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ABSTRACT

A discrete spectrumfor position and a nonlocal equation for the
wave function with its respective solutions are obtained, in a trivial
way, by replacing the usual position and momentum operators by finite ma-
trices, obtained by truncating the infinite matrices for these operators
in the energy representation. Some extremal properties of the energy
eigenfunctions and of the position eigenvalues are shown.

RESUMEN

Al reemplazar las matrices representativas usuales de los ope-
radores posicidn y momento en la representacién de la energia por ma-
trices finitas, se obtienen, de manera trivial, un espectro discreto para
la posicidn y una ecuacidn no-local para la funcién de onda con sus res-
pectivas soluciones. Se muestran algunas propiedades extremas de las
eigenfunciones de 'la energia y de los eigenvalores de la posicidn.



218

1. INTRODUCTION

In quantum mechanics, the idea that position may have discrete
values has not stopped being present through its development, and the in-
terest to it has not been lessened by time. In spite of that, in the
framework of the theory, it has not been possible to find its place yet.
If such a thing would occur, some changes in the fundamental postulates
of quantum mechanics are exnmected, because without them, it is not pos-
sible to imagine such a discontinuity in the spectrum of the position
operator. Schrddinger's equation, for instance, should be transformed in
another equation, which would take into account this feature; further-
more, if that spectrum would be finite, the quantum condition [ X, ]=inf
should be changed too(1)
it.

, causing all changes that this could bring with

At this point, it is convenient to make the following conside-
rations about this subject.

As )it is known, the postulates of quantum mechanics assign ele-
ments of a Hilbert space to states of a physical system, linear operators
to dynamical variables, and eigenvalues of Hermitian operators to nossi-
ble results of a measurement. They do not state anything about the con-
tinuous (discontinuous) nature of the eigenvalue spectrum, and therefore,
in general, we must accept both possibilities except when we deal with
the position case. Here, the postulates give as a matter of fact, the
continuous nature of the X-spectrum in the whole range (-«, +=).

It has been possible to get results agreeing with experimental
data from application of those postulates to physical problems. Never-
theless, suppose for a moment that they would state the existence of a
discrete spectrum for position, that those nroblems could be worked out,
and that the measurable results would agree with exnerimental data too;
what would occur then?

One can not cease to ask oneself how quantum mechanics (the
equations of motion of which were inspired by classical mechanics) lets
energy, in some cases, to take discrete values while it forbids the po-
sition to do the same as those two variables have identical continuous
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nature in classical mechanics? Being quantum mechanics a different theo-
ry, it is evident that it does not have to nreserve the continuous-con-
tinuous relationship of that pair of variables, but neither, in my opin-
ion, it should forbid discontinuity for one of them. What distinguishes
them, since one can take discrete values and the other can not? About
this, the following considerations will be useful.

In the beginning of quantum mechanics, nhysicists were busy ex-
plaining a phenomenon that was facing them: the spectral lines. In order
to explain it, it was necessary to use the Bohr's hypothesis, which has
no analogue in the context of classical mechanics and can be written as

fnu'cdx=J=nh

The right-hand side of this equation represents the necessity
of reproducing the discrete values of energy in the hydrogen atom. The
left-hand side needs the continuity of position and does not have to re-
present any discrete value of the position since there was no experiment
which would request it. That was the eauation in which Heisenberg(z) Te-
placed

x(t) = Eaa(n)eimnt

==

to obtain, first,

oo

- 2, 2
h = m Z o dn (c‘wnlaul ) )

u:-oo
and then, the formula which Born and Jm-dan(TJ wrote as

h
i

E (Prx %n ~ Yk P ’
and that, finally, became the quantum condition:
[%6] = o .

Imagine now, for a moment, that an expveriment requiring dis-
crete values of position would exist. This condition and the Schrédinger
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equation are expected to change, What should the commtator [ X,p ] be
equal to? What would the form of Schrfdinger's equation be? One of the
requisites for development of the theory is to know the answers of these
questions.

The purpose of this work is to show that if a discrete spectrum
for position in the harmonic oscillator is assumed, the Schrédinger equa-
tion is transformed into an nonlocal equation (the usual differential
operator does not appear) compatible with certain extremal properties.

We work with the linear harmonic oscillator because it is a simple prob-
lem from which we can get a lot of information.

