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ABSTRACT

This review consists of two main parts. The first partis basically
of a pedagogical nature. It deals with the problem of intermolecular forces
in liquids and the integral equation formalism as well as thée corresponding
perturbation theory. The second part deals mainly with the theoretical appli
cation to electrolytes, molecular fluids and, most of all, to electrified Qi—
terfaces or double layer problems. Recent results are presented on the wvali
dity of the Gouy-Chapman theory and on ancmalous ion adsortion. -

RESUMEN

Este articulo de revisidn consta de dos partes, la primera es una
presentacién de cardcter pedagdgicoen la cual se tratael problemade las fuer-
zas intermoleculares en liguidosy los formalismos deecuaciones integrales yde
teoria de perturbaciones. La segunda parte se refierea aplicacionesrecientes
de dichos formalismos en electrolitos y fluidos moleculares y en especial en
interfases electrificadas o problemas de doble capa, tales como la validez
de la teoria de Gouy-Chapman y la adsorcidn andmala de iones.
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1. INTRODUCTION

These lectures consist of seven parts
- intemmolecular forces
- formalism-integral equations
- formalism-perturbation theory
- application to simple fluids
- application to electrolytes
- application to molecular fluids
- application to electrified interfaces (the double layer)

The core of these lectures is the last three parts. As a result we give
only general references in the first four parts and give detailed
references only in the last three parts.

2. INTERMOLECULAR FORCES

The basic facts about intermolecular forces are simple. The
existence of condensed phases implies that the intemmolecular forces are
attractive at large distances and the fact that matter does not collapse
implies that intermolecular forces are repulsive at short distances.

In principle, we can learn about intermolecular forces by solving
Schrédinger's equation for a collection of molecules. Unfortunately, this
is not practical. However, we can still learn a lot from quantum
mechanics.

The Born-Oppenheimer approximation tells us that we need only
solve the electronic problem for a set of static nuclei obtaining a
potential energy function, UN, which depends only on the positions i and
orientations ni of the molecules. Thus,

UN = UN(,{IJQ.\;"'s{NIQN]- (2-1)
Further, we may divide UN into pair, triplet,s--temms. Thus,

g = .X_uc{i’ﬂi’{j'ﬂj) ® Z w({i’ni’{j’nj'gk’ﬂk) + suel, (2.2)
1<3 i<j<k
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First consider the pair interaction. We can give some insight
by considering o one-dimensional model of a pair of interacting molecules.
Let us assume that the electrons in one molecule forman instantaneous
dipole (even though the molecule has no dipole moment). This induces a
dipole in the second molecule. For simplicity, we consider only one
electron on each molecule.

molecule 1 molecule 2
+tO  o- 0=
[ e
X X

1 2
—-— r :

The harmonic resorting force on the electrons is

1
Vp = 7EGZ ¢ x2) (2.3)

and the electrostatic force is

v=e2|:l+ . SRS Fp— 1 (2.4)

e

Using r>>x; and x, and expanding

2e%x1x,
¥ e e, (2.5)
e 3
i

Schrédinger's equation is thus

3%y 3%y  8mu 1 1 Zexlxz'l
e e | B e e B4 =0 . (2.6)
+ + > X3 5 5 g 1]

2 2 2.
ax ] ax; h

The variables can be separated by changing variables

2y = (x; * x2) (2.7)

:b‘]i»—-'
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By i, Py = ] (2.8)
V2
Thus
2%y 8mu?
. ME-1¢ z{]w 0, (2.9)
322 h2 }- 1 .'I..‘ £ 5
where
Y =yi(zy)yea(z,) , (2.10)
£ o= =28 (2.11)
r3
£, f 4280 (2.12)
r3

This is the harmonic oscillator equation. Thus

tm
n

(n, + 1) hv (2.13)

=l J//rfz | 2.14)
\Ji?-T?T. (-

The ground state is E, = } h(v, +v,). Thus,

g2 o2
x r

. hv, + - hy, - s + (2.15)
” i S5E  a '
2 2 2f2r5
Hence, the pair energy is
hy,e*
u(r) = - ¥ ey (2.16)
2f2rs
which is attractive.
In three dimensions
3}'\\)08“
u(r) = - + s i (2.17)

4f2rs
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We can put this in a more convenient form by writing

hv, = 1, (2.18)
where 1 is the ionization potential, and

a = %i 5 (2.19)

where o is the polarizability of the molecule. We can obtain Eq. (2.19)
by writing for the instantaneous dipole moment

wo=ex=ok , (2.20)

where E is the instantaneous electric field producing the displacement x.
Equating forces

fx = ek (2.21)

Equations (2.20) and (2.21) give (2.19). Substitution of (Z.18) and
(2.19) into (2.17) gives

4
Gl == S22 (2.22)
4r®
If the molecules are of different species
3 (1,1, ] Q102
u(r) = - .Z — + ess (2_23)
I.l + 12J I‘E

If more terms in the expansion of the ground state energy are
retained
Ce Csy  Cao
u(r) = - ;E = ;: = ;:?.+ e, (2.24)
where the coefficients cg, Cg,*-+ can be calculated form measurable
molecular properties by formula analogous to Eq. (2.23).

The repulsive forces at short separation result from Pauli
exclusion principle interactions between the overlapping electron clouds.
Hartree-Fock calculations indicate that these short range forces are
approximately exponential functions of the separation.

Using the fact and Eq. (2.24), Barker(l) has used
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u(x)/e = { { A (x-1) }>exp{12 S5(1-x)} - f C_. /(0,01 + r23+6),
i=0 3=0 (2.25)

where ¢ is the depth of the potential at its maximum (where r=r ) and

=1/rm. Barker obtained c,, Cg, and c,, from analogous to Eq. (2.23) and

fit the A, i €, and 1, a wide range of experimental data. For argon, he

obtained e/k=142.1K and r. = 3,7612 A The value of r for which Barker's

argon potential changes sign is ¢ = 3,3605 A Barker's potential is
plotted in Fig. 1.

Barker has made similar determinations of the pair
interactions of the other inert gas molecules.
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Fig. 1. The argon-argon pair interaction potential.

The solid curve is
Barker's potential and the broken curve is the 6:12 potential with
£/k=119.8°K and 0 = 3.405 R,
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An argument similar to that used to obtain Eq. (2.23) shows that
for triplet interactions, when all three molecules are far apart,
1 + 3 cosB, €OsB, COS6,

W(Try2,T13,T23) =V R s (2:26)
Ty2T13T 23

where the rij and b, are the three sides and angles of the triangle formed
by the three molecules.

Very little is known about the form of w(r;,,r,s,r,;) when one
or more of the intermolecular distances is small. However, all available
evidence indicates that Eq. (2.20) gives the important contributions to w.
Evidently, the repulsive terms in u(r ) prevent the molecules from being
in configurations where deficiencies ;n Eq. (2.26) are observable.

