
Revista Mexicana de Física 30 no. 2 (1984) 139-216 139

ASPECTS OF THE
STATISTICAL MECHANICS OF SIMPLE

FLUIDS AND ELECTROLYTES *
Douglas Henderson and Jorge Barojast

IBM Research laboratory.San Jase, Cal ifornia 94193
and

Lesset' 81 um

Department of Physics.University of Puerto Rico
Río Piedras, Puerto Rico 00911

(recibido octubre 20, 1983; acepta~o octubre 27, 1983)

ABSTRACf

This review consists of two main parts. The first part is basically
of a pedagogical nature. It deals with the problem of intermolecular force s
in liquids and the integral equation formalism as well as the corresponding
perturbation theory. The second part deals mainly with the theoretical appli
cation to electrolytes, molecular fluids and, most of all, to electrified in-
terfaces or double layer problems. Recent results are presented on the vali
dity of the Gouy-Chapman theory and on anomalous ion adsortion. -

RESlNEN

Este artículo de revisión consta de dos partes, la primera es una
presentación de carácter pedagógico en la cual se trata el problema de las fuer-
zas intermoleculares en líquidos y los formalismosdeecuaciones integrales yde
teoría de perturbaciones. La segunda parte se refiere a aplicaciones recientes
de dichos formalismos en electrolitos y fluidos moleculares y en especial en
interfases electrificadas o problemas de doble capa, tales como la validez
de la teoría de Gouy-Chapman y la adsorción anómala de iones.
* Presented at the Second Mexican Statistica1 Mechanics School, August 21-26,
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1. INrnOruCT101>

Thcse lcctures consist oí scven parts
intcrmolccular forces
formalism~integral equations
formalism-perturbation theory
application to simple fluid s
application to electrolytes
application to molecular fluids
application to electrified interfaces (thc double layer)

The core of thesc lectures is the last three parts. ~~ a result we give
only general references in thc first fOUT parts and givc detailed
references only in the last three parts.

2. INfERl-IJLEUJLAR RJRCES

Thc basic facts about intennolecular forces are simple. The
existence oí condensed phases implics that the intennolecular forces are
attractive at large distances and the faet that mattcr does nat callapse
implies that intcrmolecular forces are repulsive at short distances.

In principIe, we can learn about intennolecular forces by solving
SchrOdinger's equation for a collection oí molecules. Unfortunately, this
is not practica!. tk>wever, we can still learn a lot from quantun
mechanics.

lhe Born-Oppenheimer approximation tells us that we need only
salve the electronic problem for a set of static nuclei obtaining a
potential energy function, UN' which depends only on the positions {i and
orientations n. of the molecules. Thus,

J.

Further, we may divide UN into pair, triplet, ••• terms. Thus
J

(2.2)
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First considcr the pair intcraction. We can give sorne insight
by considcring ~ ane-dimensional model of a pair of interacting moleculcs.
Let us assume that the elcctrons in ane molecule fannan instantaneous

dipole (even though thc molecule has no dipole moment). This induces a
dipolc in the second molcculc. For simplicity, we considcr only ane
electron on cach molcculc.

molecule 1 molecule 2

+0 0- +0 0-

1~4"-------r---------1
The harmonic rcsorting force on the electrons is

~ f(x' + x')" , ,
and the electrostatic force is

(2.3)

v • e' [1. +e r r
1

r - Xl
(2.4)

Using r»Xl and X2

2e2xIX2

Ve = - ---
r3

and expanding

...... (2.5)

Schrodinger1s equation is thus

a'1ji a'1ji 8.~
--+--+--

h'
o (2.6)

The variables can be 5cparated by changing variables

z, (2.7)
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Thus
(2.8)

d2tP. BTTU2
---lo + __

ClZ.2 h2~

whcrc

rE"lfZ'J~=(JL i i i
(2.9)

2e'f, : f"
r'

(2.10)

(2.11)

fl- ::: f 2e'+-
r'

(2.12)

This is thc harmonic oscillator cquation. TI1US

E, = (n, + lJ hv, (2.13). ~ ~

vi =*;;:. (2.14)

The ground state is Eo = ~ h(Vl +V2)' Thus,

I 1( ( 2e" 1 ( 2e" 1 r'E, = 7 hv, ll" - J + [1 + -j
fr) fr)

I I= 2" hvo + 7 h\lo

Hcnce, the pair encrgy is
hvoe'+

hvoe~
"--+ ...2f2r' (2.15)

u(r) "-- + (2.16)

which is attractive.
In three dimcnsions

3hvoc"
u(r) ." - __ +

4f2r6
(2.17)
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~e can put this in a more convcnicnt fOl~ by writing

hvu -= 1 J

whcre 1 is the ionization potcntial, and

(2.IB)

a e'
T (2.19)

whcrc a is

by writing

the polarizability cf the moleculc.
far the instantancous dipole mamen!

Ke can obtain Eq. (2.19)

u "'ex = o.E (2.20)

whcre E i5 the instantaneous electric ficld producing the displacement x.
Equating forces

fx = eE (2.21)

Equations (2.20) and (2.21) give (2.19). Substitution of (2.IB) and
(2.19) into (2.17) gives

u(r) =
310.2--+
4r'

(2.22)

If the moleculcs are oí diffcrent specics

u(r)
3
2" (2.23)

Ií more terms in the expansion oí the ground state energy are
rctained

u(r)
r'

e,

r'

elO-- .
rlO

• •• J (2.24)

wherc thc cocfficients C6J C8,'" can be calculated form measurable
molecular properties by formula analogous to Eq. (2.23).

The repulsive forces at short scparation resul! fram Pauli
exclusion principIe interactions between the overlapping electron clouds.
Hartree.Fock calculations indicate that these short range forces are
approximately exponential functions of the separation.

Using the faet and Eq. (2.24), Barker(l) has used
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J 5 .)
u(x)/e = 1 .í A (X-1)].rCxP[l2.5(1-X))

].-0

2í e /(0.01j=o 2j+6
(2.25)

,:"herc E: is the dcpth oí the potential at its maxirnum (\\o'hcrc T'" r
m
) and

x:= r/rm. Barker obtaincd C6• ce. and clO frcm analogous to Eq. (2.23) and
fit the A," E: , and r a wide range oí experimental data. For argon, hem o
obtained e/k- J42.1K and rm' 3.7612 A. Thc valuc of r for IoihichBarkcr's

oargon potcntial changes sign is o = 3.3605 A. Barkcrls potcntial is
plotted in Fig. l. Barker has made similar dcterminations oí thc pair
intcractions oí thc othcrmcrt gas molccules.

o

-40
~
o

.:.!...•...•- -80'-
:J

-120

3 7

ríA)

Fig. 1. The argon-argon pair interaction potential. The salid curve i5
Barker's potential and the broken curve is the 6:12 potential with
E/k- 119.8°K and a .." 3.405 A.
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An ar~nt similar to that used to obtain Eq. (2.23) shows that
for triplet intcractions, ~hcn a11 threc moleculcs are far apart,

(2.26)

wherc thc r ij and e~ are the thrce sirles and anglcs of thc trianglc fonmed
by the thrcc molcculcs.

Vcry 1ittIe is known about the fonu of W(!"lpT1pT23) whcn one

ar more oí the intermolecular distanees is small. ~~wcver, a11 available
cvidencc indicates that Eq. (2.26) gives the important contributions to w.
Evidently, the rcpulsive tcnns in u(r. ,) prevent the moleculcs from bcing
in configurations whcrc deficiencies iJ~. (2.26) are observable.

As has becn mcntioncd, u(r) and w(r,s,t) are knownonly fey a
fcw sUmplc molecular pairs and triplets. Fortunatcly, foy mas! systems,
thc propcrtics oí the systcm are no! sensitive to the details oí the
potcntial intcractions. Thus. a lot can be learned from model potentials
In all of thcse model systems, triplet interactions are assumcd not to
existo Thcorctical calculations are usually compared with computer
simulations using ~bntc CarIo or molecular dynamics mcthods.

A. Mode.t PotenLiill6

The simplest model potential is the hard-sphere potential
r< o

r> o.
(2.27)

A somcwhat more realistic potential with attraction as well as repulsion
is the squarc~well potential

u(r)

O<r<o

0< r< Aa

r> AO

(2.28)

An evcn more realistic potential has been proposed by Lennard-
Jones. He uscd ~c(Jrf. for the attractive tenn and represented thc repul-
sive energy by an invcrse power of r. Before the advent of digital
computers it was convenient to take this repulsive index as twice 6.
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Thus, we havc the 6-12 patential

(2.29)

where £ is the depth oí the patential at it5 minimum 3nd the patential
changes sign at r = a.

Although originally proposed as a patential for real fluids, the
6-12 petential is not satisfactory far this purpose. For example, it is
not possible to £it both the value oí C6 and thermodynamic data. However,

o

with e:/k:: 119.8°K 300 0= 3.40 A, the 6-12 potential gives the qualitatively
satisfactory £it oí the properties oí dense argan. lhe Barker and
Lermard-Jonespotentials for argon are compared in Fig. 1.

The polar moleculcs, a cornmonly used petential is the dipolar
hard~sphere patential

,
u(r"'~l'~') = uHS(r) -..lf- D(I,2),

r"
(2.30)

where \JI and tl2 are the dipale Illoments oí molecules 1 and 2 J IJ= I j.J. 1, and~ ~ ~~

D(I,2)
"" ....."3(u,'r,,)(u,'r.,) (2.31)

In Eq. (2.31) the caret indica tes that the vectors are unit vectors.
For charged systems, the charged hard-sphere potential is

useful

(2.32)

the electronic charge) and £ iswhere zie is the charge on ion i (e is
the dielectric constant oí the medium.

There are a great many more model potentials which have been
proposed but these are the ones that will be considered in these lectures.

Suppose several substancC5 (A : 1,2,"') havc the potential
functions of the same general fonn,

(2.33)
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where cA and 0A have the dimensions oí energy and length, respectively,
and nA,eA ,•••are dDmensionless parameters. An example, might be
v* = v/er9• Then one can show that the thermod}~ic functions are

muniversal functions of reduced temperature T* = kT/£\ and density
p* =po~ and of the dimensionless parameters ah' BA,'" • We can refer to
this obscrvation as the law oí corresponding statcs.

3. RlRMAL1S>1-1NTEGRAL B¡UATIONS

We now obtain sorne integral equations fer fluids.
this and the succeeding sections we assume that the molecules
enough mass so that quantum effects can be neglected.

