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ABSTRACT

The Einstein and Hopf's work is discussed and, taking into ac-
count the radiated energy by the dipole during the fluctuations and the
zero point field, we deduce Planck's radiation law.

RESUMEN

Se discute el trabajo de Einstein y Hopf y, tomando en cuenta
la energia radiada por el dipolo durante las fluctuaciones y el campo de
punto cero, se deduce la ley de radiacidn de Planck.
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1. INTRODUCTION

After Planck's proposal of his spectral distribution law for
the radiation in a cavity, Einstein, among others, began studying both
the consequences and the physical basis of the law. In 1909, using his
famous "'gedankenexperiment'' of the Brownian mirror(1) within an ideal
gas in equilibrium with electromagnetic radiation at temperature T;
Einstein tried to establish, in a rigorous way, the corpuscular nature
of radiation by means of which he showed the incompatibility between
Planck's law and the electromagnetic theory. A year later, in colabora-
tion with Hopf(z) he showed that the classical laws lead necessarily to
Rayleigh's radiation law. At this stage, the problem seemed to be solved
and the discussion came to an end. Nevertheless half a century later,
in 1969, Boyer(s) analyzed once again this problem under new perspec-
tives (4): He supposes that even at T=0 there exists a classical random
electromagnetic radiation field (zero point field or background field)
which has a Lorentz invariant spectrum(s) o(w,T=0) ~w?; the fluctuations
scale is fixed in such a way that the energy per normal mode is %-hm.

In this way, basing his approach on Einstein and Hopf's ideas, Boyer was
able to deduce Planck's complete distribution law (including the zero
point term). However, this derivation is crucially dependent on the in-
teractions between the dipole and the walls of the cavity, which Boyer
considered independent of T. In the present paper an alternative deri-
vation, where the central hypothesis is that the radiation exchange be-
tween thF dipole and vacuum field does not depend on temperature, is pre-

sented.

2. A MODIFICATION OF EINSTEIN AND HOPF'S WORK FROM THE POINT OF VIEW OF
STOCHASTIC ELECTRODYNAMICS

In order to bring about our discussion it is necessary to pre-
sent briefly both the fundamental ideas of Einstein and Hopf's(z)work and
the modification suggested by Boyer(S).

Einstein and Hopf studied the conditions under which there
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exists equilibrium between an oscillating dipole within an ideal mono-
atomic gas and a radiation field at temperature T. They proposed as a
characteristic of equilibrium the condition

(p2(t+6t)) = (p2(t)) (1
where
p(t+8t) = p(t) + A - Rp(t)ét . (2)

Here A is the fluctuating impulse given by the field to the dipole during
8t and Rp is a resistive force caused by the anisotropy of the field due
to the motion of the dipole.

Einstein and Hopf assumed that A and p are not correlated,
that {A) = 0 and that §t is very small, so Eqs. (1) and (2) led to the
relationship

(82) = 2R(p2)st . (3)

The values for (A?) and R, obtained using classical electromagnetism,
are

b2
(a2) = %lﬁezi 02 (w,T)6t (@)
and
_ 4 m2e? 1 9p(w,T)
R = 15 2 p(w,T) 3o . (5)

They also obtained (p2) by means of the equipartition theorem, which
they considered firmly established by experiment for the translational
motion of the dipole. With this result and using Egs. (4) and (5) into
Eq. (3) they arrive to the differential equation

2¢3 02 (w.T
T S - e - Ly D (6)

whose solution is the Rayleigh's distribution law.
On the other hand, Boyer took into account the existence of
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the zero point field in his analysis. The spectrum cannot contribute to
a resistive force depending on the velocity due to the Lorentz invariance;
hence the energy withdrawn from the background field by the dipole is
not balanced by the work done by a dissipative force similar to kp.
Therefore, the energy of the particle should increase indefinitely, not
allowing in this way to reach equilibrium, Nevertheless, Boyer correct-
1y concluded that, in an equilibrium situation, there must exist a mech-
anism by means of which the absorbed energy of the background field may
be dissipated. He proposed that the dissipation is due to the colli-
sions of the dipole against the cavity walls. He proposed, instead of
Eq. (2), the following:

p(t+6t) = p(t) + & - Rp()6t +J (7)

where J is the impulse communicated by collisions to the wall during the
time interval &t. Boyer argues that the averages involving p, A and J
could satisfy the conditions

(pa) = (pad, = 0 , (8)
CAT) = (AR, = b 9
(p), <0 (10)
RSt < 1, an
(P & L), (12)
(p1) = (pI), . (13)

On squaring (7) and averaging, he obtained from Eqs. (8), (9)
and (12), for T=0, the following expression:

Hpdy, = = 442, . (14)

With these hypothesis he derives instead of Eq. (3) the equa-
tion
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(A2) = 2RmRTé&t +(A2), (15)

Considering the values of (A?) and R derived by Einstein and
Hopf and using for (A?), the value of (A2) with o(w,T=0) = Dwd_ e