As has been mentioned, u(r) and w(r,s,t) are known only for a
few simple molecular pairs and triplets. Fortunately, for most systems,
the properties of the system are not sensitive to the details of the
potential interactions. Thus, a lot can be learned from model potentials
In all of these model systems, triplet interactions are assumed not to
exist. Theoretical calculations are usually compared with computer
simulations using Monte Carlo or molecular dynamics methods.

A. Model Potentials

The simplest model potential is the hard-sphere potential

oo

uHS(r) = < (2.27)

lﬂ, T8

A somewhat more realistic potential with attraction as well as repulsion

is the square-well potential

0, O<rea
u(r) = <-g, a<T< Ao (2.28)
l B, 1% Xo

An even more realistic potential has been proposed by Lennard-
Jonmes. He used -c¢/r® for the attractive term and represented the repul-
sive energy by an inverse power of T. Before the advent of digital
computers it was convenient to take this repulsive index as twice 6.
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Thus, we have the 6-12 potential

u(r) = 48[[§]”— [%Js} ; (2.29)

where e is the depth of the potential at its minimum and the potential
changes sign at r=g.

Although originally proposed as a potential for real fluids, the
6-12 potential is not satisfactory for this purpose. For example, it is
not possible to fit both the value of c; and thermodynamic data. However,
with €/k=119.8°K and o= 3.40 R, the 6-12 potential gives the qualitatively
satisfactory fit of the properties of dense argon. The Barker and
Lennard-Jones potentials for argon are compared in Fig: 1.

The polar molecules, a commonly used potential is the dipolar
hard-sphere potential

u(riz,aokz) = U (1) - - p(1,2), (2.30)

Tz

where u; and y, are the dipole moments of molecules 1 and 2, uy=|p.|, and
L") n ALl

D(1,2) = 3(i1+T1z) (MaeTiz) = (oyemy) - (2.31)

In Eq. (2.31) the caret indicates that the vectors are unit vectors.
For charged systems, the charged hard-sphere potential is

useful
ziz.ez
Uiy () = ) + (2.32)
€

where z.e is the charge on ion i (e is the electronic charge) and e is
the dielectric constant of the medium.
There are a great many more model potentials which have been
proposed but these are the ones that will be considered in these lectures.
Suppose several substances (A = 1,2,+++) have the potential
functions of the same general form,

L{q - EAUN(T/U)_;G'A,ﬁA"') , (2.33)
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where €, and gy have the dimensions of energy and length, respectively,
and a)’BA ,+++are dimensionless parameters. An example, might be

vt o= v/er;. Then one can show that the thermodynamic functions are
universal functions of reduced temperature T* = kT/SA and density

p* =po§ and of the dimensionless parameters oy, B,,-+- - We can refer to
this observation as the law of corresponding states.

3. FORMALISM-INTEGRAL EQUATIONS

We now obtain some integral equations for fluids. Throughout
this and the succeeding sections we assume that the molecules have a large
enough mass so that quantum effects can be neglected.

The fundamental result in statistical mechanics is that the
probability of finding N molecules in a configuration given by {i’ Qi is
proportional to

exp [-BUN} 5 (3.1)

where 8 = 1/kT. Thus, if we define g(1,-+,h) as the probability of
finding any h molecules at Tl with orientations nl,---,nh 5
normalized so that g(1,-++,h) = 1 when all the molecules are far apart

JEXP{_S”N}d{h+1.'.d{ndnh+1"'dnn
g(leee) = ¥ ; (3.2)
Jexp{-BUN}dgl---dxﬂdnl... dOy

where d{i and dﬂi are integration elements. For convenience, we assume
that dni is normalized so that fdﬂi = 1., We have been a little careless
with terms of order 1/N in our definition of g(1--+-h). Despite this

Eq. (3.2) is satisfactory for our purposes. We can call g(l.--h) the
h-body distribution function. The pair distribution function is g(1,2)
and the radial distribution function is

glri2) = Ig(l,Z)dﬂldﬂz . (3.3)

The denominator in Eq. (3.2) is the partition function which is

related to the free energy by
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A'3NJ
A = -kT 1n — e =RU }dr es. 3.4
[N! xp{-8U M1, an} , (3.4)
where ) = h/(ankT)i and m is the molecular mass.
Other routes to thermodynamics include the energy equation
U= 5 NKT + 3 No Ju(l,Z)g(l,Z)d{zdﬁldQZ , (3.5)

wheres is the number of kinetic degrees of freedom, the pressure cquation

P ;| f
kT =1- 508 J({;-{:)-){u(l.Z)g(I,Z)d{zdnldnz , (3.6)
which for spherical potentials simplifies to
L | du(r) 5
Frel-ges [ r I gmar, (3.7)
and for the hard-sphere potential simplifies cven further to

Fr=1+F 0oy, (3.8)

where y(r) = g(r)exp[fu(r)]. Lastly there is the compressibility equation

KT %5 =1 Wy Jh(l,Z)d{zdﬂldﬂz
=1+ th(r)d{ : (3.9)
where
h(1,2) = g(1,2) - 1 (3.10)

is the total correlation function. In these equations p = N/V.

Equation (3.5) and (3.6) are valid only for systems with only
pair interactions. There is no such restriction on Eq. (3.9).

It is useful to introduce a new function, c(1,2), the direct
correlation function which is related to h(1,2) by the Ornstein-Zernike
equation
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h{1,2) = c(l,2) * p[h(l,S)c(Z,S)d{ngJ . 311

Averaging Eq. (3.11) gives

h(riz) = e(rsa) * p[h(ris)e(ras)dgs - (3.12)

Introducing the Fourier transform

KK = {i] rh(r) sinkrdr (3.13)

0

(note that k here is not Boltzmann's constant) and using

T13Lo§
d{; = 2m drladr“ N (3.14)
Ti2
gives
R = €X) + oh(K)EK) (3.15)
oTr
1+ pR(K) = [1 - pE(K)] ™ (3.16)
so that

[1+ oBe0)]™ + 1 - pc(0)

[}

© 5

1 - o[c(r)d{

1- OJC(I,Z)Q{zdﬂldﬂz . (3.17)

A. Boan-Green Equation

Differentiating (3.2) with respect to y; for the case h=2 gives

Kefag(12) = g12)%u(12) + o[g(123)ru(I3)dgs (3.18)

Equation (3.18) cannot be solved unless g(123) is approximated. The most
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common approximation is the superposition approximation of Kirkwood

g(123) = g(12)g(13)g(23). (3.19)

Substitution of (3.19) into (3.18) gives the Born-Green equation
-kTglln g(12) = glu(IZ) + ng(lS)g(Z3)21u(13)d{3 . (3.20)

Equation (3.20) has not been too successful in the description
of bulk fluids. However, it does have promise in interfacial problems
where it satisfies certain exact theorems which we will mention later.