The fundamental result in statistical mechanics is that the
probability oí finding N molecules in a configuration given by {ir ni is
proportional to

(3.1)

where 6 l/kT. Thus, if we define g(l •••• ,h) as the probabi1ity of
finding any h molecules at {l'.'.'~h with orientations Ol, ••• ,Oh '
normalized so that g(l, ••• ,h) = 1 when all the molecules are far apart

g(l ••• h)
J
exP{ -611 ¡dr •••dr dn •••dnN ~h+l ~N h+l N

Vh ---------------

Jexp{-6UN¡d{1 •••d{Nd~1'" dn.
(3.2)

where dr. and dn. are integration elements. For convenicnce, we aSSlme
"-1 1that dO! is nonnalized so that ¡dn! = 1. We have been a little careless

with terms of order l/N in our definition of g(l •••h). Despite this
Eq. (3.2) is satisfactory for our purposes. We can call g(l •••h) the
h-body distribution function. The pair distribution function is g(1,2)
and the radial distribution function is

(3.3)

The denominator in Eq. (3.2) is the partition function which is
related to the free energy by



(3.4)
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[
-3N JA : -kT In -'- f exp(-BU )drl•••dlJ
N! N '\, N

where , : hj(2mmkT)1 and m is the molecular mass.
Other routes to thcrmodynamics inelude the cnergy equation

s 1 (U: ¿ NKT + 2 No jU(l,2)g(l,2)d{,unldQ, , (3.5)

\.ihcrc s is the nwnber oí kinctic dcgrccs oí [rccdom, the prcssurc l"'(lu3tion

which for spherical potcntials simplifies to

~ : 1 - t oS f r dd~r) g(r)d{ ,

~md [or thc hard-sphcn.' potcotial simplifics cven furthcr to

~_ 2nPKf = 1 + ~ po3y(O),

(3.6)

(3.7)

(3.8)

where y(r) : g(r)exp[Bu(r)). I.astly thcrc is the comprcssibility equatían

kT .'!£. : 1 +0 fh(l,2)d{,dlJ,dQ,3p

1 + oIh(r)d{ ,
wherc

h(l,2) : g(l,2) - 1

(3.9)

(3.10)

is the total corTelatían function. In thcse equations p = N/V.
Equation (3.5) and (3.6) are valid only for systems with only

paír intcractions. Thcrc 1S no such restriction on Eq. (3.9).
It is useful to intreJuce a ncw function. c(I,2), the dircct

corTeJatían function which is relatcd to h(l,2) by the Ornstein-2crnikc
equation



h(I,2) : e(I,2) + ojh(I,3)e(2,3)d{,dP,

Averaging Eq. (3.11) gives

h(r,,) e(r,,) + Pjh(r,,)e(r,,)d{,

Introducing thc Fouricr transfonn

~(k) : ~ jWrh(r) sinkrdr,
(note that k hcrc is not Boltzmann's constant) and using

T13T23

2n --- dr13ur23
r"

gives

'" '\t '.\, ""h(k) : e(k) + ph(k)e(k)

or
'.\, ""-11 + ph(k) [1 - pe(k)]

50 that

B~: [1+ p~(O)l-l + l-pio(O)

- oJe(r)Ó{

- oJe(I,2)d{ldn,dn,
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(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

Differentiating (3.2) with respect to -t1 fay the case h= 2 gives

-ktZ,g(12) : g(12)V,u(12) + ojg(123)Z,U(13)Ó{,. (3.18)

Equation (3.18) eannot be solved unless g(123) is approximated. The most
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cornmon approximation is thc supcrposition approximation of Kirkwood

g(123) : g(12)g(13)g(23).

Substitution of (3.19) into (3.18) gives thc Born-Grecn cquation

-kTz,ln g(12) = Zlu(12) + ofg(13)g(23)ZIU(13)d¡;',

(3.19)

(3.20)

&¡uation (3.20) has not becn too succc5sful in the description
oí bulk fluids. Bm..'cver, i t docs havc promisc in interfacial problcms
~hcre it satisfies certain exact thcorems which we wil1 mention latero

B. HifpV!.nated ChiUn ApP'LoUma.uon

If sorne approximate relation betwecn h(12) and c(12) were coupled
with the Ornstein-Zernikc equation, Eq. (3.11), an approximate integral
cquation would be obtaincd.

Two such integral cquations can be obtained by considering the
expansion oí g(r) in powers oí p:

(3.21)

ar equivalently

(3.22)

where f. e-BUij - l. The integral in (3.21) and (3.22) looks very much
.Jlike the integral in the Ornstein-Zcrnike cquation (since the leading

tcnn in the expansio" of both h .. and c .. is f .. ). In fact equating the
1.) 1.) 1.)

integral in (3.21) to that in the Ornstein-Zernike equation givcs the
Percus-Yevick approximation

g(r)eBu(rl = 1 + h(r) - c(r) (3.23)

and equating the integral in (3.22) to that in the Ornstcin-Zernikc
equation gives the hypernetted chain approximation

In g(r) + Bu(r) • h(r) - c(r). (3.24)
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The Percus-Yevick equation gives good results fer hard sphcrcs.
We will surnmarize these rcsults in thc next section. Unfortunatcly, the
Pcrcus-Yevick equation is much less succcssful far longer-ranged potentials.
The hypernetted chain approximation although less succcssful far hard-
sphercs, is very succcssful far othcr potcntials, in particular fer thc
Coulomb potcntial.

The mean spherical approximation is a linearizad version of the
hyperncttcd chain approximation far potentials with a hard coreo We can
derive this approximation by assuming that ouside the hard core
(r>a)h'g-1 is smal! compared ta unity and expanding In g in Eq. (3.24)
Thus

c(r) = - Su(r) (r> a) (3.25)

which when coupled with the exact condition

g (r) = O (r< a) (3.26)

and the Ornstein-Zernike equation givcs an integral equation ~nich is
remarkably liseful.

Fer the hard-sphere potential, Eq. (3.25) becemes

c(r) = O (r> a) (3.27)

For hard-spheres, the mean spherical aoo PerulS ~Yevick approxirnations are
equivalent. Intercsting the solution oí thcse approximations far hard
spheres is accurate and analytic. A fairly si ..1ple outline oí the solution
oí the Percus-Yevick/mean spherical approximation far hard sphcres can be
found in Chapter 12 oí 5tatistical Mcchanics and Dynamics(2).

The Laplace transform oí the radial distribution function, which
can be inverted analytically, is

G(s) • J~rg(r)e-Srdr
a

sL(s)
I2n[L(s) + eSS(s)]

(3.28)
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where

and
L(s) 12n[1 + 2n + (1 • n/2)5] (3.29)

Ses) • -12n(1 +2n) + 18n'5 + 6n(1-n)5' • (I-n)'s' • (3.30)

\\'heren =ll,003/6. lbc prcssure and compressibil it}' equations isothenns are

and

l 1+n+Jl2

pkT (1 -n)'

(3.31)

(3.32)

(3.33)

These isothenns are compared ",,'ith computer simulatíon results in Fig. 2.
The tl,o,'O isothcnns lie on either side of the simulatíon results. Interes-
tingly a linear combinatíon

-P..... = 1 +n +,.,2 - ,.,3,
pkT (1 -n)

due to Carnahan and Starling, agrees we11 with the simulatíon rcsults.
The Pcrcus-Yevick/rncan spherical approximation g(r) is compared

with simulatíon results in Fig. 3. The agreement is good.
For othcr systerns, the mean sphcrical approxbnation is no longer

equivalent to the Percus-Yevick approximation. Exccpt at low densities,
the mean spherical approximation generally seems more relíable than the
Percus-Yevick approximation. The mean spherical approximation often
yields analytic results.



153

12

1-
-'"z-->o.

10

8

6

4

2

O 0.2 0.4
p'

0.6 0.8

Fig.2. Equation of state oi the hard-sphere fluid. The salid and open
tireles give the machine simulation values fer fluid and salid
hard-spheres, respectively. The curves marked PYP, PYC, and es
give the results oi Eqs. (3.31), ().32), and (3.33), respectively.
The reduced density p. = po] •

Further results and refcrences can be found in the review of
Barker and Hendersen (3) .
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6

•

4

0.9

2

•\•
\ •....-., ----, ./ ..-.- •.....

r/d
2 3

Fig. 3. Radial distribution function for the hard-sphere fluid. The
peints give the machine simulation values, the curves give the
results obtained by inverting Eq. (3.28). The parameter d i5 the
hard-sphere diameter.

4. RlRMAL1g,j-PERTIJRBATlON TIJEORY

CUrstarting paint is thc free encrgy. For a potential which
°dces not depend on orientations. the free energy i~

A: -kT f .n.e'jdr,•••dr••
J.<) 1. '\, "V" + tcnns independent of density. (4. 1)

where wc have assumed that the potential is additive and Cij
RJ.rther, as sume that Cijdcpcnds upon a parametcr Y. i.c.,

exp [-BUi~.
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e(r) : e(y;r) (4.2)

which is sma!! enough so that the free encrgy can be expandend in a

series in y:

(4.3)

system, far

+ ••• ,+ y MI + iy' _d'_AI
dY y=o dY' y.o
free energy of the referencc or unpcrturbcdwhcrc Ao is the

which y : O.

lhus,

B dA: - -21p' f g(12)e (12)dr,dr,dY y '\o '\.
(4.4)

and

B d'A. 1 J- 7 p' g(12)eyy(12)d{,d{,
dY'

p'fg(123)e (12)e (23)dr,dr,dr,
y y '\. '" '\..

~ p' J [g(1234) - g(12)g(34)]e (12)e (34)dr,dr,dr,dr"
q y y '" '" '" ...•..

(4.5)
where

-1 (le
\ = e dY • (4.6)

e =e-'~ (4.7)
YY dy2

In the limit y = O the flIDctions g(I ••• h) are the reference fluid

ctistribution functions.
Equations (4.5) is valid only in the canonical ensemble. An ex-

tra tcnn mustbe added to obtain results wich are valid in the thermooyna-

mie limit (N-tco, V-+«>,p fixcd). Uowcver, this correction tcm is not
relevant far OUT present discussion. Dctails can be found in Barker and
lIenderson (3) •

The corresponding results far the radial distribution function
are
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where

g(r) = g,(r) • y a~~r) I •....
y -o

(4.8)

~ - g(12)e (12) • 2p J g(123)e (23)dr,r;¡Y y y '\,

• .!..o'J[g(1234) - g(12)g(34))e (34)dr,dr, (4.9)
(.' Y '" '\.

Similary there is a correction term for the thermodynamic limito For
details see Barkcr and Henderson(3).

Equation (4.5) is aften difficult to use. A similar approxima-
tion,based on the superposition approximation, is

a'AB-=ay'
1 (-2 p'Jg(12)eyy(12)d{ld{,

- p'jg(12)g(23)e (12)e (23)h(13)dr,dr,dr,
y y '" '" ""

x [2h(13)h(24) • 4h(13)h(14)h(24). h(13)h(14)h(23)h(24) Jdr,dr,dr,
'" '" '"(4.10)

AJthough approximate, Eq. (4.10) is applicable to an infinite system.
The higher-order terms involve many integrals. At least for

our discussion, the important tenns in third and fourth-order are

a'A 1 JB - • - 7 p' g(12)e (12)d{,d{,
ay' YYY

(
-p')g(123)e (12)e (13)e (23)dr,dr,dr, •••••

y y y '" '" '\.
(4.11)

a'A 1 j .B - = - 1p' g(12)e (12)dr,dr,
ay" YYYY '" '"

- 3P'jg(1234)e (12)e (13)e (24)e (34)dr,dr,dr,dr, •••••
y y y y '" '" '" '" (4.12)

where
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-1 a3ee =e - (4.13)
yyy 3y3

etc. The first terms in Eqs. (4.11) and (4.IZ) are necessary for the
carreet limiting bchavior at low densitics. The second terms in Eqs. (4.11)

and (4.12) are called ring or chain diagrams because, if the f functions
are regarded as links in a diagram, the scqucncc oí f's fonms a simple
closed chain.

In general, there are three functional dependencies of c(y;r)

on y which have becn considcred. The first it

e(y;r) = exp[-Sfu.(r) + yu,(r)}] , (4.14)

where Ua is the pair-potcntial of the reference system. Hence

e/r) = - !lU¡(r) (4.15)

and

e (r) = (!lU¡(r))' •
yy

e (r) = -(su¡(r)}'
yyy

(4.16)

(4.17)

(4.18)

etc. This case is useful whenthe perturbation energy lll(r):::: u(r) - llll(r)

is smal!.
We shall sec that this fonm of the perturbation expansion is

useful far simple fluids. For such applications the firs-order tcrm is
dominant and gives the average contribution of the perturbation energy
u¡(r). The higher-order tenms are small and are fluctuation terms which
are small if the refercnce fluid resists changes in structure. Since
macroscopic fluctuations are proportional to the compressibility, Barker
and Henderson have suggested that a useful approximation might be

~2~ = _ i- SP'(¥Vl f g(IZ)u:(lZ)d{¡d{, .
ay T

At low densities ap/ap= S. Thus, Eq. (4.18) gives the correct low density
behavior. For refcrcnce fluids with a steep rcpulsion, (lp/ap-+O at high
densities and the fluctuation correction is small, as required.
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Shortly we will sec that for the lattice gas,

(4.19)

is exacto This suggests that another approximation which may have sorne

advantagc!' over the original Barker-Hendcrson comprcssibil ity approximation
would be obtained replacing u,(r) by kT(3p/3p)u,(r) in thc low density
and othcr important tenns. Thus,

:~~. i p'[~~]'fg(l2)U:(l2)d{,d{,

+p' [3P]'fg(123)u,(l2)u,(l3)u,(23)dr,dr,dr,,p '\.. '\.. '\,

etc.