2m2c3 ?
obtained
1 3 _ mcd [ 2 hzm“]
S 1 - EE | . , 16
- R 3w 3k Tw? g 4mch ()
whose solution is
3
olw,T) = 90 cop Bo (7)
2m2c3 2kT

which is Planck's distribution law including the zero point term.
Although the preceding analysis is quite interesting, some of
the hypothesis on which it is based are not justified as it has been dis-
(©). Such hypothesis are Eas. (8), (9) and (14).
The conditions established by Eqs. (8) and (14) are inconsist-
ent: let K being the average momentum exchange with the cavity wall dur-

cussed previously

ing a collision. Since the collision itself is an inelastic one, and
despite this the particle does not stick to the wall, the value for K
should lie between -/{pZ}) and 2/{pZ} , and if y represents the number of
collisions during the time interval &t, therefore (J2)=~yK2. Using a si-
milar argument, one can arrive to {pJ)=-ykK2. Since Yy is proportional

to v'/3
such that either (8) or (14) might be satisfied, but not both. In addi-
tion, since y is a temperature-dependent variable also, Eq. (13) could
not be fulfilled. This latter discussion together with the fact concern-

» where V is the volume of the cavity, one could choose a volume

ing the independence of both the kinetic energy distribution and the
spectral distribution upon cavity size shows the uncertain role played
by the walls of the cavity in the Einstein and Hopf's work.

Boyer's conclusion about the need for a dissipative mechanism
by means of which the absorbed energy of the background field may be eli-
minated so that the equilibrium may be reached, is quite important. If
we look for another possible dissipation process, we realize, by analyz-
ing Eq. (2), that the radiated energy that results from the dipole violent
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fluctuations has not been taken into account, This radiation produces a
resistive force of the same order of magnitude as that of Rp and there-
fore it must be considered, As we shall see, this allows us to obtain

Planck's law.
If the lost impulse due to the radiation emission during the
fluctuations is represented by r, we can write, instead of Eq. (2),

p(t+ét) = p(t) + A - Rp(t)ét - r , (18)
where r is given by

v = E g6t (19;

and Fra is the radiation damping force.

d
Considering that A and r are statistically independent in equi-
librium, then

(ar) = 0 . (20)

Using Eq. (18) and Einstein and Hopf's hypothesis into Eq. (1)
we obtain, instead of Eq. (3),

(A2) = 2RRTG&t - 2pr) . (21)
Now we need to know the value of (pr). From Eq. (19) we obtain
{pr) = mPé&ét , (22)

2

where P=¢ B ) x L]
I, "xed 3m2c3

not depend on velocity it can not be temperature dependent*, and its val-

p2) is the radiated power. Since P does

ue, in terms of the energy absorbed from the background field, can be ob-
tained in the following way. Using Eq. (1) into Eq. (18) for T=0 (in
this case R=0), we get

2 =
42y, = 2(pr (23)

* Also it should be noticed that if P is independent of reference system,
it could not be temperature dependent.
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and since the right term represents the radiated power, which is inde-
pendent of T, then

2 =
§ .54 ZPEt (24)

Using this result into Eq. (21) we obtain

(AZ) - (A2>T=O = 2mRRTS&t (25)

which is precisely Eq. (15) that led to Planck's law(3’6'7).
It should be noted that if we write

v 2 i
(AZ) - (A )T= = (AZ)T " (26)

0
where (Az)T are the thermal fluctuations*, then, from Eq. (25), we can
conclude that the energy absorbed by the dipole from the thermal field
1s exactly that one dissipated by means of the velocity dependent force.
Hence the radiation is the process by means of which the energy withdrawn
from the background field is dissipated. Equation (26) is in a somewhat
naive sense similar to a fluctuation-dissipation relationship fro T=0.
In order to be certain on that the radiation damping is the
dissipation mechanism it seems worthwhile to consider Eq. (18) from an-
other point of view; Eq. (18) can be rewritten as

p(t+8t) - p(t) _ A _ ’
3t 3t Rp(t) Frad : (27

Using Eq. (19) and since 6t has been assumed to be very small,
Eq. (27) can take the form

. _ 2e2 ,,
p(t) = F(t) - Rp(t) - 3P (28)

. 2e? ..
a 33 P
Since F(t) is the random force exerted by the field on the di-
pole, Eq. (28) and hence Eq. (18), represent the Abraham-Lorentz equation
to which the systematic force -Rp(t) , exerted by the radiation field

where F
ras

* It has been assumed that the thermal and vacuum interactions are sta-
tistically independent. See Refs. 6 and 7.
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pressure on the dipole, has been added.
3. CONCLUSIONS

On the basis of Einstein and Hopf's work, we can conclude that
they obtained Rayleigh's distribution law rather than to Planck's law
because of the omission of two fundamental facts: The radiated energy
during fluctuations and the existence of the background field.
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