B. Hypennetted Chain Approximation

If some approximate relation between h(12) and c(12) were coupled
with the Ornstein-Zernike equation, Eq. (3.11), an approximate integral
equation would be obtained.

Two such integral equations can be obtained by considering the
expansion of g(r) in powers of p:

g
e gy, =14 QJflsfzad{a oo (3.21)

or equivalently

In g1z + Bz = o[ fusfasdps + o, (3.22)
where £ = e B9ij - 1, The integral in (3.21) and (3.22) looks very much
like the integral in the Ornstein-Zernike equation (since the leading

term in the expansion of both hij and c;. is fij). In fact equating the

3
integral in (3.21) to that in the Ornstein-Zernike equation gives the

Percus-Yevick approximation

g(r)eBu(r’ =1+h(r) -c(r) , (3.23)

and equating the integral in (3.22) to that in the Ornstein-Zernike
equation gives the hypernetted chain approximation

In g(r) + Bu(r) = h(r) - c(xr). (3.24)
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The Percus-Yevick equation gives good results for hard spheres.
We will summarize these results in the next section. Unfortunately, the
Percus-Yevick equation is much less successful for longer-ranged potentials.
The hypernetted chain approximation although less successful for hard-
spheres, is very successful for other potentials, in particular for the
Coulomb potential.

C. Mean Spherical Approximation

The mean spherical approximation is a linearizad version of the
hypernetted chain approximation for potentials with a hard core. We can
derive this approximation by assuming that ouside the hard core
(r>0)h=g-1 is small compared to unity and expanding In g in Eq. (3.24)
Thus

c(r) = - Bu(r) (r>o) , (3.25)
which when coupled with the exact condition
g(r) =0 (r<o) , (3.26)

and the Ornstein-Zernike equation gives an integral equation which is
remarkably useful.
For the hard-sphere potential, Eq. (3.25) becomes

c(r) =0 (r>g) . (3.27)

For hard-spheres, the mean spherical and Percus - Yevick approximations are
equivalent. Interesting the solution of these approximations for hard
spheres is accurate and analytic. A fairly simple outline of the solution
of the Percus-Yevick/mean spherical approximation for hard spheres can be
found in Chapter 12 of Statistical Mechanics and Dynamics(z).

The Laplace transform of the radial distribution function, which
can be inverted analytically, is

]

G(s) J rg(r)e Stdr
i sL(s)

12n[L(s) + e%S(s)]

(3.28)
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where
L(s) = 12n[1 + 2n + (1 + n/2)s] (3.29)

and

S(s) = -12n(1 +2n) + 18n°%s + 6n(1-n)s® + (1-n)2s® , (3.30)

wheren =npc?/6. The pressure and compressibility equations isotherms are

o+ - 1 +2n + 3n (3.31)
iy
. a-n’
and
Lo LEsg (3.32)

okT (1 -n)°

These isotherms are compared with computer simulation results in Fig. 2.
The two isotherms lie on either side of the simulation results. Interes-

tingly a linear combination

p _1+n+n®-nt

okT a -n)’
due to Carnahan and Starling, agrees well with the simulation results.
The Percus-Yevick/mean spherical approximation g(r) is compared

) (3.33)

with simulation results in Fig. 3. The agreement is good.

For other systems, the mean spherical approximation is no longer
equivalent to the Percus-Yevick approximation. Except at low densities,
the mean spherical approximation generally seems more reliable than the
Percus-Yevick approximation. The mean spherical approximation often

yields analytic results,



Fig.2.

155

pV/NKT

Equation of state of the hard-sphere fluid. The solid and open
cdrcles give the machine simulation values for fluid and solid
hard-spheres, respectively. The curves marked PYP, PYC, and CS
give the results of Egs.(3.31), (3.32), and (3.33), respectively.
The reduced density p* = po? .

Further results and references can be found in the review of

(3)

Barker and Henderson v
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r/d

Fig. 3. Radial distribution function for the hard-sphere fluid. The
points give the machine simulation values, the curves give the
results obtained by inverting Eq. (3.28). The parameter d is the
hard-sphere diameter.

4. TFORMALISM-PERTURBATION THEORY

Our starting point is the free energy. For a potential which
‘does not depend on orientations, the free energy is

A = -kT J iﬂjeijd{l“'d{N + temms independent of density, (4.1)

where we have assumed that the potential is additive and ejy = exp [‘Buif’ .
Purther, assume that e j4depends upon a parameter vy, i.e.,
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e(r) = e(yir) , (4.2)

which is small enough so that the free energy can be expandend in a
series in vy:

1 ,32%A
Y=
2

A=A +'Yj£1
ay

+
Y=0 ay

+ awe (4.3)
Y=0

where A, is the free energy of the reference or unperturbed system, for
which y = 0,

Thus,
g . 1 5 o02)e (12)dr,dr (4.4)
BY 2 P Y ’\.1 .-\’2 .
and
3?A_ 1,
Bt L [ 512, a2)apar,
- p3[g(123)eY(12)eY(23)d{1d{2d{3
1
7o [ 201234 - g12)gG)]e 12)e (9)dpdrydr,dr.,
(4.5)
where
e ne i, (4.6)
g gk e . (4.7)
YY a.YZ

In the limit y = 0 the functions g(1l...h) are the reference fluid
distribution functions.

Equations (4.5) is valid only in the canonical ensemble. An ex-
tra term must be added to obtain results wich are valid in the thermodyna-
mic limit (N»w, Ve, p fixed). However, this correction termm is not
relevant for our present discussion. Details can be found in Barker and

(3).

The corresponding results for the radial distribution function

Henderson

are
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HORFNOREE = R (4.8)
Y=o

where

12
éﬂa?_l = g(12)e (12) + ijg(lzs)eY(Z.’s)d{,

+ 30 [[801234) - g12)E(34)]e, (30)dpsd, - 4.9)

Similary there is a correction term for the thermodynamic limit. For
details see Barker and Henderson(s).

Equation (4.5) is often difficult to use. A similar approxima-
tion,based on the superposition approximation, is

B=—==- % pZJrg(lz)eW(IZ)d;gldgz
= p3jg(12)g(ZZ)eY(IZ)eY(23)h(13)d{1d’1‘:2d{3
- 7 0| 8UDEGAe (12)e (34)

x [2h(13)h(24) + 4h(13)h(14)h(24) + h(13)h(14)h(23)h(24) ldr.dr.dr,
(4.10)
Although approximate, Eq. (4.10) is applicable to an infinite system.