In sorne applications lll(r) is large and positive.
applications ey(r), given by Eq. (4.15), is not small. Then
more appropriate to sue

e(y;r) = e,(r) + ye,(r)£,(r)

where

(4.20)

For such

it may be

(4.21)

e,(r) = exp{-Bu.(r)} (4.22)

£,(r) = exp{-Bu,(r)) - 1 (4.23)

In the aboye equations, uo(r) is the reference pair-potential and
u,(r) = u(r) - u,(r). For this case

-,e (r) = e e,£,(r) , (4.24)
Y

so that

e (r)1 £,(r)
y y-o

and

e (r) = Oyy

(4.25)

(4.26)
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(4.27)

etc. 1£ u¡(r) is large and positive, e (r) is boundend. In principIe,
y

this approach could be used with large and negative perturbations. ltowever,
for this situation, cy(r) would then be very large and this approach would
be oí limited valuc.

A third procedurc, a1so applicable to potentials which are large
and positive, is based upon

e(y;r) • exp 1-('u [d. r~dJ} (4.28)

This gives an expansion in a inverse steepness parametcr, using a hard-
sphere reference fluid, where d is the hard-spherc diameter. Expansions
based upon Eq. (4.28) are usefu1 when u(r) is 1arge, positive, and steep.
Thus

r-d
""7 (4.29)

A pcrturbation theory foy a given systcm is developed by making
a choice as to what is an appropriate reference fluid arrl which oí the
three procedures is to be used. Other choices besides the aboye three are
possible. The aboye are just those which are coomonly used. Gcneral1y,
a hard-sphere fluid is used as the referenee system.

The simplest referenee fluid is the perfeet gas, where g(l •••h)=l.
If we used the pcríeet gas as a referenee fluid then the perturbation is
the entire potentia1. Obvious1y, the u-expansion of Eqs. (4.25) to (4.17)
is inappropriate. It is better to use the f~expansion oí Eqs. (4.21) to
(4.27). Because the g(l •••h) a11 equa1 unity, the superposition
approximation is valid and Eq. (4.10) is free of approximation. Henee,
since eyy = O, etc., and ho(r) ~ O, we have, using Eq. (4.10) but
unc1uding the fifth-order tenn

nKt
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i P'ff12f13f"f"d/\"d/\"d¡> -..¡. P'ff"f"f"f"f"d/\,2d/;"d/\"

fu P'ff12f15f21f"f"d/\,2d/\"d/\"d/\,5+ '" (4.30)

where f 12 '" £(T12)

fourth arder tenn.

Jf the tenns in Eq. (4.30) are grouped in powers of p rather than
by the number of f-functions, Eq. (4.30) is the virial expansion of A.
The virial expansion is the simplest form oí a perturbation theory.

B. La.tüee G<w

Another simple application oí pcrturbation theory is obtained by
considering the lattice gas in which the N molecules are restricted to L
lattice sites.

For this system

u(r)

r = O

r=rmd

othCNisc,
(4.3l)

where nnd means the nearest neighbor distance.
The unpcrturbed system is a lattice gas oí noninteracting

molecules, subject only to the restriction that only ene molecule can
occupy a lattice site. Thus,

• In x
NkT

l-x
+--

x
In (1 - x), (4.32)

where x & N/L plays the role oí the density. Differentiating,

Bpo = ln(l - x)

.Po 1
Bax-=r:-;¡-

(4.33)

(4.34)
Since the perturbation potential is 5mall and negative. the

u~expansion can be uscd. The g(l"'h) oí the refcrence fluid are equal to
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unity when a11 the molecules occupy different sites and are zera otherwise.
As a result, the reference g(l"'h) satisfy the superposition approximation
and Eq. (4.10) can be used without approximation.

To evaluate_the tenms in the expansion we note that, in the
limit y =Be:'"0, h(lZ) = O unless JOOlecules 1 and 2 are on the same site and.

ul(12)g(12) is ,ero unless mo1ecu1es 1 and 2 are nearest neighbors. 1f,
is the number oí nearest neighbors oí the lattice

and

.' (A/NkT)
.(Bol'

1
"2" x, (4.35)

(4.36)
BE-O

We note by comparing Eqs. (4.34) and (4.36) that Eq. (4.36) cou1d be
obtained froroEq. (4.19).

In third arder

.'(A/NkT) I = - ix(l- xl'(l- 2xl' , - x'(l- x)'!;, (4.37)
.(Bol' BE-O

where ( is the numberoí triangles oí neaTes! neighbors that can be formed
on the 1attice divided by N. Equation (4.20) does not give Eq. (4.37)
exactly but it does give the larger ring diagraffi correctly and is correet
in the limit oí low density.

The first-order tenn is the van der Waalstheory resul t. lb this
ort:rTthe perttl1"bation contribution changes the energy oí the lattice gas
without changes in entropy ar structurc. The higher-order terms give the
effects on the free energy of ch3nges in structure resulting from the
perturbation.

The higher-order tenns become small at high densities where
L'\o N. This is because the lattice is nearly fully occupied and
rearrangements in structure are difficu1 t since only one molecule can
occupy a lattice site. This means that at high densities the perturbation
expansion will converge rapid1y even if 6£ is not 5ma11. This is a very
~rtant observation. It is not true for many other systems and is one



162

of the main Teason why perturbation theory is so useful.
At lower densities, the perturbation expansion converges slowly.

Thus, if the cxpa~sion is to be used in the neighborhood of the critica]
point, many terms aré nceded. For the lattice gas these tenms can be
obtained fairly easily. For other systcms this is not true and so it is
only fay the lattice gas that critical point propcrties can be examined.
This is ene reason why the lattice gas is of such great interest.

5. APPL1CATION ro SI~WLE FLUIDS

For a simple liquid consisting of sphcrical molecules with a
steep repulsion, an appropriate referencc potential is the positive part
of the potential. Thus, using the u~expansion

A-A, J~
--' 2'8p u(r)g,(r)r'dr + •••NkT o (5.1 )

where Aa and go(r) are the free energy and radial distribution function
of the refercnce fluid and o is the value oí r for which u(r) :::O.

Thc integral in Eq. (5.1) is very nearly independent oí density
and tcmperature. lhus, the first-order tcnn has, to a good approximation,
the lattice gas form given in Eq. (4.35). Thc sccond-ordcr term is a150
similar to the lattice gas result, r;q. (4.36). In particular, it is small
at high densities.

Because, the refcrence potential is steep, the higher-order tenns
wi!l be smal! at high densities, just as W3s the case for the lattice gas.
Even with just the first-order tenn, the perturbation series gives good
results at high densities. h'ith two tenns exccllent rcsults are obtained
at high densities. Even at lower densitics the results are quite good.

Despite thesc results, the perturbation theory outlined aboye
is not very practical since becausc, in the aboye fonn, Ao, go(r), and
the higher~order distribution functions must be determined by computer
simulations for every statc which i$ considered. One might as wcll pcrfonn
the computer sirnulations for the actual systcm.

The step which actually makes perturbatlon thcory practical for
simple liquids is the replaccment of ~ and &0 (r) by the hard-sphere A HS
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and gHS(r). Using Eq. (4.29) for O,r, o. Barker and lIenderson have shown
that

and

A o ~ A HS (5.2)

(5.3)

(5.4)

if the hard-sphcre diamcter is chosen by

1'"
d = J [l-exp(-B~o(z) }Jdz .

o
Since the thermodynamic propertics and distribution functions oí hard-
spheres are well-knoWTI, perturbation theory (with a hard~spheTe reference
fluid) becorncs a simple and ac<.:urate theory oí li~liids. We can obtain Ao
and &o(r) either form the Percus-Yevick/mean spherical apPl~ximation ay
írom computer simulations.

1£ the integral in Eq. (5.1) is assumed to be independent o£ the
density and temperature and if higher-order terms are neglccted, we obtain

or

A - Ao
-- = - Spa
NkT

(5.5)

(5.6)

This is the van deT Waals1 equation oí state.
Pcrturbation theory lcaos to a simple picture oí a liquido At

high densities, where the molecules are packed close together, the liquid
moleculcs behave as gas molcculcs 3t the same density. The main
contribution of the perturbatian is ta provide the potential well in
which the malecules move.

Resu1ts for the equation of state of the 6:12 fluid are given
in Fig. 4. The agreement of perturbatian theory with computer simulatían
results ís excellent. The perturbatíon theory results sha~TI in Fíg. 4 are
based on first and secand-order tcnms which are calculatcd from computer
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sirrulations using exact fornulae. Very similar resul ts would be obtained
if Eqs. (4.18) or (4.19) were used fer the second-order tenms. Presumably,
even bettcr results could be obtained at low densities if formulae like
Eq. (4.20) were used for the higher-order tenns.

o
0.60 0.900.800.70

27/ .1/1
./ 1.70 / 1./

/ 1.35 ji'.
/

..
• 1.06 /

• / 0.9~.l,/
/' . I

1/ • /0.72. /.' .
0.8

/
, :/

I

3

1

2
pV

NkT

Fig. 4. Equation of state of the 6:12 fluid. The points and curves give
the computer simulation and second-order perturbation theory
resulta for seven isotherms that are labelled with the
appropriate values of kT/C.
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6. APPLlCATlON ro ELEcrnoLYTES

A system oí charged hard-spheres, where

z z e2
= u (r) +---LL-

HS ~r
(6.1)

is a lisefu! model ionic fluid. In Eq. (6.1), zic is the charge oí an ion
oí species i, £ is the dielectric constant oí the salvent which is taken
to be a dielectric continuum, and o is the diameter oí the hard-spheres.
A slightly more general morlel could be obtained by allowing different
ions to have different diameters. In arder to keep the discussion as
simple as possible, we will no! do that here.

Because oí charge neutrality

í ZiPi = O (6.2)

i

(6.3)(no)

In Eq. (6.2) P N fV is the density of ions of species i.
The mádel ~n be marle considerably more general by using a mol~

cular morlel far the solvento We defer a discussion oí 5uch a model until
molecular liquids are considered in the next scction.

Waisman am Lebowitz(4) and Blull¡C5)have applied the mean
spherical approximation to the charged hard-sphere system. They find that

BZizje' f(r. o)
g (r) = g,(r) • ---- ---
ij dI + ro)' r

where gD(r) is the hard-sphere radial distribution function, given by
Eq. (3.28), r is defined by the relation

K = 2r(l+ro) (6.4)

where K is the Dcbye parameter, defined. by
47TBe2=-- 1 z1 p.,E!.!.

i

(6.5)

and the Laplace transform of f(x) is

F(s) = r e .sXf(x)dx
,
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S

52 + 2(ra)s + 2(ra)2(1- e-S)
(6.6)

Equation (6.6) can be inverted analytically(6).
At low conccntrations, KO and fo are small. Equivalcntly. we

can set o = O. Thus, r = K/2 and

F(s) 1'--s + K

so that

g, ,ir) . 1 -
Bz iZ{2

e-KI
Jo) cr

(6.7)

(6.8)

where r ~ O. Equation (6.8) was first obtained by IJebye and llückel. The
mean spherical approximation is an extension of the Debye~l~ckcl theory
to higher concentrations (or nonzeTO a). The paramcter K is an inverse
screening parameter. That is K-1 is a measure of the distanee ayer which
the ianie potcntial is nonzeTO befare the screening of neighboring clouds
of ions of opposite sign screen the interaction.

Both Eqs. (6.3) and (6.8) share the diffirulty that g, ,ir) can
Jo)

becomenegative for the like pairs. rhis i53 result of the linearization
inherent in both the Debye-IIDckel and mean spherical approximations and
can be overcome by using a nonlinear approximation such as the
hypc:rnetted chain approximation.