In section 2 we state the basic hypothesis. The key idea is
to substitute the representative matrix of each onerator by one of its
blocks. In section 3 we show that the position eigenvalues turn out to
be the Hermite polynomials' roots, moreover, we obtain the wave functions;
some of its algebraic properties are shown in the next section, and in 5,
the momentum eigenfunctions are obtained. In section 6 we get the form
of the Schrodinger equation and in section 7 we show its extremal proper-
ties. Finally, in section 8, we make some remarks about possible exten-
sions of the work.

2. THE HYPOTHESES

Let us begin by considering the question: in which way can we
induce a discrete spectrum for the position of the oscillator? This
question carries its answer and the Heisenberg representation leads us to
it

The Hamiltonian of an harmonic oscillator of mass m and angular
frequency w is

i = Z1—m p2 + %ng

The usual treatment of the ﬁ-eigenvalue oroblem is as follows.
Let us obtain the representative matrices of X and S in the basis where
H is diagonal. It is known that, as time is disregarded,
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A /A
(Ek]X[Ej> = m E&ﬁk'j+1 + Yk 6k,j-1 ]
and
~ . h
(EIPIE) = -i /—?i*’- B%3 8 441 * AT 8 ]

Here Ek is the k-th energy eigenvalue and the brackets denote the exnec-
tation value, Therefore, the eigenvalue equation for X takes the form

( 5 ¢ 3

0 JT 0 [Hol 1,
5 [T 0 2 s | | H | h
2mw 0 VI 0 H H ’

where Hi is the hamiltonian for the i-th harmonic oscillator.
To obtein a discrete spectrum, we substitute the above equation

by
( 3 ( )
o /1 o N, |2
A o0 2 D, o,
e S P2 | | x Fg M
2 0o N1 o0
MNT 0o AN !
k 0 N 0 ) | Py | Py

where the p, are the momentum eigenfunctions.

When supposing this equation to be the corresrondent one to the
eigenvalue problem of x, we are doing two things: first, to substitute
the Hilbert space by a finite-dimensional one and second, to accent that
the representative matrix of X is the one given by Eq. (1). A word about
this is necessary. If the ket space is finite-dimensional, the fi-spec-
trum must be finite too, and this means that an upper bound for its eigen-
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values exists, Thus,
E
0
(EsIH[E)) = |0

where E, is expected to be (k+1/2)hw.

Since the key idea is to substitute an infinite matrix by one

Eq.

h

E.|X|E ) =
« jIXIEk) e

and

hmw

(E;Ip|B)) = -i

0
g
0

=y

0
“¥T
0

0
0 V2
Y. 0
1.0
0 V2

V2 0

of its blocks, we have an alternative: to choose (EjlﬁlEk) as given by

(2), where En= (n+1/2)hw (for n=0,1,2,...,N) as one of the funda-
mental representatives, or to choose

(3
N-T o
0 /N
AN o
, (4)
N-T 0
0 VN
N0
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as the fundamental ones, and in terms of them to find (E,IAIE).

These two possibilities are not eauivalent because of the non-
linearity of f in X and p. If we choose the first, the matrices
« E, iSE|Ek)) and ( Ej[falEk)) are different from those given by Eqs. (3)
and (4), just for the last elements, and if we choose the second, the
eigenvalues of H become

(+ Pha, = 0,12, N1
ghw, n=N

In spite of the value of Ey» we shall suppose valid the repre-
sentatives in Egs. (3) and (4). The symmetry obtained in all results
will be considered as a justification of this procedure.

About the quantum condition [X,f] = ih 1, it should be said
that, according to Egs. (3) and (4), it becomes

(Ej.l[x,p]lEk) = ih ij - ih(Ej|O|Ek) . (5)
where
Ni#: 1, 5 j=k=N ,
(Ej|0|Ek) = (6)
0, otherwise

~ - .
The operator 0, enables us to answer some questions arising in
the creation-annihilation operators treatment of the H-eigenvalue problem.
For example, the creation operator, defined in the usual manner,

&t = A ek - iD)

Y 2mhw
is now allowed to satisfy the relation
ark
a |En) =0 |,

in addition to the well-known one: a|E0) = 0,
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3. EIGENVALUE PROBLEM OF X

We have already written down the diagonal form of H and the
commutator of X and p. Our next step is to solve the eigenvalue problem
of X (Eq. (1)).