The higher-order terms involve many integrals. At least for
our discussion, the important terms in third and fourth-order are

8 24~ - 3 ofsare, | (2)pe,
aYS '2- ¥YY
(
-p’Jg(123)eY(12)ey(13)ey(23)d{1d£2d{3 + ses, (4.11)
. .
8 :Tf‘ «-3 D:Jg(lz)eYWY(IZ)d{ld{a

L l’ -
3p Ig(1234)ey(12)eY(13)ey(24)eY(34)4{1d{2q{345k + =
(4.12)
where
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em=e'1273‘: ; (4.13)
etc. The first terms in Eqs. (4.11) and (4.12) are necessary for the
correct limiting behavior at low densities. The second terms in Eqs. (4.11)
and (4.12) are called ring or chain diagrams because, if the f functions
are regarded as links in a diagram, the sequence of f's forms a simple
closed chain.

In general, there are three functional dependencies of e(y;T)

on y which have been considered. The first it

e(y;r) = exp[-B{uy(r) + yu,(1)}] , (4.14)

where u, is the pair-potential of the reference system. Hence

eY(T) = = Buy(r) (4.15)
and

ew(l‘) = {Bu(1)}? , (4.16)

em(T) =-{guw(0}® , (4.17)

etc. This case is useful when the perturbation energy u,(r) =u(r) - u,(r)
is small.

We shall see that this form of the perturbation expansion is
useful for simple fluids. For such applications the firs-order term is
dominant and gives the average contribution of the perturbation energy
u;(r). The higher-order terms are small and are fluctuation terms which
are small if the reference fluid resists changes in structure. Since
macroscopic fluctuations are proportional to the compressibility, Barker
and Henderson have suggested that a useful approximation might be

32A - 1 2 d 2
it 1 [E%}T J g(12)u2 (12)dr, dr, (4.18)
At low densities ap/sp=8 . Thus, Eq. (4.18) gives the correct low density
behavior. For reference fluids with a steep repulsion, 3p/ap~+ 0 at high

densities and the fluctuation correction is small, as required.
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Shortly we will see that for the lattice gas,

__:.= ol 92lgﬁ}ijg(lz)uftlzjdxxd&z (4.19)

is exact. This suggests that another approximation which may have some
advantages over the original Barker-Henderson compressibility approximation
would be obtained replacing u,(r) by kT(3p/3p)u,(r) in the low density

and other important terms. Thus,

-

3
+D=E§§] Jg(123)u1(12]u1(13)u1(23)d£1d{2d£3, (4.20)

Btc,

In some applications u,(r) is large and positive. For such
applications eY(r), given by Eq. (4.15), is not small. Then it may be
more appropriate to sue

e(v;r) = ey(r) + yeo(r)f1(x) , (4.21)
where

eo(r) = exp{-Bu,(r)} , ‘ (4.22)

£1(r) = exp{-Bu, (1)} -1 . (4.23)

In the above equations, u,(r) is the reference pair-potential and
u; (r) = u(r) - ug(r). For this case

e (r) = e e f, (1) , (4.24)
so that

e_(r) = Hi(r) s (4.25)

S P

and

eYY(r) =0 , (4.26)
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epyy(™) = 0, (4.27)

etc. 1f u;(r) is large and positive, eY(r) is boundend. In principle,
this approach could be used with large and negative perturbations. However,
for this situation, eY(r) would then be very large and this approach would
be of limited value.

A third procedure, also applicable to potentials which are large
and positive, is based upon

e(y;r) = exp<{ -fu [d + Lf]} . (4.28)
This gives an expansion in a inverse steepness parameter, using a hard-
sphere reference fluid, where d is the hard-sphere diameter. Expansions
based upon Eq. (4.28) are useful when u(r) is large, positive, and steep.
Thus

-d) &
e () = au’ [d + =4 IS . (4.29)

A perturbation theory for a given system is developed by making
a choice as to what is an appropriate reference fluid and which of the
three procedures is to be used. Other choices besides the above three are
possible. The above are just those which are commonly used. Generally,
a hard-sphere fluid is used as the reference system.

A. Vinial Expansion

The simplest reference fluid is the perfect gas, where g(l.-.h)=1.
If we used the perfect gas as a reference fluid then the perturbation is
the entire potential. Obviously, the u-expansion of Eqs. (4.25) to (4.17)
is inappropriate. It is better to use the f-expansion of Egs. (4.21) to
(4.27). Because the g(1---h) all equal unity, the superposition
approximation is valid and Eq. (4.10) is free of approximation. Hence,
since eYY = 0, etc., and ho(r) = 0, we have, using Eq. (4.10) but
uncluding the fifth-order temm

Aha 1 1
:K-— - = 'zojfx zd{z i gpsz:L zflafzsd{Z d{a
t
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[
s % Csffxzflafzufaud‘{,zd{ad{‘u = %' DaJf12f13f1ufzuf34d{zd£3d{k

- 110' D“ffuflsfzafnfusd}(‘zd{‘adkud{ls * me (4.30)

where f1;, = f(r,,) = exp {-Bu(r;;)} - 1. The last two terms are the
fourth order term.
If the terms in Eq, (4.30) are grouped in powers of p rather than
by the mumber of f-functions, Eq, (4.30) is the virial expansion of A,
The virial expansion is the simplest form of a perturbation theory,

B. lattice Gas

Another simple application of perturbation theory is obtained by
considering the lattice gas in which the N molecules are restricted to L
lattice sites.

For this system

% 5 r=0
u(r) = 4-¢ , r=nnd (4.31)
0, otherwise,

where nnd means the nearest neighbor distance.

The unperturbed system is a lattice gas of noninteracting
molecules, subject only to the restriction that only one molecule can
occupy a lattice site. Thus,

Ao i

—=Inx+="% 15 (1-x), (4.32)
NKT X

where x =N/L plays the role of the density. Differentiating,

Bpo = - In(1-x) , (4.33)
Po 1
B = 1= - (4.34)

Since the perturbation potential is small and negative, the
u-expansion can be used. The g(1+++h) of the reference fluid are equal to
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unity when all the molecules occupy different sites and are zero otherwise.
As a result, the reference g(1+++h) satisfy the superposition approximation
and Eq. (4.10) can be used without approximation.

To evaluate the terms in the expansion we note that, in the
limit y =Be=0, h(12) =0 unless molecules 1 and 2 are on the same site and
u1(12)g(12) is zero unless molecules 1 and 2 are nearest neighbors. If z
is the number of nearest neighbors of the lattice

3 (A/NKT _ 3
~3(Be = (4.35)
£=0
and
32 (A/NKT . e
a(ge)? AR & (436)
Be=0

We note by comparing Eqs. (4.34) and (4.36) that Eq. (4.36) could be
obtained from Eq. (4.19).
In third order

B LA/} - - ixa-020-202 2 - 2(1-0%,  (4.37)
a(ee)® g oo
where £ is the mumber of triangles of nearest neighbors that can be formed
on the lattice divided by N. Equation (4.20) does not give Eq. (4.37)
exactly but it does give the larger ring diagram correctly and is correct
in the limit of low density.