The mean spherical approximation gig(r) are compared with the
hypernetted chain(7) and computer simulation( ,9) g(r) for a 10w and a
high concentration in Figs. 5 and 6. The mean spherical approximation g(r)
is considcrably better at high concentrations. Even though thc low
concentration g ..(r) are unsatisfactory, the difference is given with fair

Jo)

accuracy. Since the thermodynamics depends on this diffcrcnce rather than
upon the absolute values of the g ..(r), the mean spherical approximation

Jo)

thermodynamic function are fairly good even at low conccntrations.
The encrgy in the mean spherical approximation can be calculated

from Eq. (3.5). The result is

E,
Jo •Nrr

(2r)'(1+ ro)

Brrp (6.9)
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Fig. 5. Radial distribution functions for the charged hard-sphere/
continuum die lectrie modal of a 1:1 electrolyte at 298°K,
0- 4.25.8., and ('" 78.5. Tila points give the computer simulation
results.
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where o • N/V (N = ENi) is the density of a11 the hard-spheres and
>

E. = E-3~~T/2 is the interna1 energy. From Eq. (6.9)
>

A- Ao (2rj l (1 + 3ra/2)---
NkT 12na

p - Po (2r) 3
__ o ---
akT 24na

and
d(p-PO) (2r) l 1+ ro

s ---
dO 16na 1 + 2ra

(6.10)

(6.11)

(6.12)

The MSA interna! energy and pressure are plotted and compared with
computer simulations and the hypernetted chain approximation results in
Figs. 7 and 8. The hypernetted chain approximation works well. !he mean
spherical approximation is less satisfactory but improves as the
concentration is increased.

The charged hard-sphere system can a1so be used as a model far
mal ten salts. The densities are large and the interactions are very
strong. Both the mean spherical am hypernetted chain approximations

give reasonable results when campared with computer simulations(lO).
Perturbation theory can also be applied to the charged hard

sphere system. Using the u~expansion with a hard.sphere reference system,

A- Ao

NkT
_.: So í x.x.f U .. (12)go(12)~2 + ••••

2 ij 1.) 1.)
(6.13)

where xi = Ni/N (N 3 ~Ni)' Because oí charge neutrality.

the first-order term in Eq. (6.13) vanishes.
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Fig.6. As in Fig. 5 but with conc"l.OOO M.

In second-ordert only the first term in Eq. (4.5) contributes.
The other tenns vanish because oí charge neutrality. Likewise in third-
arder only the ring diagram is nonzero. Thus,
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Fig.7. Values oi the interna1 energy for the charged hard-sphere/
continuum dielectric model of a 2:2 electrolyte at 298°K,
O" 4.25 $., and e::: 78.5. The points marked, O .• , and O give
simulation results of Valleau and eohen, Valleau and Card, and
van Megen and Snaok, respectively.

A - A,
L x.x.J u: .(12)&,(12)dr,
•• J. J J.) '\.
1)

+ i B'p' L x.x.x J u .. (12)u.k(13)u. (23)&,(123)d{,d{, + •••
ijk 1. J k 1.J 1. ]k

(6.14)

We see that the canccllation arnong integral s which leads to s~111 valucs
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of thc high-onlcr perturbation tcnns at high dcnsities in thc application
of perturbation thcoT). to thc lattice gas and to simple fluios i5 no!

prcscnt in this systcm. Thus, approximations such as Eqs. (4.18) to (4.20)
would no! be uscful foI' thi s s)'stcm. 111Cperturbat ion series will
converge more slowly. Nonc.thc-less, wc can make progrcss.

1.0

0.8

0.6

0.0 0.5 1.0
I

1.5

Fig. 8. Values of the osmotic coefficicnt ~ m p/pkT for the charged hard-
sphere/continuum dielectric medel of a 2:2 electrolyte. The
parameters and points are as in Fig. 7.

Ir we restrict OUT attcntion to thc symmetric two-component
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system .here ,= I '1 I = 1',1. Eq. (6.14) bccorncs

A - A,

NkT + ••••

(6.15)

Each integral in (6.16) is divergent because oE the long range oí the
C~ulomb potential. To get anything useful we must sum these divergent
tcnns.

It is convenicnt to re~Tite Eq. (6.15) as

A - A,
K' rr, K' f dr 2dr 3__ o

- 64Tl'2p r;~+ 3841T3p

'\, '\,
+ o ••

NkT T12T13T23

K' f h, (12)dr ,dr,
+--- '\, '" + o ••

128n3p T12T13T23

(6.16)

384n'p j
( h,(123)
r12TJ.3rlj

Each of the members of the first sequence of tenms is divergent, as is
each member oí the second sequence. Only the mcmbers oí the last sequence
of terms, invo1ving h,(12) = 8,(12) - 1 and

h, (123) = 8, (123) - 1 - h, (12) - h, (13) - h, (23) (6.17)

are convergent. Al! oí the integrations are outside thc cores
(i.e., r,. ~a). However. to evaluate the sum of thc first sequence, let

1)

us cxtend the range of integration to inelude a11 r ij ~O. No error is

introduced since we have merely added and subtracted the regions O:s: r i j::ía.
Rather than dea1 .ith Eq. (6.16), it is simp1er to obtain the

sum of the first sequence of terms by considering the corresponding
expansion of gij(r)J i.e.,

Sz.z.c' r 1 K' f d{, lgij(r12) = 1- ~ J "í- -- --- + •••
E lT12 4n T13T23 J

B2z~z~e" Bz z li:~ 1(2 J d{,
+ J.] + ••• + J.] no (ru) _ _ __

2E2T~2 E 4Tl' rUT2)
28z,z.e

2
1(2 J hoCl3) 8z,z,e2

+ J.] ---d,(3+ .. '+hO(r12)- J.] ho(l2)
E 4n T13T23 Er12



+ •••

ez z e2
i i
£

~Jhe(123)
4n T13T23

Jr,
'\,

173

(6.18)

Again wc can aSSlD1lC without 1055 of generality that Eq. (6.18) is valid

fer a11 r. ,S O. The sequence of tcnns in the curly brackets is called a
1Jring ar chain suro sincc rlcirterms in this sequence are simple ring

diagrams consisting oí repeated convolutions oí l/r.,'
1)Thus. defining the ring ar chain SUffi,

Bz.! ,e2 J_I__ ~ rr, tC,,(rl') • 1 )

r:3T2'; + oo.1)
E lr12 4. J

and taking the Fourier transfonn,

Ci/k) = -t"- f, rc, ,(r) sinkrdr.
e 1J

we have

(6.19)

(6.20)

41T8z.z ,e2

1 )

Ek'
4nBz.z,

1 )

J K2 Kli

1--+-+l k' k'

I

(nO) .

1>
J

(6.21)

(6.22)

Keeping only the first two tenns in Eq. (6.18) we have the Debye-Hückel
approximation

g .. (r) = 1- C.. (r) . (6.23)
1.) 1.)

Equation (6.23) is identical to Eq. (6.8). From Eq. (6.23) we obtain

Hencc,

(6.25)
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Thus, Eq. (6.16) becames
A - ,lo
--=
NkT

(6.26)

Note that as a result oE the resumnation, the free cnergy is no! an, ,
anal ytic function of B and p bu! is an analytic function of sj and pj.
Wc mus! still resum the 1ast sequencc (which contains divergent tcrms).
We do this by techniques similar to those used to obtain Eq. (6.22). The
resul t is

A - Au

NkT

which may be series

(6.27)

NkT
--= K' J ho (12) K' J ho (12)

- --- --- d,(2 + -- --- d,{2
12rrp 64n2p r2 32n:lp r

12

K' JI ho(l2)d{2 __ 1_ J ho(l23) d.(,d,{>] ••••. (6.28)
32n2p 'U 121T f12fUf23

This series converges very slowly. The sum oí the series may be
approximated by a Padé approximant. Thc Tesults (12) are very similar to
the mean spherical approximation results, obtained from Eqs. (6.9) to
(6.12).

We have derived the Stell-Lebowitz expansion frcm perturbation
theory. Stell and Lebowitz did no! use this method but obtained their

series in a more direct manner. Although the method given he re is less
directo it docs indicate how improvcments may be madc.

The integrations in Eq. (6.28) are over
This is natural in thc Stell-Lebowitz derivation.
perturbation expansion, the integrations are over

a11 space (rij;¡: O).

Howcvcr, in our original
rij ~o. This suggcsts
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that improved results might be obtained by taking the integrals
regions O:;;rijs a and combining them with the 1(3 tenn. Thus

for the

(6.l9)[
3 3 7 -

1 - 4" a + "4 KO~ 8 K 303 "' ••• J + •••
A- Ao
__ o

NkT l2nD

At f irst sight K 3 (1 - 31<0/4 + 31< la:'! / 4 - 71< 303/8 + ••• ) seems 1ike an

tmpromising combination; it is, in faet, (2r) 3 (l + 3ra/2). Thus

A - Ao

NkT

(lr)] (1 + 3rojl) <' [
-------- -- ho(r)dr + •••

121TP 16np o
(6.30)

(6.31)

Retaining only the first tcrm givcs the mean spherical approximation.
The corrcsponding result for gij(r) i5

6l z e2
i j hoCT) + oo' (1'>0),

wherc

e MSA =
ij

81. 11.{2
«l+ro)'

f(r' o)

r
(6.3l)

Again, truncation oí (6.31) after e ~~(r) givcs the mean spherical
approximation. The optimizcd random l.~hase approximation oí Anderson
et al. (13) consists of truncation of Eq. (6.31) after e MSA(r) and so is
equivalent to the mean spherical approximation. ij

The s~Ties oí corrections to the mean spherical approximation
stil1 converges slowly and must be surnmed by Padé methods. There must be
extensive cancellation among the terms as the Padé results are not much
different frem the mean spherical approximation results.

Henderson and Blum(14) have suggested changing the expansion
parameter frem K to 2r. Thus,

A-A__ o =

NkT

(lr)] (1 + 3rojl) (lr)' ¡~
------- - -- ho (r) dr + •••

121Tp 16rrp e
(6.33)

The higher-order terms in this expansion are given by Henderson and Blum.
Sinee 2r S K this series oí correetions to the mean spherieal approximation
is better behaved. In faet, at normal eleetrolyte eoncentrations the
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corrections are negligible.
At low concentrations, the correction tenms, given in Eqs. (6.30)

and (6.33) are not the mest important corrections to the mean sphcrical
approximation resulto This is because, there is, in the fourth~orderterm
[see Eq. (4.1Z)J. the contribution

~ = - -k S'p¿xix.f u7.(r)g,(r)d{
ij J ~J

Contributions analogous to this appear in cvery cven-order perturbatían
termo The corresponding tenms in the odd-order perturbatían tenns do not
contribute becausc oí charge neutrality.

The integral in Eq. (6.34) converges because r-~ goes to zero
sufficiently fast to prevent a divergence. Ibwever, since the mean
spherical approximation works well at higher densities, the contribution
oí this 8~ terro must disappear at thcsc higher densities due to sorne
cancellation with terms which are higher-order in the density. Henee,
even though a resurnmation is not forced upon us to prevent a divergenee,
a resurnmation is desirable as it approximates this eaneellation. The
efíeet oí the resurnmation is to replaee

Bziz;e2

SUl (r) • -~-~

by C..(r). Thus, we have loo to the approximate eorreetion tenn
Jo)

00 1~ . -i p í x .xf ¿ J1Tn)T [CMSA(lZ))2ng,(lZ)d{,} .
ij 1. ) n••2 "1 J.)

(6.35)

(6.36)

We couId add 6A given by (6.36) to (6.30) or (6.33) with a11 the
known terms, that is, the integral s (6.2S) with the integration region
r..~ o. Andersen et al. (13) keep only the K' term in (6.30) and repIace

Jo)S'u: (r) in this term by C' .(r) to obtain what they caU the ORPA+B,
Jo)approximation. In this approximation

A- A,
r;rr- •

(Zr)' (1 + 3ro/Z)
lZrrp

-.;. p ¿ x.x.f h,(lZ)[C~sA(lZ)l'dr,
q •• J.) J.J ~

Jo) 00

- 71p ¿ x.x.f g,(lZ) ¿ -rb. [C'lSA(lZ)]2ndr,.
.. 1.) '-••n) ; J.) '"
1.J 0""2

(6.37)
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which becomes

1 ~ 1
¿pI--

n=2 (2n)!

A- A,
__ E

NkT

(2fj '(1+ 3fa/2) (2r)+ J h, (r)
------- -- -- f'(r- a)dr

12np 64n'p" "-

1_82_'_e'_]2nJ _&_o(_f_) f2n(r -a)dr
Le(l + rO') 2 r2n ....•.

