the expec-
tation valuc. Therefore, the eigenvalue equation for x takes the fo~

o Ií O

If O rz
O ('[ O

110 "o
11, 11,

= X
112 "2

whcrc H. is the hamiltonian for the i-th harmonic oscillatoT.
1

To obt~in a discrete spectrum, we substitute the aboye equation
by

O 11 O

11 O Ii

ff O 12 O

O /N-1 O

IN-T O IÑ

O IÑ O

DO Po

D, P,
P2 P2 • (1 )= x

where the Pk are the momentum ei~enfunctions.
When supposing this ea~ation to be the correspOndent ane to the

cigenvalue problem of x, we are doinv. two things: first, to substitute
the Hilbert space by a finite-dlincnsional one and second. to accent that
the reprcscntative matrix oí x is the ane given by Eq. (1). A word about
this is necessary. Ií the ket space is finite-dimensional, the A-spec-

trum rust be finite too, arrl this means that an upper' bound fOT its ei'tcn-
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values exists. Thus,

o o (2)

where E
k

is expectcd to be (k + 1/2)hw.

Since the key idea is to substitute an infinite matrix by one
of its blocks. we have an alternative: to choose (EjIHI~) as given by

Eq. (2), where E = (n+ 1/2)hw (for n=O.1.2 •...• N) as one o' the funda-n
mental representatives, or to choose

o /f O

ff
/f O /2

(Ej1xIEk») O /2 O (3)

O r'N=T O

/fn' O A

O IÑ O

and

O 11 O

-/f O 12

« Ej Ir¡Ek») 'f¥ O -/2 O (4)-1 -
2

O /fn' O

-/fn' O IÑ
O -.IÑ O
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as th~ fundamental ones, and in teros of thern to find (Ej I H 1!1,).
These two possibilities are not equivalent because of the non-

linearity oí H in x and p. If we choose the first, the matrices
(Ejlxl!1,}) and (Ejlíll!1,}) are different from those given by Eqs. (3)
and (4), just for the 1ast e1ements, and if we choose the second, the
cigenvalues oí H become

E = { (n + ¿')hw

n N
Ihw

n = O,1,2, ... ,N-l

n = N

In spite of the va1ue of EN' we sha11 suppose va1id the repre-
sentatives in Eqs. (3) and (4). The sYMffietryobtained in a11 resu1ts
wil1 be considered as a justification cf this procedure.

About the quantum condition [X,m = i h í', it shou1d be said
that, according to Eqs. (3) and (4), it becomes

(5)

where

j = k = N ,
(6)

othefloJise

The operator a, enables us to answer sorne questions arising in
the creation-annihilation operators treatment oí the H-eiRenvalue problem.
For example, the creation operatoTJ defined in the usual manner,

"t = _1_ (.."x _ i~)
12mhw

is now allowed to satisfy the relation

at lE} = O
n

in addition to the we11-known one: alEo} O.
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3. EIGENVAWEPROBLGI OF X

Wehave already written down the diagonal fonn of H and the
cornmutator oí x and P. OUT nex! step is to salve the eip,envalue problem
of x (Eq. (1)).

Let us define < : 12m ",,-1' x. It is not difficult to see that

HeN+, «) = O

is obtained íTom the characteristit equation associated with Eq. (1),
det(x-xl) =0. Here, He (O is the (N+l)-th lIennite polynomial be-

N+1 _ 2 2longing to the generating funetían e ~ /. Therefore, the eigenvalues
oí x are al1 real, distinct, and symmetrically located about the origin
inside the interval (-21N+T, 2~). l'/henN ..•.oo, these points are
everywhere dense in every finite se~ent oí the real line(3,4).

Also, the recurrence equation for the eigenket components

can be obtained from (1).

To salve thcm, let us cornmence by the las! ane. Takinp, ioto
account the normalizatíon ccnclitioo, we Ret

PNm /i!£(N+1) :
)'

PN-l«) .lli:..Jl.l. <
(N+,) :

PN-2«) :!!:!:.D.l. «2 _N)
(N+l) :



P CE;)= ~ [ f;3- (ZN-l)i;]N-3 (N+l):

P m = {lH3IT [f;'-3(N-l)f;2 + N(N-Z) ]
N-4 J (N+1):

ZZ5

(8)

:lli.:22.l. [f;5 - Z(ZN-3)f;3 + 3(N2.3N+ 1)i;]
(N+l):

etc.

As it will be secn below, these polynomials satisfy

PN-t(9 = N: HeN_t (f;j)
(N+l)(N-t): HeN(f;j)

(9)

for all values of t and j. f;j is a root of HeN+1(f;). This result was
necessary in the view of Eq. (7), because it is what we would have ob-
tained if, to solve Eq. (7), we had begun with the first of them.