The first-order term is the van der Waals theory result. T this
order the perturbation contribution changes the energy of the lattice gas
without changes in entropy or structure, The higher-order terms give the
effects on the free energy of changes in structure resulting from the
perturbation.

The higher-order terms become small at high densities where
LN, This is because the lattice is nearly fully occupied and
rearrangements in structure are difficult since only one molecule can
occupy a lattice site. This means that at high densities the perturbation
expansion will converge rapidly even if Be is not small. This is a very
important observation. It is not true for many other systems and is one
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of the main reason why perturbation theory is so useful.

At lower densities, the perturbation expansion converges slowly.
Thus, if the expansion is to be used in the neighborhood of the critical
point, many terms are needed. For the lattice gas these terms can be
obtained fairly easily. For other systems this is not true and so it is
only for the lattice gas that critical point properties can be examined.
This is one reason why the lattice gas is of such great interest.

5. APPLICATION TO SIMPLE FLUIDS

For a simple liquid consisting of spherical molecules with a
steep repulsion, an appropriate reference potential is the positive part
of the potential. Thus, using the u-expansion

A-A, @

e N ZprJ u(r)ge(r)ridr + ... , (5.1)
NKT o

where A, and g,(r) are the free energy and radial distribution function
of the reference fluid and ¢ is the value of r for which u(r) = 0.

The integral in Eq. (5.1) is very nearly independent of density
and temperature. Thus, the first-order term has, to a good approximation,
the lattice gas form given in Eq. (4.35). The second-order term is also
similar to the lattice gas result, Eq. (4.36). In particular, it is small
at high densities.

Because, the reference potential is steep, the higher-order temms
will be small at high densities, just as was the case for the lattice gas.
Even with just the first-order term, the perturbation series gives good
results at high densities. With two terms excellent results are obtained
at high densities. Even at lower densities the results are quite good.

Despite these results, the perturbation theory outlined above
is not very practical since because, in the above form, A, go(r), and
the higher-order distribution functions must be determined by computer
simulations for every state which is considered. One might as well perform
the computer simulations for the actual system,

The step which actually makes perturbation theory practical for
simple liquids is the replacement of A, and go(r) by the hard-sphere A 9
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and gHs(r). Using Eq. (4.29) for 0 £rs ¢, Barker and Henderson have shown
that

Ao A (5.2)

and

go(r) =g (1) (5.3)

if the hard-sphere diameter is chosen by

(oo
d = J [1-exp{-Buo(z) }dz . (5.4)
0

Since the thermodynamic properties and distribution functions of hard-
spheres are well-known, perturbation theory (with a hard-sphere reference
fluid) becomes a simple and accurate theory of licuids. We can obtain A,
and go(r) either form the Percus-Yevick/mean spherical approximation or
from computer simulations.

If the integral in Eq. (5.1) is assumed to be independent of the
density and temperature and if higher-order terms are neglected, we obtain

A- Ao
o (5.5)
NkT
or
2 _ =4
BETJ*_N_H_H o fom . (5.6)
1-n?

This is the van der Waals' equation of state.

Perturbation theory leads to a simple picture of a liquid. At
high densities, where the molecules are packed close together, the liquid
molecules behave as gas molecules at the same density. The main
contribution of the perturbation is to provide the potential well in

which the molecules move.
Results for the equation of state of the 6:12 fluid are given

in Fig. 4. The agreement of perturbation theory with computer simulation
results is excellent. The perturbation theory results shown in Fig. 4 are
based on first and second-order terms which are calculated from computer



164

simulations using exact formulae. Very similar results would be obtained
if Eqs. (4.18) or (4.19) were used for the second-order terms. Presumably,
even better results could be obtained at low densities if formulae like

Eq. (4.20) were used for the higher-order temms.

0.60

Fig. 4. Equation of state of the 6:12 fluid. The points and curves give
the computer simulation and second-order perturbation theory
results for seven isotherms that are labelled with the
appropriate values of kT/t.
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6. APPLICATION TO ELECTROLYTES

A system of charged hard-spheres, where

ziz,e2

uij(r) = uHS(r) + ———1—5r ; (6.1)
is a useful model ionic fluid. In Eq. (6.1), z;e is the charge of an ion
of species i, ¢ is the dielectric constant of the solvent which is taken
to be a dielectric continuum, and ¢ is the diameter of the hard-spheres.
A slightly more general model could be obtained by allowing different
jons to have different diameters. In order to keep the discussion as
simple as possible, we will not do that here.

Because of charge neutrality

] 2303 =0. (6.2)

1
In Eq. (6.2) p =N /Vis the density of ions of species i.

The model can be made considerably more general by using a mole
cular model for the solvent. We defer a discussion of such a model until
molecular liquids are considered in the next section.

Waisman and Lebowitz(4) and Blum(s) have applied the mean
spherical approximation to the charged hard-sphere system. They find that

Bzizje2 f(r-o)

g ) = gols] ~ rzaol s (6.3)
ij e(1+To)? T

where go(r) is the hard-sphere radial distribution function, given by
Eq. (3.28), T is defined by the relation

g =2A(+Te) » (6.4)

where « is the Debye parameter, defined by

dmpe?
2 = § 22 oy, (6.5)

=

2l

and the Laplace transform of £(x) is

F(s) = Jm e SXf(x)dx

]
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= g . (6.6)

s? + 2(Ta)s + 2(To)2(1-e"5)

Equation (6.6) can be inverted analytically(ﬁ).
At low concentrations, ko and I'g are small. Equivalently, we
can set ¢ = 0, Thus, T = «/2 and

F(s) = o5— (6.7)
so that
Bz z e? -
g, (m=1-—2d_e ., (6.8)
J er

where r2 0. Equation (6.8) was first obtained by Debye and Hiickel. The
mean spherical approximation is an extension of the Debye-Hiickel theory
to higher concentrations (or nonzero ¢). The parameter « is an inverse
screening parameter. That is k™' is a measure of the distance over which
the ionic potential is nonzero before the screening of neighboring clouds
of ions of opposite sign screen the interaction.

Both Egs. (6.3) and (6.8) share the difficulty that g (r) can
become negative for the like pairs. This isa result of the linégrization
inherent in both the Debye-Hiickel and mean spherical approximations and
can be overcome by using a nonlinear approximation such as the
hypernetted chain approximation.