(6.38)

where the integrations are over the region r ~ o. The results of this
approximation are shown in Figs. 7 ánd 8. Thcy are an improvement ayer
the mean spherical approximation results and are comparable to thosc oí
the hypernetted chain approximation.

In addition to the theories of electrolytes outlined aboye,
there is another theory oí electrolytes which as becn useful. lt is the
modified Poisson-Boltzmann approximation. We do not have time ar space
to outlinc this approach here. We have limitcd ourselves to theories
based upon either the Ornstein-Zernike equation OT perturbation theory.
The modified Poisson~Bolt~ approximation and othcr approximations have
been admirab1y reviewed by Outhwaite(lS).

The theories outlined aboye provide reasonably good descriptions
of the mode1 ianie fluid defined by Eq. (6.1). The main defieiency i5 the
nonmolecular model of the solvent which appears on1y through the dielectric
constant £. ~hat is needed is a more realistic treatment of the solvento

7. APPL1CATlONro mLEQJLAR FLUiOS

MOlecular fluids, in which the intermolecular potential depends
on orientation as well as position, can be treated by fairly straightforward
extensions of the rnethcxlsdiscussed above.

First let us consider integral equation approaches. It is
sometimes helpful to expand the pair-potential and the correlation
functions using an orthogonal basis seto Restricting ourselves for
simplicity to molecules with cylindrical symmetry, we have

000 110 110 112) '"u(1.2) "U (r) + u (r)~ + u (r ~ + •••• (7.1)
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etc., where the coefficients are obtained as projections,

JU(l,2)~mnl(n"n,)dnldn,

umn1(r)' ~-~--------J [~mnl(n"n,) J 'dn,dn,

The first two ~DU'l.l(after ¡pODO:!) are

(7.2)

(7.3)

(7.4)

where e, J ~. are the polar angles of molecule i.
1 1

Coupling sorne approximation with the Ornstein-Zernike equatían,
Eq. (3.11), gives an approximate integral equatían. The simplest is the
mean spherical approximation, where

c(l,2) e - Bu(1,2),

outside the hard core, and

(7.5)

h(l,2) = -1 (7.6)

inside the hard coreo Because oí the linear rclatían betwecn c(l,Z) and
u(l,2) in Eq. (7.5) a truncated series far u(l,2) with a limite<! number

oí umn1(r) will produce a similarly truncated series for c(I,2) and
h(l,2).

A nonlinear approximation. such as thc hypernettcd chain
approximation. would produce an infinite series for h(I,2) and c(l,2)
even if the series for u(l ,2) containcd 3. small munber oí tcnns. An

approximation, based upon the hypernetted chain approximation, which does
lUnit the number of tenms in the h(I,2) and c(I,2) expansions is
obtained by truncating the expa~~ion of the logarithm in the hypernetted
chain approximation,

In g(l,2) + Bu(l,2)

to first arder. Thus,

h(1,2) - c(1,2) (7.7)

c'''(r) = h"'(r) - In [l+h"'(r)] - Bu'''(r) (7.8)
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and

(7.9)

for m, n, 1 not all equal to zero. Equations (7.8) and (7.9) are called
the linearized hypernetted ehain approximation(16). Although this is a
linearized version oí the hypernetted chain approximation, it is difíerent
from thc mean spherical approximation. Thc linearized hypernetted
approximation reduces to the mean sphcrical approximation if

h" o(r) • 1. (7.10)

Gaylar et al. (197) have proposed an alternative linearized hypernetted
chain approximation which is an improvernent at low densities, at least.
An improved approximation, called the quadratic hypemetted chain
approximation follows if the logarithm in Eq. (7.7) is expanded to second
arder.

Other integral equations can be formulated. Curnmings et al. (18)
have considcred sorne oí these and obtained numerical rcsults far short-
ranged anisotropic potentials. Bere wewill limit ourselves to the
relativc simple dipolar hard-sphere potential,

2u(I,2) = u (r) - ..le- D(I,2),
HS r~2

where \J is the dipole mament of a molecule and

D(l,2) =~'"

(2.30)

(7.11)

is given by (2.31) or (7.4), and the mean spherical and linearized
hypernetted chain approximations. The dipo1ar hard-sphere potential is
simple not only because of the limited basis set but a1so because the
potential core is spherical.

Kertheim(19) has obtained an ana1ytic solution for the dipolar
hard-sphere potential using the mean spherical approximation. FOllowing
his notation. he finds

h(I,2) • h (r,,) + h (r12)D(I,2) + h (r,,)LI(I,2),s "1) 6
(7.12)
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where

h (r) e hUOO(r),
s

h (r) = h"'(r),
O

\(r) ""hllO(r),

D(I,2) is given by Eq. (7.11), and

6[1,2) : J¿l • J¿2

= 4'110.

(7.13)

(7.14)
(7.15)

(7.16)

l'ie note that

JD(I,2)dn,dn, = J~(I,2)dnldni = O, (7.17)

]D'(I,2)dn,dn, • ~ ' (7.18)

J~'(1,2)dnldn, = i' (7.19)

and that D(I,2) and ~(I,2) are orthogonal, i.e.,

JD(l,2)~(I,2)dnldn,. O (7.20)

Wertheimfound that hs (r) is just the PerOls-Yevick/meanspherical
approximation result for hard-spheres which can be obtained íTom Eq. (3.28).
Purther, he found that if K is defined by

where n = n2po' /6 and .;. is obtained írom

= i [q(U;) - q(-,)],

where

(7.21)

(7.22)

q(x) (1+ a)'
(1 - x)'

(7.23)
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then

h (r, -kp)]
•

(r < o),
(7.24)

(r> o),

and

ho(r) • <l( O

h (r)
O

where

- 1... Jr h (s)s'ds
r3 O O .

(r < o),

(r> o),

(7.25)

.h (r) • K[2h (r,2Kp) + h (r, -Kp)].
O • •

(7.26)

The apparently rnysterious equations fOT ~ can also be written as

[

h (r)
K = o ~ dr. (7.27)

The thenoodynamic functions can be calculated fmm

or

...L • 1
pkT

kT le. •ap

1 J h (r)
+ 4nY(o) - ;- 6pu' Jl..- d.\:

• r'

1 + PJ h (r)dr. '"

(7.28)

(7.29)

1 (h (r)
E. = - ;- NPu'J-O_- dr .
~ r3 ~

Equation (7.30) gives by far the most reliable results.
The dielectric constant € is calculated fraro

(£ - 1)(2£ + 1) = Y~ '
9£

where
4n ,

y • 9" 6pu

(7.30)

(7.31)

(7.32)

and
(7.33)
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(7.34)£

It is interesting to note that Onsagcr's approximation for E is obtained
from Eq. (7.31) by putting gk= 1. In the mean spherical approximation

(1 + 4 r)' (l + O'
(1 - 2¡;)'

The mean sphcrical approximation pair distribution function for
dipolar hard-spher~s is compared ~ith computcr simulation rcsults(20,21)
shovm in Fig. 9. The mean spherical approximation givcs fairly good rcsults

for h (r). Furhtcr h'C scc that the simulat ion h (r) for dipolar hanl-s s
sphercs is very ncarly equal to that for haro sphercs hut is somcwhat

larger. The mean spherical approximation for h (r) ano h (r) an.' rathero ¡,
poer. Interestingly, the approximations

h (r)o (7.35)

(7.36)

are much better.
o•

•A
'\
0\
I \: \
I \
I ,

1 O'

I "
I ,
I \
I 0\ '" ..•.

O',1---

4

•

2

1.0

9, (r)

."
1.2 1.0 1.2 1.0

hLl (r)

1.2
rla

Fig. 9. Pair distribution functions for the dipolar hard-sphere fluid at
poJ ~ 0.9. The points given by • and o give the computer simulation
results for Bu2= O (hard-sphcres) and B~2 = 1, respectively. The
solid and broken curves give the results of the MSA and Eqs.
(7.35) and (7.36), respectively, for Bu2 = 1.
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The mean spherical approximation free energy and dielectricconstant
for dipolar hard-spheres are plotted in Figs. ID and 11. The results are
fairly reasonablc. The mean spherical approximation dielectric constant
is much more satisfactory than the Clausius~~bssotti result,

£ - 1__ o Y

£ + 2
and the Onsager result,

(7.37)

(£ - 1)(2£ + 1)

9£
• y . (7.38)

o

-1

1-
~
Z--o -2<:(

<1:

-3

o 1 2 3

Fig. 10. Free energy of the dipolar hard-sphere fluid (po3 - 0.8344) as a
function of reduced dipole momento The peints are the simulation
values of Patey and Valleau. The broken curves marked 2 and 2+3
give the resulta of Eq. (7.39) when truncated after 2 and 3 terms,
respectively. The solid curves give the resulta of Eq. (7.47) and
the curved rnarked MSA gives the results of the mean spherical
approximation.
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I // ///MSA

II // _ -- __ -
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o~~~::..--

o 1
y

2 3

Fig. 11. Dielectric constant tar the dipolar hard-sphere fluid ter
p* ~ 0.8. The salid curve gives the perturbation theory results
and the broken curves give the results tar sorne other theories.
The points rnarked O and _ are simulation estimates oi Levesque
et al. and DeLeeuw et al., respectively. The points marked O
and • are, respectively, sLmulation estimates obtained by Adarns
using an Ewald-Kornfeld summation and an extrapolation to zera
field oi the computed values oi the polarization in the direction
oi an applied fieId.
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Perturbation theory can a1so be app1ied to the dipo1ar hard
sphere system. rhe first-order term vanishes bccausc oí Eq. (7.17).
Similarly. onIy the first integral in the sccond-order term is nonzero
and only the ring diagram in the third arder is nonvanishing. After
performing the angular integrations,

(7.39)

where

-= (7.40)

and

A 1
_3 '" __ p21 •
NkT 54 ddd

(7.41)

Similarly, the perturbation expansion far £ is

( = 1 • 3y • 3y' • 3y' [9
I
dd~.- 1] •

16lf2
(7.42)

In Eqs. (7.41) and (7.42)

J
I + 3 cosel cos62

r~2r313r~j

cose]
(7.43)

and

(7.45)

(7.44)

Iddd

(3 cos3er 1
I - J go(123)dl:>d~>.
dd6 r3.r1

"" (22) (23)Barker et al. and, more recently. Tani et al. have
calculated 1 and Tani et al. (23) have calculated 1 . A numerical fit

ddd dd.6oí their results is given by
S,' 1+ 1.127S4po' • 0.S6192p'0'

: - o' ------------
3 1-0.0S49Spo'. 0.13332p'o'

and
17,' 1- 0.939S2po' • 0.36714p'o'

I • -- o' ------------
ddA 9 1- 0.92398p03 + O.23323p:lo'

(7.46)
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The free cncrgy calculated from Eq. (7.39) with Ao ano A7 antl /1.3 includcu

is plottC'd in Fig. 10. The series converges poorIr. fJowevcr, Rushbrookc
et al. (24) have found that the Pad6 sumo

A,
1 - B"'A,/ fu

is in good agreement with computcr simulations(25). On the othcr hand, the

perturbatíon series for the diclcctric constant sccms to converge antl, as
is seco in Fig. 11, good agrcemcnt with computcr simulation rcsults(26) is

obtained from Eq. (7.42).
"""chave seco for the case of chargcd hard-sphcrc. it is hclpful

to remove the mean sphcrical approximation rcsult~ from the perturbatíon
series and wT ~c the series as a correction to the mean sphcrical
approximatiOJ.. lhis can a150 be done for dipolar hard-sphcrcs. Thc

results i5

wherc

(7.48)

1A'2
NkT

and
f
h,(r)

p -- d{
6 r'

(7.49)

(7.50)

The free cnergy calculated from Eq. (7 . .t8) \<.'ith A , A~. and A; inc1uJcJMSA
is plottcd in Fig. 12. The series in Eq. (7.48) converges bcttcr th¿m

that in Eq. (7.39). Hm..'cver. good agrcement wi th siJJUlat ion rcsults (26) is

obtaincJ only if the radé series,

A~
(7.51 )

is uscd.
The corresponJing resul t for thc t1iclcctric con~tant 1S
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(7.52)

The results of Eq. (7.52) are nearly idcntical to those of Eq. (7.42) in
Hg. 11.