Since I~.) is an ei~enket of a Hennitian operator in 3 finite-
Jdimensional space, its components satisfy the following ortonormality

relations:

(10)

(11)

fbwever, it is instructive, froro the al~ebraic point oí view,
to give a more '~irecttl proof oí those relations, because more properties
of the polynomials Pi(f;) are shown. This is what we shall do in the fol-
lowing section.
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4. ALGEBRAIC DIGRESSION

First, Iet us show that Eq. (9) is satisfied by the poIynomiaIs
defined in Eq. (8). To do this, Iet us write down

(12)

where [V2 ] means the highest integer contained in [O ,V2 J. Substi-
tuting Eq. (12) in Eq. (7) we obtain the difference equation

(1 " U " [V2 ]

for the coefficients of the poIynomials (8). Here, ci(N) = 1 and, if f.

is even, ct~~2J= o. A particular solution of that equation is

whcre (k)f. 15 the factorial of k of grade f., Le., (k)f. = k(k-1)

(k-2) ... (k-f.+l).

Observe that

el. (f.-1) =

"
(-1)" f.:

2"u: (f.-2U):

where a~ is the ~-th coefficient of Hel when it is written as

N+l N+1Therefore, e (N) = 11 and
" "
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By using Eq. (7) and the fact that !le
N
+1(1;j) = O. one can come

to Eq. (9).
Now, by usin~ this result, the relation

can be obtained, and with the Christoffel-Darboux formula for Hennite po-
lynomials, Eq. (10) can be proved.

Let us go to the other ortogonality relation. F~. (11). In
arder to give a proof of it, let N be an even number. Note that the co-
efficients cieN) can be rewritten as a matrix, to obtain" .

PN (1;)

PN-l (1;)

PN-2 (!;)

Po (1;)

(13 )

where R, Al and A2 are matrices:

R = Rjk
.lli:.il.l. 6
(N+1): jk

N O O O Ono
O N-l O O Oao
N O N-2 O O-al ao

O N-l O N-3 O-ao ao

aOo
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and

N+' O O O O
ao

O N+l O O OaO
N+l O N+l O Oal aoA2 N+' N+'O a, O ao O

aN+1
N/2 O N+lao

If we a~ree to denote the sum I~:~~as SIL) , we shall have

S(O)

~j
S(1)

~~ S(2)

¿~ J A2
j

~N SiN)
J

N+'SIO)ao
O

N+'S(O) 2 N+'
al - al

N+' S(O) NaN+'
aN/2 - 1 N/2

(N+l)aN+'
O

O

(N-l )aN+'l

N+'
aN/2

where \Ve have used Newton's fornulas for the sums oí powers of polyno-
mial roots(S). Hence. it follows that

N+l

O
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lxJt

so

5(0) N+l
5(1) O

AlA,
5(2) O

O

Remembering now Eq. (13), we can see that

(O •• k •• N)

In the same way, it can be shown that

(O •• k •• N)

and, by induction [using the recurrence equation of PN_lU,:)], one can
prove that Eq. (11) holds.

The proof follows the same steps for N odd.
Note that if we replace Eq. (~) into Eq. (11), the latter be-

comes
N+l
L

j:::1

N!

(N+l) [He (E;.))2
N J

for l=k=O. It agrees with the result obtained for the SUJTI of Christof-
fel numbers associated to the He polynomials(3,4).



230

5. EIGENVAllJE PROBIE1 OF P

Having obtained the explicit fom and sorne properties of the
x-eigenket components in the H-basis, 1et us proceed now to salve the
eigenvalue problem of p.

Defining n = ,/z/(ltI1):O) p, and using the representative Eq. (4),
the eigenvalue equation can be ca s! into the form

o ,If O go go

-,If O I'l g¡ g¡

O -/2 O g2 g2
in

O ,,¡;¡-

-IÑ O gN gN

Hence, we ~et the characteristic equation

HeN+1(n) O

showing that the p-spectrum coincides with the x-spectrum, excepting a
constant. Also, from the corresponding recurrence eQUation, it is ob-
tained that

and therefore, these polynomials satisfy the relations

N+l

j~l gl(inj)~(inj) á/k

where nj is the j-th root of HeN+,(n) and • means complex conjugate.
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6. REPRESENTATIVES OF ¡; ANO ¡¡ IN 1llE x-FASIS

In arder to give an answer to one question formulated in the
beginning of this work (to know the form of the eigenvalue equation of O
in the x-representation) , it is required to find (xjlrlxk>. The most
direct way of doin~ this, is replacinp.: the orthogonal matrix

Po (I;¡) Po (1;2) Po (I;N+¡)
p¡ (1;,) P, (1;2) p¡ (I;N+l)

( E¿ IXj »

PN(I;¡) PN(1;2) J'N(I;N+l)

and F.q. (4) in

I (x.IE.><E,lílIE ><E Ixk>D J (.. (.. n n<,n

to ohtain

(14 )

Let us calculate (x.lpl~ )x .. By using the recurrence equation
J k J

of p,(I;), the explicit fonn of p (1;.) and Eq. (10), one can see that
< N J

(Xjlíllxk>Xj = iI{Ójk-l +;1: 1¿(l+l) [nl+1(l;j)Pl-l(l;k)-P<,+¡(l;k)Pl_l(l;j)J}.