The mean spherical approximation g;i4(r) are compared with the
hypernetted chain(7) and computer simulation(g’g) g(r) for a low and a
high concentration in Figs. 5 and 6. The mean spherical approximation g(r)
is considerably better at high concentrations. Even though the low
concentration gij(r) are unsatisfactory, the difference is given with fair
accuracy, Since the thermodynamics depends on this difference rather than
upon the absolute values of the gij (r), the mean spherical approximation
thermodynamic function are fairly good even at low concentrations.

The energy in the mean spherical approximation can be calculated
from Eq. (3.5). The result is

E, (2r)®(1+ro}
Fa= - (6.9)
NKT 87p J
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Fig. 5.

0.00911 M

r/o

Radial distribution functions for the charged hard-sphere/
continuum dielectric model of a 1:1 electrolyte at 298°K,
0=4.258, and £=78.5. The points give the computer simulation
results.
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where p = N/V (N = IN;) is the density of all the hard-spheres and
1
Ei = E-3NkT/2 is the internal energy. From Eq. (6.9)

Ao=dg (2r% (1 + 3Ta/2)

= , (6.10)
NKT 12mp
P- Po (ar)®
= . (6.11)
pkT 247p
and
3(p- po) (2r)? 1+To
B = - . (6.12)

3p 16mp 1+ 2lo

The MSA internal energy and pressure are plotted and compared with
computer simulations and the hypernetted chain approximation results in
Figs. 7 and 8. The hypernetted chain approximation works well. The mean
spherical approximation is less satisfactory but improves as the
concentration is increased.

The charged hard-sphere system can also be used as a model for
molten salts. The densities are large and the interactions are very
strong. Both the mean spherical and hypernetted chain approxim?;i§ns

0

Perturbation theory can also be applied to the charged hard

give reasonable results when compared with computer simulations
sphere system. Using the u-expansion with a hard-sphere reference system,

A- Ao 1
_ - - 52 o s 1 12 see 13
NKT Z & Ej xliI ulJ( )go (12)dgz + ' f8-13)

where x; = Ni/N (N =IN;). Because of charge neutrality,
1

Y z;x,= 0, . (6.2)

the first-order term in Eq. (6.13) vanishes,
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e \ 1.000M
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\\ —— MSA
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Fig. 6. As in Fig. 5 but with conc=1.000 M.

In second-order, only the first term in Eq. (4.5) contributes.
The other terms vanish because of charge neutrality. Likewise in third-
order only the ring diagram is nonzero. Thus,



170

E/NKT

Vconc

Fig.7. Values of the internal energy for the charged hard-sphere/
continuum dielectric model of a 2:2 electrolyte at 298°K,
o=4.25 &, and €=78.5. The points marked, O ,®, and [0 give
simulation results of Valleau and Cohen, Valleau and Card, and
van Megen and Snook, respectively.

A‘ AQ T
= - ig? 2 (12)g, (12)d
& i ijixjf uZ, (12)g, (12)dg;
1
+ % 8%2 § xixjka u;, (12)uy, (13)u, (23)go (123)dpzdps + =+

ijk
(6.14)

We see that the cancellation among integrals which leads to small values
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of the high-order perturbation terms at high densities in the application

of perturbation theory to the lattice gas and to simple fluids is not

present in this system. Thus, approximations such as Eqs. (4.18) to (4.20)

would not be useful for this system. The perturbation series will

converge more slowly. None-the-less, we can make progress.

1.0

0.8

Fig. 8.

——— HNC
——— MSA
—-— ORPA+B,

0.0 0.5 1.0 1.5
v conc

Values of the osmotic coefficient ¢ = p/pkT for the charged hard-
sphere/continuum dielectric model of a 2:2 electrolyte. The
parameters and points are as in Fig. 7.

If we restrict our attention to the symmetric two-component
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system where z= | z,|= |z,|, Eq. (6.14) becomes
A- A, K g,(12) i® [ g,(123)
= - d{z + d{Zd,{! teoe o
NKT 64n%p | 2 384n%p | 1,147, (6.15)

Each integral in (6.16) is divergent because of the long range of the
Coulomb potential. To get anything useful we must sum these divergent
terms.

It is convenient to rewrite Eq. (6.15) as

__A__AD = = ._._.__Kq i'{_'z_ + KG d'l\-lzd’]\::a %0
NKT 64n2p r%z 3847‘313 T12T13T5,
K8 h, (12)dr,dr,
+ J 2+ ... (6.16)
12873p TyoT3T5;
K4 h,(12) 6 [ h,(123)
- d{z + drdr, + ‘sas .
64r%p | 12, 384n3p | ry,r,,r,, vV

Each of the members of the first sequence of terms is divergent, as is
each member of the second sequence. Only the members of the last sequence
of terms, involving h,(12)=g,(12) -1 and

hy (123) = g,(123) - 1- hy (12) - hy (13) - h,(23) , (6.17)

are convergent. All of the integrations are outside the cores

(1o rij 20). However, to evaluate the sum of the first sequence, let

us extend the range of integration to include all T2 0. No error is

introduced since we have merely added and subtracted the regions 0s rijSU.
Rather than deal with Eq. (6.16), it is simpler to obtain the

sum of the first sequence of terms by considering the corresponding

expansion of gij(r), LB

Bzze? [1 K2 drs
gi.(rlzjal—.._}__l._._ <l_._._--_ 4+ ens
] € Ti2 47 | T33T2;
Bizlztel Bz, z ? k2 drs
& A +eee+ 2 ng(ry,) —
Zetrs, 4m | T13Tz;

+ 13 drs + oo+ ho(ry}—23 hy(12)

€
2Bz .z e? «? J h, (13) gz z e?
€ 4m | Ty3Tz3 ETY3
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Rzz%e" Rz 2 e® 2 h,[123)
¢ 13 h.12) ¢ecee 423 dr,
252rf2 € 4T 11475,
H (6.18)

Again we can assume without loss of generality that Eq. (6.18) is valid
for all rijs 0. The sequence of terms in the curly brackets is called a
ring or chain sum since their terms in this sequence are simple ring
diagrams consisting of repeated convolutions of 1/ri,.

; 5 : J
Thus, defining the ring or chain sum,

Bz .z e? 1 k2 [ dr,
¢, (ry2) = —21— j;--' — = + ees L , (6.19)
1] € Ty, 4m | TyaTgy

and taking the Fourier transform,

o 4 .
= d 6.20
Cij(k) |, rcij(r) sinkrdr, (6.20)
we have
- 4mBz .z e? J K2 Kt
C..(k) = ——b e e e i
1 ek? l K2k
4ngz .z 1
=l (6.21)
£ k* 4 ac?
Hence,
gz .z et e <%
€. .x) =—2d— zh) (6.22)
. € T

Keeping only the first two terms in Eq. (6.18) we have the Debye-Hiickel
approximation

gij(r) = 1w Cij(T] . (6.23)

Equation (6.23) is identical to Eq. (6.8). From Eq. (6.23) we obtain

m e [
Ei/NkT B (6.24)
Hence,
A-A, K?