1-
,;;,(,

Z-.
o

<t:
I

<t:

o 1 2 3

Fig. 12. Free energy of the dipolar hard-sphere (p03 = 0.8344) as a
function of reduced dipole momento The points have the same
meaning as in Fig. 10. The broken curves marked 1, 1+2, 1+2+3
give the resulta of Eq. (7.48) when truncated after 1. 2, and
3 terms. respectively. The salid curve gives the results ef
Eq. (7.51).
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Equations (7.47) and (7.51) will be inad~quatc at low dcn~itics
becausc of the ncglcct of the two-fourth and highcr+ordcr tcnms. For
cxamplc, we could gcncralizc Eq. (7.47) to

of h,(r)h'(r)ur
Ó D '\,

A - A,

N'kT

A,/NkT

A,
l-S~l-

A,

.,- O E ~ J&,(r)h2"(r)dr f D2"(I,l)uO,un,n;2~~n): D. ~
A,/~'kT 1

= B'"' ---- - - ojho(r)h'(r)dr
1 _ B\.J2A3 6 O '\,
00 A,

I ( 2- "2 O ¿ K I &,(r)h "(r)dr ,
n=2 2n, o

(7.53 )

(i.54)K
n

whcrc

r n! 1'" (li)!l" ----, ¿ __
_ (ln+I)!_ ;=0 (i!)'

The perturbatiún theory considcred aboye is upon a u-expansiono
A pcrturbation thcory bascó upon an f-expansion is also possible aod has
sorne advantages. (27) It docs have the disadvantagc that rhe angular
integrals cannot be cvaluatcd analytical1y.

In Section 6 wc considcr a systcm of chargcd hard~1J1cres and in
this section we considcrcd rhe dipolar hard-sphere systcm. Ir is tcmpting
to considcr a charged hard-sphcrc/dipolar hard-sphcrc mixture as a more
realistic model of an clectrolyte. For this systcm the interacti0ns are

r
u.. (r)
')

z z e2
= u (r) + --LLHS (7.55)

for ion-ion intcractions,

Z .ClJ
u.. (r) =u (r) +_'- C¡;Oi¿)
1) AS r2 )

for ion-dipole intcractions, and

(7.5ó)

"'u.. (r) = u (r) - .., D(l,l)
1) HS r (7.51)
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for the dipole-dipolc intcractions. ~te that E no longer appears in the
denominata!" of the Coulomb interaet ion.

I
TIIC mean sphcrical approximation has becn applicd to this

systcm(28). Thc rcsults are complcx and beyonu rhe scopc of thcsc lectures
Pcrturbation th(01)' can also be applicd(29) to this systcm. Again the

rcsults aTe complexo iJQ\,"cvcr, a [C\\' convncnts are of valuc. If a11 the

hard-sphcrcs have the sarne uiaJOCtcr, the first-onlcr tcnns vanish bccausc

of chargc ncutral it}' 01' anglc intcractions. In secano ano third arder

cnly the telms involving u2" ol' u u u survivc. lhus,
12 1.1 23

l\'kT
os'), x xl u¡;" I u' ,(r,,)dQ,dQ,

4 ij 1. ) 1)

+ i o'S' ), XXX fu¡;"u¡;"lu ,(12)0. (23)u .. (13)dQ,dQ,dQ, .
ijk 1) k 1))k 1) (7.58)

~L.'myof thesc integral s divcrge. Thus, ring Ol' chain sUI1Illations must be

pcrformcd. These Stm1ll<'1tion~ are complex and beyond our scope. Ho.•..,cver,
it i~ instructive to calculate the ring sum for the ion-ion interactions.
Dcfining

C .. (12) = Su (12) - S'OLfu (13)u (23)ur,dQ, + •••
~) ij k ik kj 'V

For the ion- ion interact ion

(7.59)

(7.61 )

(7.60)

hard-sphercs,
the dcnsity of

r"

SZ Z e2
i je ,Cr,,)

1)
82 Z,=,('4 t z2pk J

1 J k=l k r13r2J

1 (COS63
B2z.z,e2u2Pdj J -'-2 d{,3 .•.••• ,

~J r
13
r
23

where species 1 and 2 have becn assumcd to be the cllargcd
spccies 3 is assumed to be dipolar hard-sphcre, ano Pd is
thc uipolar hard-sphcrcs. Now using Eg. (3.14) anu

2 2 ¿

r13'" r23 • r12

we obtain
( cose3

J
-,-,- U{,
r 13 r 23 r"

(7.62)
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and, thus,

where

4rrBe" z'p~ k k
3nd

Proceeding a befare,

(7.63)

(7.64)

(7.65)

e
ij (7.66)

where K = KolE and

¡le = 1-3y • (7.67)

i5 the inverse of the dielectric constant. Hence, even though the directo

Coulomb interaction daes not cantain the dielectric constant. the chain suro

which ineludes thc screening and salvent interaction dces cantain £.
The contents of this scction give cnl)' arrl introduction to the

theory of molecular fluids. For further appl ication~. cspecially to fluids

with nonspherical cores, the forthcoming book of Gray and Gubbins(30) is
reconnnended.

8. APPLlCATJON 1'0 ELEITRIFIED I~'TERFACES (UIE [XJlJBLE LAYER)

\\'e consider an elcctrolyte near a charged clcctrodc. A",befare,

we consider thc ions to be chnrgcd hard-sphcrcs oC diamcter 0. The
electrode is approximated as a lll1ifonn hard charged wall. First considc-r
the case where the solvent is a uniform dielectric rncdium whosc diclcctrie
cons tant Ü €.

If the elcetrade is eharged. therc will be :::m accumulation ncar

the electrodc oí io~~ whose chargc is opposite to that oí the clcctrodc.
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We can then speak of a doub1e 1ayer of charge.
The techniqucs which have bcen developed so far can be applied to

the double laycr if we regard the surface as a large ion whose diameter i5
D» a and whosc charge is Q. Eventually, we take the limit Q...-;.. It is
convcnicnt to use the charge de~~ity on the electrode (or equivalently,
the electric field at the electrode, E, ~hich i5 equal to 4n times the
charge density) as a variable. Thus,

ED2
Q'T

1f o,(x) is the (number)
Jo

at a distance x from the elcctrodc,
or reduccd density profile, is

g ,(x) = h, (x) + 1
Jo Jo

.o,(x)/p,
Jo J.

density profiJe oí ious oí spccies i
thcn the singlet distribution function

(8.2)

wherc P. = p,(oo) is the bulk (number) dcnsity of ions oí species i. The
Jo Jodistance x i5 mcasured from thc wall itself so that the distance oí closes!

approach is 0/2.
The density profilc oí a11 the ions i5

p(x) • ¿ p,(x) = ¿p,g,(x)
. 1. . 1. l.
J. J.

and the charge profile is

(8.3)

e¿ 2,p,(X)
i 1. 1.

= c¿2,P,g,(x)
• 1. 1. 1.

C t 2 ,p,h, (x)
i 1. 1. .1

(8.4)

Changing froro g, (x) to h, (x) is justified because of the charge ncutra1ity
Jo J.

condition in the bulk

¿ 2
iPi

= o.
Jo

If -E/4n is the chargc density on the electrode,

e¿ 2,P, [ g, (t)dt • E/4 •.
i 1. 1. 1.

0/2 (31)Force balance considerations require that

(8.5)

(8.6)
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kT¿ p,(0/2) = p • E'/S" •
i '

(S. ;)

~hcrc p i~the pressurc of the bulk fluid (the osmotic prcssurc oC an
elcctrolyte). Thc first tcnn i5 rhe momcntLUTI tr<Jnsfcr to the \>o'al1 anJ rhe

secano tcnn i5 the ~1axw'cl1 stress. "In" potcotial at a distancc x from the
clcctrode 15 givcn by

~(x) = 4,e ¿ Z,p,r(t-X)g,(t)dt.
f . ~ 2 1, x

ThU5, the potcotial diffcrcnce across rhe interface i5

v = ~(O)

DE • Ho/2) •
2£

(S .8)

(S.9)

whcre (S.6) has been used.
Ir the salvent is discrctc. consists of molcculcs. then mes! of

rhe aboye considcrations rcmain val id. 111CJcnsity profilc of the ions i5
given hy Eq. (S.3) anJ the charge profile is givcn hy (S.4). lhe dc'nsity
profilc the salven! molcculcs i5

(8.11I)

",,'heTC

Onc projcction of gd(x,n) which 15 of interest is

~h (x) = 4
/3 Jg (x.n)cose~~d 'd

Equation (8.7) i5 modificJ slightly to bccomc

(8. 11 )

(8.12)

(8.13)kT¿ p, (0/2) • kTp (o /2) = r • U/8,
. 1. d d,

""fleTe the SUTl 1S ayer the ion spccics and p is the actual bulk pressure of
the clcctrolytc. The potcntial diffcrcncc acr05S the interface is givcn
by



v = 4TICL z.o.loo tg.(t)dt
i 1. ~ 0/2 1-

whcrc 0d is the diameter of the

411 (00

+ - p "J th (t)dt
i.l d o /2 d

d
salvent molcculcs.
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(8.14)

A. Gouy-Chapman Theo~y

Using the chargcd hard-sphcre/diclcctric contiruLUn model of an
clcctrolytc, wc can apply the Gouy-Chapman theory, developcd by GoUy(32)
and Olapman(33), and subscqucntly Stcrn(34). Assumc that

g (x)
[O

= IcxP(sz .c~(x) ),

(x < 0/2),

(x>a/2),

(8.1 S)

\~'hCTC <p(x) i5 the clcctrostatic potential \~'hich satisfics Poisson's cquation

(8.16)

A fir~t integral is always possiblc sincc

(8.17)

Using the faet that

at x = oo. wc h:r •.~~

fd.] 2 8TIkT.['" = -- , p. [cxp{sz.c~} -IJ.
¡LX £ ~ 1. 1-
. 1

NowE 15 constan! in the regian 0< x< 0/2. Thus

(8.18)

(8.19)

E = -

and, thus, Eq. (8.19) for x= 12 becomes Eq. (8.7) but withp equal to the
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perfect gas result, pkT.
To complete the solution, wc must integrate Eg. (8.19). In

general J this cannat be done analytical1y. However,for the spccia1 case
of binary n:n and 1:2 solutions, analytic results can be outlincd.
Rcstricting ourselvcs to the symmctric n:n case,

Bze$(x)/2 = In (l + P.e-K(x_O/2» - In (1 - A e-K(X- 0/2) )

where z = Iz , l.,
b/2

(8.21 )

(8.22)A=------
I '¡~1-+-!¡--'~

b = BzeE (8.23)<K

and K is given by Eq. (6.5). Also.

sinhBze$(o/2) = b/2 (8.24)

so that
oE 2 . _ 1V =2~ + eze Slnh b/Z.

At cantac!

(8.25)

also be obtained. The results is
which satisfies Eq. (8.7) with p equal to pkT. 'Ine integrals of h (x) can,

r hi(t)dt
0/2 (8.27)

where the positivc sigo applics to the countcrions, ctc. From this resul!
we see that Eq. (8.6) is satisficd.

lhe Gouy-Owpman thcory fails to satisfy the cantact valuc
thcorcm, Eq. (8.7). by the diffcrcncc bcn,icen p and pkT. At low

concentrations this differencc is small. In any case, as the clcctrodc is

charged, the quadratic terms, E2/8nc, rapidly becomes dominant. A~ a
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result, far most situatians thc Gouy-Chapman theary satisfies the cantact
value thcorcm to a vcry good approximation.

The Gouy-Chapman thcory profiles have the approximatcly correet
arca, i.c., thcy sati~fy Eq. (8.6), and have almost the correet contaet
values. As a result, we would cxpcct thcm to be quite accurate. That this
is thc case can be secn in Fig. 13, wherc the g.(x) are compared with recent
computer simulations(35) [ar z= l. Thc agrecme~t is less satisfactory when
z = 2(36) but is still muchbetter than would be expected given the relati-
vely cruue assumptions of thc Gouy-Chapman thcory.