Let us define £ = v2m wh-1 x. It is not difficult to see that

HeN+1(E) = 0

is obtained from the characteristi¢ equation associated with Eq. (1),
det(x-x1) =0. Here, He . (£) is the zp\r+ 1) -th Hermite polynomial be-
longing to the generating function e 8772, Therefore, the eigenvalues
of X are all real, distinct, and symmetrically located about the origin
inside the interval (-2Y'N+1, 2V N+1), When N>, theseESpg)ints are

»

Also, the recurrence equation for the eigenket components

everywhere dense in every finite segment of the real line

P (E),
Tp(E) = Bp,(8)
M py(8) + V2 p,(B) = &p,(&)
@)
AT, + Np@® = & ©® ,
ANp,_, & = &n (&) ,

can be obtained from (1).
To solve them, let us commence by the last one. Taking into
account the normalization condition, we get

N!
©) = -
P (N+1)!
’J
Py, (0 = [&g
(N+1) !

P, @ = [ 2y

(N+1)

.
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P, ® = [ES3L [ o an-ng]

(N+1) ! 8)
Pyg(® = [ [evosnng2 « Nv-2) ],

(N+1)!

Pyos (€) = f%% [€5-2(N-3)82 + 3(N2-3N+1)E]

etc.

As it will be seen below, these polynomials satisfy

R Hene &) “

j(rm) (0! Hey(E))

pN—f_(Ej) =

for all values of £ and j. Ej is a root of Heg ., (£). This result was
necessary in the view of Eq. (7), because it is what we would have ob-
tained if, to solve Eq. (7), we had begun with the first of them.

Since |Ej) is an eigenket of a Hermitian operator in a finite-
dimensional space, its components satisfy the following ortonormality
relations:

N
RIRTICHICR RS M (10)

N+1
jL P (E;)n, (£5)

]

Sp * an

However, it is instructive, from the algebraic point of view,
to give a more 'direct" proof of those relations, because more properties
of the polynomials pZ(E) are shown. This is what we shall do in the fol-
lowing section.
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4. ALGEBRAIC DIGRESSION

First, let us show that Eq. (9) is satisfied by the polynomials
defined in Eq. (8). To do this, let us write down

&

2
£) = / Aot | 12
pN-ﬂ( ) N1 UZO T (12)

where [ £/2 ] means the highest integer contained in [ 0,£/2 ]. Substi-
tuting Eq. (12) in Eq. (7) we obtain the difference equation

e = - et o<u<[e2]

for the coefficients of the polynomials (8). Here, CE(N) =1 and, if £

is even, Cfﬂ/ ] = 0. A particular solution of that equation is
oy = E0§ oo, (-0
% 2Mu! k=0 . Ak & 7

where (k)ﬂ is the factorial of k of grade £, i.e., (k)£=k(k-1)
(k-2)...(k-£+1).

Observe that
bty = LB o
H 2Mur (2-2u)! u

where af is the u-th coefficient of Hez when it is written as

L
(3]
Hep(®) = 1 ot g2

Therefore, CSH N) = aﬂ” and
1

Epg(8) -1 (B) = p_,(8) = Py (y4q) (B) = Tt Hey., (€)
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By using Eq, (7) and the fact that Hem_1 (5j) =0, one can come
to Eq. (9).

Now, by using this result, the relation
N! N Heﬂ(gj)Heﬂ(Ek)
(N+1)HeN(Ej}HeN(£k) £=0 £

N
£§0 Pp(E5)P () =

can be obtained, and with the Christoffel-Darboux formula for Hermite po-
lynomials, Eq. (10) can be proved.

Let us go to the other ortogonality relation, Eq. (11). In
order to give a proof of it, let N be an even number. Note that the co-
efficients C'ﬁ(N) can be rewritten as a matrix, to obtain

r 3 ( R

D, (&) 1

Py (E) £

Peo(8) | = RAR, | &2 : (13)
P, (E) e

where R, A; and A, are matrices:

-1\
0 Rt (zn); E
r Qg 0 0 0 0]
I 0
Ay = a0 ay? oo ol
0 —alg—1 0 a'g-a 0
02, o Cal
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and
N+l 0 ] 0 0
ag
6 ay® O By . 0
A0 T o 0
A2 L .
N+1 N+1
0 a 0 a, 0
A ) alam
N/2
If we agree to denote the sum 21::: Eﬁ as st , we shall have
N ¢ r |
1 s ay*t1s(©) N ay
Ej S(1) 0 0
£2 g(2) g (0) _ o N -1
I A, 11w & - 1 1 _ 1
. 2 :
J .
N (N) N+1¢(0) N+1 N+1
% s 2 Ny Iny2

where we have used Newton's formulas for the sums of powers of nolyno-
mial roots(s). Hence, it follows that