I (6.25)
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Thus, Eq. (6.16) becomes

A- A, K? K" [hn(lz)
= - - d};2
NkT 127p b4n‘pJ s
k® [hy(123) it h,(12)
+ dr,dr, + dr,dr; + ses; .
384n% | Ty,Ty 0t T 12803  SPLIT A

(6.26)

Note that as a result of the resummation, the free energy is not an
analytic function of B and p but is an analytic function of B% and c%.

We must still resum the last sequence (which contains divergent terms).
We do this by techniques similar to those used to obtain Eq. (6.22). The
result is

A- Ay K3 K he (12)
= = e-2Kr 12dr,
NKT 12mp  edn?p | rl,
k® [ ho(123)
+ dpadgs + *o0 , (6.27)
384n3p | ry,1,,T,,

which may be expanded into the Stell-Lebowitz (11) series

A- A, K3 K4 h, (12) KS h,y (12)
== B d{z 2 d{z
NKT 12mp  64n?p I‘iz 322p T

K® f 1 ( hy(123)
- <t ho(12)dr, - ———-J ~——-—————-d{2d{3 +ee.,(6.28)

32y | 12n

T12713T2;
This series converges very slowly. The sum of the series may be
approximated by a Padé approximant. The results(l2J are very similar to
the mean spherical approximation results, obtained from Eqs. (6.9) to
(6.12).

We have derived the Stell-Lebowitz expansion from perturbation
theory. Stell and Lebowitz did not use this method but obtained their
series in a more direct manner. Although the method given here is less
direct, it does indicate how improvements may be made.

The integrations in Eq. (6.28) are over all space (rijg 0).

This is natural in the Stell-Lebowitz derivation. However, in our original
perturbation expansion, the integrations are over rjj20- This suggests
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that improved results might be obtained by taking the integrals for the

regions OSrijﬁ o and combining them with the «® term. Thus

A'Ag K3 o

3 3 7
a - gm0 g ol TR 2 J ¥ wss (6.29)
NKT 12mp [ A 4 8

At first sight «?(1- 3ka/4+ 3c%0%/4 - Tk3c3/8+ +++) seems like an
unpromising combination; it is, in fact, (2r)*(1+ 3ro/2). Thus

A- A, 2ry* (1 +3ra/2) K"
= - - hoy(r)dr + ««- , (6.30)
NKT 12mp 16np |,

Retaining only the first term gives the mean spherical approximation.
The corresponding result for gij(r) is
pz oz e°
24501 = go() - CYRA(r) - —d—ho(x) + +er (r20),  (6.31)
ET
where
Bz .z e* f(r-o)
cMSA=-_31 - (6.32)
1] e(1+To)? r

Again, truncation of (6.31) after C MSA(r) gives the mean spherical
approximation. The optimized randomlghase approximation of Anderson
et al.(13) consists of truncation of Eq. (6.31) after C MSA(r) and so is
equivalent to the mean spherical approximation. 13

The series of corrections to the mean spherical approximation
still converges slowly and must be summed by Padé methods. There must be
extensive cancellation among the terms as the Padé results are not much
different from the mean spherical approximation results.

Henderson and Blum(lq) have suggested changing the expansion

parameter from ¢ to 2r. Thus,

A-A (2r)%(1+ 3ro/2) 2ot
L= - - ho(r) dr + »oo . (6.33)
NkT 12mp 16mp

g
The higher-order terms in this expansion are given by Henderson and Blum.

Since 2r' <« this series of corrections to the mean spherical approximation
is better behaved. In fact, at normal electrolyte concentrations the
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corrections are negligible,

At low concentrations, the correction terms, given in Egs. (6.30)
and (6.33) are not the most important corrections to the mean spherical
approximation result. This is because, there is, in the fourth-order term
[see Eq. (4.12)], the contribution
F‘I?E’Af i Tlg B“plzjxixjf u;j(r)go(r)d}\“ 5 (6.34)

1
Contributions analogous to this appear in every even-order perturbation
term. The corresponding terms in the odd-order perturbation terms do not
contribute because of charge neutrality.

The integral in Eq. (6.34) converges because r~" goes to zero
sufficiently fast to prevent a divergence. However, since the mean
spherical approximation works well at higher densities, the contribution
of this g* term must disappear at these higher densities due to some
cancellation with terms which are higher-order in the density. Hence,
even though a resummation is not forced upon us to prevent a divergence,

a resummation is desirable as it approximates this cancellation. The
effect of the resummation is to replace

Bz z e? ,
Bu,(r) = —+1— (6.35)

by
byC (r). Thus, we have led to the approximate correction term
1]

oo

a4 e oLx, J ) ‘{TZ“TT (C42(12)] 20, (1) b . (6.56)

We could add AA given by (6.36) to (6.30) or (6.33) with all the
known terms, that is, the integrals (6.28) with the integration region
2 0. Andersen et al. (13) keep only the «* term in (6.30) and replace
52312 (r) in this term by Cz (r} to obtain what they call the ORPA+B,

approximation. In this approxmatlon

A- A (2r)3(1+ 3re/2)

0. < S T E—
-0 ): xlxjf ho (12) (5% (12)) dr,

[ g0 (12) Z [CMSA(IZ)]zndrz, (6.37)

n=2

-2— ) Z xli
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which becomes

A- A, (2rj*(1+3re/2) (21"

hy(r)

£2(r - o)dr

NkT 127mp 64n2p
1 o 1 Bzze?_ 2n
-301 ,
n=2 (2n)! |e(1+To)

where the integrations are over the region r 2 ¢. The results of this

2
go(r)

2n
o 5 (r-o)d}\“ " (6.38)

r

approximation are shown in Figs. 7 and 8. They are an improvement over
the mean spherical approximation results and are comparable to those of
the hypernetted chain approximation.

In addition to the theories of electrolytes outlined above,
there is another theory of electrolytes which as been useful. It is the
modified Poisson-Boltzmann approximation. We do not have time or space
to outline this approach here. We have limited ourselves to theories
based upon either the Ornstein-Zernike equation or perturbation theory.
The modified Poisson-Boltzmann approximation and other approximations have
been admirably reviewed by Outhwaite (15) .

The theories outlined above provide reasonably good descriptions
of the model ionic fluid defined by Eq. (6.1). The main deficiency is the
nonmolecular model of the solvent which appears only through the dielectric
constant €. What is needed is a more realistic treatment of the solvent.