20

x(A)

-.-•.---.---L :e__0-- -----

4O

1

10 ,,, b= 3.8,

\ 0.22 c/m2

5 1M

X¿,,-

2

Fig. 13. Singlet distribution functions far the 1M charged hard-sphpre/
continuum dielectric model electrolyte near a uniformly charged
hard wall (charge densityco 0.22 coul/m2) whith z- 1,0" 4.25A.
T'" 298°K, and E:'" 78.5. The points give computer simulation
results and the broken and salid curves give the GC and HNC/MSA
results, respectively.
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The Gouy-Chapman valucs for the diffuse layer potential, $(0/2),

are compared with computcr simulations (35) in Fig. 14 for z:= 1. The
Gouy~Chapman values oí $(0/2) are significantly in error. The error is
even more pronounccd for thc z E 2 case(36). \~hcther this error can be secn

experirncntally is problematic sincc the diffusc layer potcntials is smkl11
compared to the contributions of the metal and the salvent to thc potcntial.
We shall discuss thesc latter contributions shortly. flowC'vcr, a heuristic

theory oí these effects can be devclopcd now.

0.2 --

0.1

o
O

----

I
0.1 0.2
Charge Density (c/m2)

O.OlM

--
O.lM •

I
0.3

Fig. 14. Diffuse layer potential difference for the charged haád-sphere/
continuwn dielectric rnodel electrolyte (z= 1,0= 4.2SA,
T==298°K, and (= 78.5) near a uniforrnly charged hard wall as a
function of the charge density on the electrode. The points
give computer simulation results and the curves marked ,
and --- give the Gouy-Chapman. mean spherical approxirnation and
the HNC/MSA results, respectively.
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We see from Eq. (8.25) that V divides itself into two terms. the
potcntial diffcrence across ""hat wc can call an "iImer layer" whcre the
ficId 1S constant and thc diffuse layer potcntial. Let liS assume that the
effects oí thc selvent structurc and thc clcctronic structurc oí the metal
is such as to modify thc effcctivc dielcctric constant inside thc inner
layer but that within thc diffuse layer thc diclcctric constant is equal
to thc bulk valuc. If this 1S thc case,

_2_ sinh-1
Bze

b/2, 8.28)

wherc E* is the effcctive diclectrie constan! in thc "irmer layer".
Thus, thc differential capacitance,

is givcn by

K~

1 + ~o (:*VI +
b'
""4

(8.29)

(8.30)

For small charge on the electrode, Eqs. (8.28) and (8.30) become

V=~+.I..
2£* EK

and

(8.31)

e - £d - 4TI
K

+ !£ l-R2 £

(8.32)

In TabIe 1 wc sce that Eq. (8.32) with c* = E: = 78.4 is in poor agrccment

with expcriment(37) but i5 in good agrccment if c* = 4.6
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TABLE

Dif£crcntial Capacitante (f/m2) in thc Limit of ZeTa Charge

Conc

-'10 M
10-\:
lO-'M

lO-'M

1M

Expt(37) Eq, (8.32) I'.q. (8.32) Eq. (8.65) &j. (8.66)
= 78.4 • = 4.6E E

0.0227 0.0211 0.0201 0.0212
0.06 0.0710 0.0577 0.0503 0.0579
0.13 0.218 0.128 0.0965 0.129
0.21 0.630 0.207 0.136 0.210
0.26 1.57 0.257 O.ISh 0.267.

Table l. The experimental results are tor an aqueous solution oí NaF near
a mercury electrode. The theoretical values are ealculated with
T=298°K, ('" 78.4, and o '" 0d '"'2.761.

Both Eqs. (8.30) and (8.32) have the propcrty that Col consísts
d

of two tenns, the inverse oí the diffusc layer capacitancc,

/
b'

Cd1"'-;f;r.: 1+""4 (8.33)

ar, far small charge

C =+-KdI 'Hr • (8.34 )

which is concentratíon dependent, and thc invcrse oí a concentratíon
independent tenn, the "irmer layer" capacitance,

C =_E_
H 2Tro

(8.35)

lf we

C~~•

-1differentiatc Cd ' givcn by Eqs. (8.30) or (8.32), with respcct to
w.C obtain

The

(8.36)

c-1 whcn plottcd as
d
concentrations.

-,
aCd = 1
ac-'

dI
We sce írem Fig. 15 that thc experimental (38) slope of
a funetían oí C-1 is indecd unity exccpt at very high

dI
good agreement of Eqs. (8.30) and (8.32) with cxperimcnt in Fig. 15 ano

Table 1 might he thought of as a confinnation oí thi s macroscopic picturc
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Fig. 5. Radial distribution functions for the charged hard-sphere/

continuum dielectric model ef a 1:1 electrolyte at 298°K,
0= 4.25A, and E:=78.5. The points give the computer simulation
results.
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where p = N(V (N = EN;) is the density of a11 the hard-spheres and
1

E. E-3NkT/2 is the interna1 energy. From Eq. (6.9)
1

A- Ao (2rj' (1 + 3ra/2)
--=
NkT 12np

p - po (2r) ,

pkT 24np

and
a(p-p,) (2r) , 1+ fo

8 ---
ap 16np 1'" 2ra

(6.10)

(6.11)

(6.12)

The MSA internal energy and pressure are plotted and compared with
computer simulations and the hypernetted chain approximation results in
Figs. 7 and 8. The hypernetted chain approximation works well. The mean
spherical approximation is less satisfactory but improves as the
concentration is increased.

The charged hard-sphere system can a150 be used as a model far
mol ten 5alt5. The densities are large and the interactions are very
strong. Both the meanspherical arxl hypernetted chain approximations
give reasonable results when campared with camputer simulations(IO).

Perturbation theory can a150 be applied to the charged hard
sphere system. Using the u-expansion with a hard.sphere reference system,

A- Ao

NkT
-.: 8p í x.x.J u .. (l2)g,(12)d,¡;, + o., •

2 ij 1.) 1.J
(6.13)

where xi Ni/N (N D ~Ni). Because of charge neutrality,

the first-order term in Eq. (6.13) vanishes.
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o
1

r/u
Fig. 6. As in Fig. 5 but with cone-l.OOO M.

2 3

In second-order, on1y the first term in Eq. (4.5) contributes.
The other tenns vanish because oí charge neutrality. Likewise in third-
order only the ring diagram is nonzero. Thus,
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o

1-~
Z--w

-1

-2

-3

0.0

--HNC
---MSA
---ORPA+B2

Fig.7. Values of the internal energy for the charged hard-sphere/
continuurn dielectric model of a 2:2 electrolyte al 298°K,
0=4.251\, and (=78.5. The points marked, O ,., and Qgive
siroulation results of Valleau and eohen, Valleau and Card, and
van Megen and Snaok, respectively.

A - A,
__ o

NkT
í x.x.f u~ .(12)g,(12)d{,
ij 1. J 1)

+ i 8'p' í x.x.xk! u .. (l2)1l'k(13)1l'k(23)g, (123)d{,d{, + •••
ijk .1. J 1J 1. J

(6.14)

~c see that thc canccllation among integrals ~hich leads to small valucs
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of thc high-on.lcr pcrturbation tcnns at high densities in the application
of pcrturbation theory to the lattice gas anJ to simple fluios is no!
prcscnt in this systcm. Thus, approximations such as Eqs. (4.18) to (4.20)
wouId no! be useful for this s)'stcm. 111('pcrturbation series will
converge more slowly. Nonc-thc-lcss, wc can make progrcss.

1.0

0.8

0.6

0.0

HNC
---MSA
---ORPA+B2

0.5 1.0
I

1.5

Fig. 8. Values of the osmotic coefficient ~ = p/pkT for the charged hard-
sphere/continuum dielectric model of a 2:2 electrolyte. The
parameters and points are as in Fig. 7.

Ir we restrict OUT attention to the symmctric two-componcnt
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system "he re z: I z, I : Iz,l. Eq. (6.14) becemes

A - A,

NkT
+ ••••

(6.15)

Each integral in (6.16) is divergent because of the long range oí the
Coulomb potential. To get anything liseful we must suro these divergent
tenns.

It is convenicnt to re~Tite Eq. (6.15) as

A- A,

NkT

J
h, (12)d¡:;.d¡:;,

T12T13T23

+ ••• (6.16)

J
h,(123)

T12T¿)T2J

Each oí the members oí the first sequence oí tcnms is divergent, as is
each member oí the second sequence. Only the mcmbers oí the last sequence
of terms. invol ving h, (12) : &, (12) - 1 and

h, (123) = &, (123) - 1 - h, (12) - h, (13) - h, (23) (6.17)

are convergent. Al! oí the integrations are outside the cores
(i.c., r .. ~a). However, to evaluate the sum oí the first sequence, let»
liS extend the range oí integration to inelude a11 r .. ~ O. No error is

»
introduced since we have merely added and subtracted the regions Os Tij'so.

Rather than deal with Eq. (6.16), it is simpler to obtain the
sum oí the íirst sequence oí terms by considering the corresponding

expansion of g .. (r), i .e.,
>J

Sz z o' f 1 K' J d,¡;, l
gij(r12) = 1- J.£) l;:-:- - 4n ~ ~ ••• J

82z2z2e~ Bz.z t:::~ .e2 ( d.{3
~ J.] ••••• J.] no(r12) J

2£2r~2 £ 4n rlJr23
2Bzizje

2 _K' r ho(13) 8z.z.e2
+ ----- --- d..(3 ~ .0. ~ ho(r12)- ). J ho(12)

( 4n. rI3r23 (rI2



+ •••

+ ••• +
ez z e2
i j

e

K'J h,(123)
4rr f13T23

Jr,
'"
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(6.18)

Again wc can assurnc without 1055 of gencrality that Eq. (6.18) is valid
for a11 r ~ O. The sequencc oí terms in the curly brackets is called a

Jo)

ring er chain suro sincc tlcir tenns in this sequence are simple ring
diagramsconsisting oí repeated convolutions oí l/r ..

Jo)Tbus, defining the ring er chain sum,

e

6Z
i
Z
j
C2

C .. (r,,) • -~-~
Jo)

and taking the Fourier transform,

we have

(6.19)

(6.20)

4nBz,z .e2
Jo )

ck'
4nBz ,2.

Jo )

J ,,2 ,,1<
1--+-+l k' k'

1

(nO) .

(6.21)

(6.22)

Keeping only the first two terms in Eq. (6.18) we have the Debye-Hücke1
approximation

&ij (r) = 1- Cij (r) . (6.23)

Equation (6.23) is identica1 to Eq. (6.8). From Eq. (6.23) we obtain

Henee,

(6.25)



174

Thus, Eq. (6.16) becomes

A - A,

dr 2dr 3 + •••
'" '"

(6.26)

Note that as a resul! oí the resumnation, the free cnergy is no! an
analytic function of B and p bu! is an anal ytic function oí 81 and pI.
We must sti11 resum the last sequence (which contains divergent terms).
We do this by techniques similar to those used to obtain Eq. (6.22). Ihe
resul t is

(6.27)

NkT
A- A,

K' __ K_'_ J hD(12) d,(2 + ~ J ho (12) d,(2
1211'0 64112p r2 321r:lp r

12

K' <[1 h,(12)d,(> __ 1_ J h,(l23) d{,d,(,]+ •••. (6.28)
32n2p J 1211' T12T13T23

This series converges vel)' slowly. The sum oí the series may be
approximated by a Padé approxirnant. The results(12) are very similar to
the mean spherical approximation rcsults, obtained frcm Eqs. (6.9) to
(6.12) •

We have derived the Stcll-Lebowitz expansion fTom perturbation
theory. Stell and Lebowitz did not use this method but obtained their

here is 1essseries in a more direct manner. JUthough the method given
dircct, it docs indicatc how improvcments may be madc.