) (
S(O) N+1
S(” 0
AIAZ = u . s
g(2w) Z (15 +p(~N+1_2k)aN-2ka]b:+1
x=0 =k
S(2u+1) 0




but
_qyktu _ N-2k N+1 _ o1 N
kEO( - 2R SD A DL AP
50
5(0) Ne1
g(M 0
(2)
S _ 0
AJA, =
g 0

Remembering now Eq. (13), we can see that

N+1

321 BB Dy (B = &, (0<k<N)

1l

In the same way, it can be shown that

N+1

321 Py B50P i (B = 8, O<k<N ,

and, by induction [using the recurrence equation of pN_l(E)], one can
prove that Eq. (11) holds.
The proof follows the same steps for N odd.

Note that if we replace Eq. (9) into Eq. (11), the latter be-
comes

N+1 N!

321 (N+1) [Hey (€)1

for £=k=0. It agrees with the result obtained for the sum of Christof-

fel mumbers associated to the He polynomials(+%),



230
5. EIGENVALUE PROBLEM OF

Having obtained the explicit form and some properties of the
X-eigenket components in the ﬁ-basis, let us proceed now to solve the
eigenvalue problem of p.

Defining n = ¥2/(mu) p, and using the representative Eq. (4),
the eigenvalue equation can be cast into the form

0 v/T 0 \ o) 25 ]
T o VZ 2, g,
0 -/Z 0 22 .| &2
; = in
0 N
/N 0 J £, J i

Hence, we get the characteristic equation

Hegya (M) = 0,

showing that the pP-spectrum coincides with the X-spectrum, excepting a
constant. Also, from the corresponding recurrence equation, it is ob-
tained that

go(in) = Dfp ,m
and therefore, these polynomials satisfy the relations
N
* s s =
EZO gplin)g,(ing) = &,

N+1 . )
,-51 gy (in))g, (in,)

‘Sﬂk ’

where ny is the j-th root of Hey . (n) and * means complex conjugate.
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6. REPRESENTATIVES OF § AND H IN THE £-BASIS

In order to give an answer to one question formnulated in the
beginning of this work (to know the form of the eigenvalue equation of fi
in the X-representation), it is required to find (xj[ﬁixk>. The most
direct way of doing this, is replacing the orthogonal matrix
¢ 3
P& PeE) . py(E,,)

PE) PE) . b,
((Ezlxj>) = )

Py(8)  py(E) Py (et |
and Eq. (4) in
xglPlxd = T (x 1B XE,[BIE XE |x)
Lin
to obtain
N-1
(1Bl = 1/5——;';‘“’ L BT Upg,y Ep (6 - by, (BIP,(ED] . (14)

Let us calculate (xjiﬁlxk)xj. By using the recurrence equatidn
of pz(E], the explicit form of pN(EjJ and Eq. (10), one can see that

N-1
(xy I8, = 13 {sjk-1+££1 EET) Ung, €0Py. (6 = gy (GI0p. )1 b
In the same way,
. . h N 1
(xglplxg g = i3 ‘{1-6jk+£=f1 1) [pp,yy €BIPp_, (B) =1y (£ )0, (€1 p.

So, subtracting these two equations, we can find that
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(N ] ’ xj#xk ’
(leplxk) = (15)

This is the representative of p in the X-basis, It is interest-
ing to notice the superficial resemblance of this result with the well-
known relationship

P = imS

when X is let to have a continuous spectrum. Do not forget that the dif-
ference x - X, can be close to zero, or as great as v (Nh) / (Zmw)
Wlth Eq. (15), the form of the H- eigenvalue equation

LIS T _
(Zmp +2mwx)lEn> E |E)

in the X-basis can be found immediately. It transforms in

h2 v P, (&) 1 _
fmm?—xgpn(!‘-;j} = Enpn(Ej) , (16)

e ) +

m oy, e (x, - Xp) (xp = X,)

where (') means to sum over values making a non-null denominator.
nr&(ik) =pn(/27n—u§1?r xk) is the wave function defined in X, corresponding
to' the eigenvalue En. Obviously, it is a solution of Eq. (16).