In the same way,

So, subtracting these two equations, we can find that
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(15)

This is the representative oí p in the x-basis. It is interest-
ing to natice the superficial resemblance oí this result with the well-
known relationship

,
P - (-ih) i..

dx

when x is let to have a continuous spectrum. Do no! forget that the dif-
ference x. - x

k
can be clase to zero, ar 35 great as I(t-ll.) / (2JTk¡J)) ,

With Eq. (15), the form of the H-eigenvalue equation

(l..- p2 + 1 ru2x2) lE) = E lE )
2m 2 n nn

in the x-basis can be found immediately. It transfonms in

h2. ¿'
2m k,t

Po (I;k)

(x
j
- xt) (xt -x

k
)

+ ~ mw2x,p (1;.)
L. J n J

E P (1;.) • (16)o o )

~here (E1) means to sum ayer values making a non-JU.lll denominator.
p (I;k)= po(/2mwh-1 xk) i5 the wave function defined in xk' corre5ponding
ud the eigenvalue E. Obviou51y, it 15 a solutlon of Eq. (16).

o
With this equatían, we have finished answering the questions

made in the beginning oí this work. It is no! a differential equatían,
as Schr6dinger's, nor a differences ane. An interesting feature, is its
nonlocality: the "differential" operator that appears there, takes into
account almost all points belonging to the domain oE definition and not
only thosc contained in the neighbourhood of smne point, as it occurs in
the SchrOdinger equation. It is interesting too, to ask oneself if its
nonlocality is preserved in its llinit fom when N ..•."" (is such a fom
exists), because oí the place this may occupY in the discussion about the
divergences in local field theories(6).
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7. EXTIID1AL PROPERTI FS

It is known that in a finite linear space an eigenvalue equa-
tion as HIE ) = E lE ) has certain extremal pronerties as its eigenvec-n n n •
tors are concerned: the Rayleigh quotient,

R[xl (x!Hlx)
(x Ix)

defined for any vector Ix} such that (xix) F O, takes a stationary value
in Ix} = lE}. This value is a minimum if lE } = lEo} and maximum ifn n
lE ) is the eigenvector with the greatest eigenvalue (Rayleigh's Prin-n

ciple). In our case the minimum and maximum values of R[x] are Eo = (1/2)hw
and E 1 = [(2N-l)/2]hw, respectively.N-

What we are going to show here, is that in addition to these
propertics, the cigenvalues of ~sition make Tr H to take a stationary
value in Zk= xk as Tr H is allowed to be a funetían of (N+1) continuous
variables Zk:

,
Tr H(Z¡ , .•. ,ZN+1) [

N+l 1 1 N+'
= hw I' --- +"4 I

k.¿=l (Zk - Z¿)2 k=1 Z~J
The condition far a stationary point,

H(Z¡, ... ,ZN+l) I
zi=f,;i

= O k 1,2, ... ,N+l

requires the points ~j to satisfy

( 17)

and, in arder to demonstrate this equation, let llS regard the following.
From the Christoffel-Darboux formula for the polynomials p¿(,) ,

one can see that
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N-'
I~O /N-l [!'N-I-, (!)~N-I(~k) - PN-I(E.j)PN-I-,(~k) ]

If we natice that

N

l~' l nl(~j)Pl(~)

and make use of Eqs. (14) and (15), we can obtain

and hence

where we have.defined

r' Pl(~k)

k (~j- ~)

ro obtain V Pl(~j)' Jet us make use of Eqs. (14), (15) and (11)
once more. This gives us

l = O ,

¡<l<N-l

l = N .
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And now, if we replace this result in the equation for
t' 1 b .~ «j _ ~J3 we o tam

after sorne alRebra. The right-hand side sum is just the diagonal ele-
ment (x.láflx.>, where Jt is the creatían operator; consequently

J J

(x I"tlx) = -l-<x.l(mwX-ioJlx.) -2
1 <J'

j j /z",J1wJ . J

Therefore, we have that Eq. (17), condition for a stationary value of
Tr HeZ¡,Z2""'ZN+l) in (~1'~2,'"'~N+l)'holds, giving thus an addition-
al property to the variational principIe aboye mentioned, with the £01-
lowing difference: in Rayleigh's PrincipIe the variations are made on the
states Ix>; in OUT case on the values Zk"

8. CONCl1JDI~ RE'IARKS

To conclude the present work we shal1 remark sorne points that
ene should take into account in arder to, if possible, make an extension
of this work to other ~roblemswith a diserete spectrum for 005ition.
The displayed results have not been obtained írom a peneral systematic
method, but in spite of this, one can expect that:

1) The commutator [x,p], the representative of which is

o 1 1

1 O 1

-iIl 1 1 O

O 1

1 O

is valid for the finite case, since, suggestively, it becomes the same