The integrations in Eq. (6.28) are over a11 space
This is natural in thc Stell-Lebowi tz derivation. Howcvcr,

(rij~O).
in OUT original

perturbation expansion, the integrations are over rij ~o. This suggests
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that improved resu1ts might be obtained by taking the integra1s
regions O~rij:S o and combining them with the 1(3 tenn. Thus

for the

(6.29)[13 3 7" -J- '4 o -+ '4 1(0- 'S" K o -+... -+ •••

A. Ao
--" .

NkT 12'0
At first sight 1(3 (1 - 3KO/4 -+ 3K20;[/4 - 71(303/8 -+ ••• ) seems like an
unpromising combination; it is. in faet, (2r) 3 (l -+ 3fcr/2). Thus

A- Ao

NkT
(2r)' (1+ 3ro/2)

12'0 16,p
[ho(r)dr -+ ••• • (6.30)

(6.31)

Retaining only the first term gives the mean spherical approximation.
The corresponding result fer gij(r) is

Sz z e2

i j ho (r) -+ ••• (r> a),

where

(6.32)CMSA
ij

Bz z e' f(r- o)
i j

d1+ro)' r

Again, truncation of (6.31) after e MSA(r) gives the mean spherical
approximation. The optimized randomi~hase approximation oí Anderson
et al. (13) consists of truncation of Eq. (6.31) after e MSA(r) and so is
equivalent to the mean spherical approximation. ij

The series of corrections to the mean spherical approximation
still converges slowly and mus! be sunmed by Padé methods. Thcre must be
extensive cancellation among the tenms as the Padé results are not much
diffcrcnt from the mean spherical approximation results.

Henderson and B1um(14) have suggested changing the expansion
parameter from K to 2r. Thus,

A-A
--' .NkT

(2r)' (1+ 3ro/2) (2r)' j~
-~------ -- ho(r) dr + •••

12np 16np e
(6.33)

The higher-order tcnns in this expansion are given by Hendcrson and Blum.
Since 2f ~ K this series of corrections to the mean spherical approximation
is better behaved. In fact, at normal electrolyte concentrations the
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corrections are negligible.
At low concentrations, the correction terms, given in Eqs. (6.30)

and (6.33) are not the mast tmportant corrections to the mean spherical
approximation resulto This is because, there i5, in the fourth.ordcr term
[see Eq. (4.12)J. the contribution

~ = - * B'pl:XiXjf ulj(r)g,(r)d{ (6.34)
1)

Contributions analogous to this appear in cvery even-order perturbatíon
termo The corresponding terms in the odd-arder perturbatíon terms do no!
contribute because oí charge neutrality.

The integral in Eq. (6.34) converges because r.~ goes to zero
sufficiently fast to prevent a divergence. However, since the mean
spherical approximation works well at higher densities, the contribution
oí this B~ term mus! disappear at these higher densities due to sorne

canccllation with terms which are higher-order in the density. Hence,
even though a resurnmation is not foreed upon us to prevent a divergenee,
a resummation i5 desirable as it approximatc5 this eaneellation. The
effeet of the re5ummation i5 to replaee

Bz
i
z
i
e2

Bu. (r) = ----

Thus, we have led to the approximate eorreetion tennby C
ij
(r).

6A 1 fooi1
- = - ¿ P ¿ X.X. ¿ lTnJT
NkT ij ~ J n"'2

(6.36)

Wecou1d add 6A given by (6.36) to (6.30) or (6.33) with a11 the
known terms, that is, the integral s (6.2~) with the integration region
r .. ~ o. Andersen et al. (13) keep on1y the K' tenn in (6.30) and rep1ace
1)

B'u: (r) in this tenn by e' .(r) to obtain what they call the ORPA+B,
1)approximation. In this approximation

A- A"
¡¡¡¡¡- =

(2n l (1 + 3ro/2)

12nD

- .¡ P ¿ x x.f h, (12) [CMSA(12)]'d{,
ij i) 1)

- 1;. P ¿ x.x.f g,(l2) r -rb, [cHSA(12)]2ndr,.
•• • .1. J I.."n) ; ~J '\..l.j n••2

(6.37)
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which becames

A - A,__ o

NkT

(2r¡ J (1+ 3ro/2) (2r)' j h, (r)
- --~~---- -- -- f2(r- o)dr

12np 64n'p r' '\,

1 00 1 [SZ'e' ]2nj &,(r)
"2" p l: -- ---- --- f2n(r -a)dZ •

n=2 (2n)! £(1 + fa) 2 r2n
(6.38)

where the integrations are over the region r ~ a. The results oí this
approximation are shown in Figs. 7 ánd 8. Thcy are an improvement ayer
the mean spherical approximation results and are comparable to those oí
the hypernetted chain approximation.

In addition to the theories oí electrolytes outlined aboye,
there i5 another theoI)' oí electrolytes which as been useful. It is the
m:xlified Poisson-Bol tz.mann approximation. We do not have time ar space
to outline this approach here. We have limited ourselves to theories
based upon either the Ornstein-Zernike equation ar perturbatíon theory.
The modified Poisson-Boltzmann approximation and other approximations have
been admirab1y reviewed by Outhwaite(lS).

The theories outlined aboye provide reasonably good descriptions
of the mode1ion!c fluid defined by Eq. (6.1). The main deficiency is the
nonmolecular model oí the solvent which appears only through the dielectric
constant £. What is needed is a oore realistic treatment of the solvento

7. APPLJCATlON ro mLEQJLAR FLUJOS

1-blecular fluids, in which the intenooleeular potential depends
on orientation as well as position, can be treated by fairly straightforward
extensions of the methods discussed aboye.

First let us consider integral equation approaches. It is
sometimes helpful to expand the pair-potential and the correlation
functions using an orthogonal basis seto Restricting ourselves for
simplicity to molecules with cylindrical syrrmetry, we have

(7.1)
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etc., where the coefficients are obtained as projections,

fU(1,Z)$mnl(n"n,)dn1dn,
umn1(r)' ~----------f [$mnl(n,.n,)] 'dn,dn,

The first two 4>rnnl(after ¡pooo", 1) are

(7. Z)

(7.3)

(7.4)

where 6., 4>. are the polar angles of molecule i.
1 2

Coupling sorne approximation with the Ornstein-Zernike equation,
Eg. (3.11), gives an approximate integral equation. The simplest is the
mean spherical approximation, where

c(I,Z) • - gu(1.Z),

outside the hard core, and

(7.5)

h(I,Z) • -1 (7.6)

inside the hard coreo Because of the linear relatían between c(l,2) and
u(I,2) in Eq. (7.S) a truncated series for u(I,2) with a limited numher
of umn1(r) wíll produce a similarly truncatcd series for c(l,2) and
h(l.Z).

A nonl inear approximation. slIch as the hyperncttcd chain
approximation. would produce an infinite series for h(l,2) and c(l,2)
even if the series for u(I,2) contained a small number of terms. An
approximation, based upon the hypernetted chain approximation, which does
limit the number of tenms in the h(1.2) and c(1,2) expansions is
obtained by truncating the expansion of the logarithm in the hypernctted
chain approximation,

In g(I,Z) + Su(I,Z)

to first order. Thus,

h(I,Z) - e(I,Z) (7.7)

e'''(r) • h"O(r) - In [1+h"O(r)] - Su"O(r) (7.8)
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and

(7.9)

for m, n, 1 not a11 equa1 to zero. Equations (7.8) and (7.9) are ca11ed
the linearized hypernetted chain approximation(16). Although this is a
linearized version oí the hypernetted chain approximation, it is difíerent
from the mean spherical approximation. The linearized hypernetted
approximation reduces to the mean spherical approximation if

hOOo(r) ;¡ 1. (7.10)

Gaylar et al. (197) have proposed an alternative linearized hypernetted
chain approximation which is an improvement at low densities, at least.
An improved approximation, called the quadratic hypernetted chain
approximation fo11ows if the logarithm in Eq. (7.7) is expanded to second
arder.

Other integral equations can be formu1ated. OUrnmingset al. (18)
have considered sorne oí these and obtained numerical results far short-
ranged anisotropic potentials. Here we will limit ourselves to the
relative simple dipolar hard-sphere potential,

2u(l,2) = u (r) - ~ D(l,2),
HS d2

where lJis the dipole mancnt of a molecule and

D(l,2) = ~112

(2.30)

(7.11)

is given by (2.31) or (7.4), and the mean spherical and linearized
hypernetted chain approximations. The dipolar hard-sphere potential is
simple not only because of the limited basis set but also because the
potential core is sphcrical.

Wertheim(19) has obtaincd an analytic solution for the dipolar
hard-sphcre potcntial using the mean spherical approximation. Following
his notation, he finds

(7.12)
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where

h (r) "'hUOO(r},
s

h (r) '" hl12(r),o
hó(r) = hllO(r),

(7.13)

(7.14)

(7.15)

D(l,2) is given by Eq. (7.11), and

6(1,2) : l!.' 'l!.'

We note that
fD(l,2)dn,dn, • fÓ(l,2)dn,dni • O,

jD'(l,2)dn,dn, : ~ '

fÓ'(l,2)dn1dn, • ~ '

and that D(l,2) and ó(l,2) are orthogona1, i.e.,

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)fD(l,2)Ó(l,2)dn1dn,' O

Wertheim found that hs (r) is just the PerQJs-Yevick/mean spherica1
approximation result for hard-spheres which can be obtained from Eq. (3.28).
Further, he found that if K is defined by

(7.21)

where n E n2pa3/6 and ~ is obtained from

where

q(x) • (1+ 2x)'
(l - x)'

(7.22)

(7.23)
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then

h (r, -kp)]
s

(r < o),

(7.24)

(r> o),

and
( O

h (r) • <l
D h (r)

D
- 1.. Jr h (s)s'ds

r3 O O .

(r < O),

(r > o),

(7.25)

where

h (r) = <[2h (r,2Kp) + h (r, -Kp)], (7.26)
D s s

The apparentIy mysterious equations for ¡( can a150 be written as

K = [\:r) dr. (7.27)

The thennodynamic functions can be ca1cu1ated from

or

...L = 1
pkT

kT le. •.p

1 J h (r)
+ 4ny(o) - ! 6p~' Jl..- d{

s r'

1 + pI h (r)dr
s '"

(7.28)

(7.29)

1 (h (r)
E.• - .••.NP~'J_D_-dr .
~ ~ r3 ~

Equation (7.30) gives by far the most re1iab1e resu1ts.

The dielectric constant £ is calculated from

(£ - 1)(2£ + 1) • y~ '
9£

where
4n ,

y • "9 6p~

(7.30)

(7.31)

(7.32)

and
(7.33)
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It is interesting to note that Onsagerls approximation far £ is obtained
fram Eq. (7.31) by putting gk = 1. In the mean spherical appraximation

c={l+4r)'(I+¡;)' (7.34)
(1 - 2<;)'

Thc mean spherical approximation pair distribution function for
dipolar hard-sphen.:s is compared \.;ith computcr simulation resul ts (20, 21)

shown in foig. 9. The mean sphcrical approximation gives fairly good rcsults

for h (r). Furhtcr V.'e scc tha! the sirnulation h (r) ror dipolar hard-s s
spheres i5 very nearly cqual to that for harJ sphercs but is sonM:~hat

larger. The mean spherical approximation [or h (r) ano h (1') are rathero f:,
POOl'. Interest ingly, the approximat ions

h (r)
D

g (r)hMSA(r)
s D

(7.35)

(7.36)

are much hetter.
o•

1.0

ht. (r)

1.2

•Cf',
I ,
I '
I O'..•.
I "I 0 _

o~

1.0

•r, hO (r)o,
I ,: \
I \
I ,

I o'
I "I \
I \
I O',

",
o',
1-

1.2

.""

1.2

9, (r)•

1.0

2

4

rla

Fig. 9. Pair distribution functions for the dipolar hard-sphere fluid at
poj = O.9.The points given by • and o give the computer simulation
results far B~2= O (hard-spheres) and B~2 : 1, respectively. The
solid and broken curves give the results of the MSA and Eqs.
(7.35) and (7.36). respectively, for B~2 : l.
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arose naturally and simply. The difficulty with perturbation theory is
that it is unclear how to proceed beyond the simple linear approximation
in Eq. (8.96). The B, approximation is one possibility. Unfortunately,
we do not have a theory aníllogous to the Gouy-01apmanthcory to guide us
as was the case with Eq. (8.86). However, something analogous to Eq.
(8.86) may have sorne promise.
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