With this equation, we have finished answering the questions
made in the beginning of this work. It is not a differential equation,
as Schrodinger's, nor a differences one. An interesting feature, is its
nonlocality: the "differential' operator that appears there, takes into
account almost all points belonging to the domain of definition and not
only those contained in the neighbourhood of some point, as it occurs in
the Schriodinger equation. It ic interesting too, to ask oneself if its
nonlocality is preserved in its limit form when N+« (is such a form
exists), because of the place this may occupy in the discussion about the

(6)

divergences in local field theories
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7. EXTREMAL PROPERTIES

It is known that in a finite linear space an mgenvalue equa-
tion as H]E ) =
tors are concerned: the Rayleigh quotient,

R[x] = {x|H|x?

(x|x)

s eigenvec-

defined for any vector |x) such that {x|x} # 0, takes a stationary value

in |x) = |E . This value is a minimm if |E » = |E;) and maximum if

]E ) is the eigenvector with the greatest elgenvalue (Rayleigh's Prin-
ciple). In our case the minimum and maximm values of R[x] are E;= (1/2)hw
and EN = [(2N-1)/2]hw, respectively.

What we are going to show here, is that in addition to these
properties, the eigenvalues of nosition make Tr il to take a stationary
value in Zk"--xk as Tr f{ is allowed to be a function of (N+1) continuous
variables Zk:

N+Tl 1 11\11

Tr i(2,,...,2. ) = ho — b
W k2= (2, - Z,)? B

The condition for a stationary point,

3 = - =
SE;-Tr H(zl,...,zN+1)l = k=1,2,...,N#¢1
Bty
requires the points t‘,j to satisfy
! 1 1
] ——— = 1&g, a7
- B
K (aj £; 8

and, in order to demonstrate this equation, let us regard the following.
From the Christoffel-Darboux formula for the polynomials pz(E) y
one can see that
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N-1
L AL Lo gy B p (B =Py g BPypy (B T =

N-1 £
AECRURI DI M Ch L WG

If we notice that
N-1 £ N

Zgo mzo Pnm &5 Pum () LZ: Lo, (E)pp (&) s

and make use of Eqs. (14) and (15), we can obtain

1 y ¥
m—— o L p,(Epp(E) E. # E -
(85 - &) FURRL 1
and hence
; N , Pp(E)
1 3=12.Z£n£(gj)|:z £k ] =
k (£ -£k) £=1 k (Ej—ﬁk)

where we have. defined
v Pp(E)
k (Ej = Ek)

D Pp (Ej)

To obtain D pt(gj)' let us make use of Eqs. (14), (15) and (11)

once more. This gives us

[ 1
'--z‘p]_(Ej) s £=0 "

D pz(Ej) = 4 % [ /Epﬂ_I(aj)— e+ Poss (gj)]. 1<E<N-1

%/ﬁp_(ﬁj) ; 2=N
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And now, if we replace this result in the equation for

' 1 "
) E=E7Js we obtain
k gj &

J— L]

e— = - 2 pp_, (EIP,(E)

~£3 4 pc £-17737700%

k (&,-8) £=1
after some algebra. The right-hand side sum is just the diaeonal ele-
ment (xj|£"' |xj), where &7 is the creation operator; consequently

1
mhuw

Ak ~ e 1
! = - x,} =k,
(xj]a |xj> (le(mmx in) | 5 5 Ej
Therefore, we have that Eq. (17), condition for a stationary value of
Tr }“{(zl,zz,...,zw) in (£1,62,.--,E,,), holds, giving thus an addition-
al property to the variational principle above mentioned, with the fol-
lowing difference: in Rayleigh's Principle the variations are made on the

states |x); in our case on the values Zk'
8. CONCLUDING REMARKS

To conclude the present work we shall remark some points that
one should take into account in order to, if possible, make an extension
of this work to other problems with a discrete spectrum for position.
The displayed results have not been obtained from a peneral systematic
method, but in spite of this, one can expect that:

1) The commutator [X,pl, the representative of which is

N

r0]

T, 1
T o1, 1
P =i |1 10 " o
(€x;[Ux,p) %, 2) = -ih 1 «psllxpllp )
0 1
1o 10

is valid for the finite case, since, suggestively, it becomes the same