7. APPLICATION TO MOLECULAR FLUIDS

Molecular fluids, in which the intermolecular potential depends
on orientation as well as position, can be treated by fairly straightforward
extensions of the methods discussed above.

First let us consider integral equation approaches. It is
sometimes helpful to expand the pair-potential and the correlation
functions using an orthogonal basis set. Restricting ourselves for
simplicity to molecules with cylindrical symmetry, we have

000 110

u(1,2) =u’' (@ + uttt (et + utt?(r)ett? + .., (7.1)
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etc., where the coefficients are obtained as projections,

Ju(1,2)¢"“‘1(m,nz)dmdnz

u™lp) = — (7.2)
J[‘i’ (Qunz)]zdﬂldﬁz
The first two ¢™(after $9°°=1) are
¢'1° = cos@, cose, + sing, sing, cos(¢,-¢,) , (7.3)
$112 = 2cos@, cos@, - sing, sing, cos(¢1-¢,) , (7.4)

where 6 , ¢ are the polar angles of molecule i.

: Céupling some approximation with the Ornstein-Zernike equation,
Eq. (3.11), gives an approximate integral equation. The simplest is the
mean spherical approximation, where

C(I,Z) = Su(lﬂz)l (7'5}
outside the hard core, and
h(1,2) = -1 , (7.6)

inside the hard core. Because of the linear relation between c(1,2) and
u(1,2) in Eq. (7.5) a truncated series for u(1,2) with a limited mumber
of umnl(r} will produce a similarly truncated series for c(1,2) and
hl,2).

A nonlinear approximation, such as the hypernetted chain
approximation, would produce an infinite series for h(1,2) and ¢(1,2)
even if the series for u(1,2) contained a small number of terms. An
approximation, based upon the hypernetted chain approximation, which does
limit the number of terms in the h(1,2) and c(1,2) expansions is
obtained by truncating the expansion of the logarithm in the hypernetted
chain approximation,

1n g(l,Z) = Bu(IQZ) - h(llz) = C(I,Z) » (707)
to first order. Thus,

c®®(r) = h*°°(r) - 1n [1+h°°°(r)] - gu?ot () (7.8)
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- he 0}:5:}'_")] hmn]'(r) - Bum.nl(r), (7.9)

1% (r)

cmnl (r)

for m, n, 1 not all equal to zero. Equations (7.8) and (7.9) are called
the linearized hypernetted chain approximation(16). Although this is a
linearized version of the hypernetted chain approximation, it is different
from the mean spherical approximation. The linearized hypernetted

approximation reduces to the mean spherical approximation if
¥ » 1, (7.10)

Gaylor et al.(197) have proposed an alternative linearized hypernetted
chain approximation which is an improvement at low densities, at least.
An improved approximation, called the quadratic hypernetted chain
approximation follows if the logarithm in Eq. (7.7) is expanded to second
order.

Other integral equations can be formulated. Cummings et al.(ls)
have considered some of these and obtained mumerical results for short-
ranged anisotropic potentials. Here we will limit ourselves to the
relative simple dipolar hard-sphere potential,

2
u(1,2) = uﬂs(r) - -134— D(1,2), (2.30)

Ti2
where p is the dipole moment of a molecule and

2

D(1,2) = ¢ (7.11)

is given by (2.31) or (7.4), and the mean spherical and linearized
hypernetted chain approximations. The dipolar hard-sphere potential is
simple not only because of the limited basis set but also because the

potential core is spherical.

Wertheim(lg} has obtained an analytic solution for the dipolar
hard-sphere potential using the mean spherical approximation. Following

his notation, he finds

h(1,2) = h_(r12) * hy(r;,)D(1,2) + b, (1,,)A(1,2) (7.12)
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where
hs(r) = h'%(r), (7.13)
h (r) = h**2(x), (7.14)
b CEY = WFL8Gry, (7.15)

D(1,2) is given by Eq. (7.11), and

A(llz) = il' gz

= gllo, (7.16)

We note that
JD(I,Z)dnldnz . Ja(l,ZJdgldni =0, (7.17)
JDZ(I,Z)dnldQZ -3, (7.18)
JAZ(l,z)dnldgz =%, (7.19)

and that D(1,2) and A(1,2) are orthogonal, i.e.,
[, 2801, 2200,00,- 0 (7.20)

Wertheim found that hg(r) is just the Percus-Yevick/mean spherical
approximation result for hard-spheres which can be obtained from Eq. (3.28).
Further, he found that if x is defined by

£ = kn, (7'21)

where n = 12p6%/6 and £ is obtained from

-

=§r la(2g) - q(-8)]1, (7.22)
where
a(x) = L+ 2J2 s (7.23)

EER Ik
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then
(0 (1’(0),
hA(I‘) = (7.24)
¥2|<[hs(1‘,2|cp) = hs(r, -ko)] (r>oa),
and
0 (I’<o),
h () = o 2, (7.25)
| hfr) - -3—[ h (s)s2ds (r>0),
g D
where
h (r) = k[2h (r,2¢p) *+ h (1, -xp)]. (7.26)
D s s

The apparently mysterious equations for « can also be written as

h (1)
K= r D dr. (7:27)
T
g

The thermodynamic functions can be calculated from

1 h (1)
=1+ any (o) - 3 Bow?| B dr (7.28)
pkT L T3
3p -
KT 3% =1+ o[ hs(r)d;; : (7.29)
or
(h_(1)
1
E, =-3 Npu? °3 dr . (7.30)
r

Equation (7.30) gives by far the most reliable results.
The dielectric constant ¢ is calculated from

(e-1(2e+1) .
= ¥E.. 5 (7.31)
9¢ gk
where
¥ * %11 Bou? (7.32)

and
g =1+ = pI h, () & - (7.33)
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It is interesting to note that Onsager's approximation for ¢ is obtained
from Eq. (7.31) by putting g,= 1. In the mean spherical approximation

52 4
e = (1*45°(1+8) (7.34)
(1-2c)¢
The mean spherical approximation pair distribution function for

dipolar hard-spheres is compared with computer simulation results(ZU’ZI)

shown in Fig. 9. The mean spherical approximation gives fairly good results
for hs(r). Furhter we see that the simulation hs(r) for dipolar hard-
spheres is very nearly equal to that for hard spheres but is somewhat
larger. The mean spherical approximation for hD(r] and hﬂ(r} are rather

poor. Interestingly, the approximations

MSA
h (r) £ (e =) (1.35)

hy (1) = g (WA (r) (7.36)

are much better.

o
I L |
4L \ o -
L e A ho(r) ha (1)
r
s s B 6\ D B Alr
\
[ ) \\
9 |- - \ |
o‘\ N
® \ ﬁ“\\
- | \
RSN
O O ..""'-...___
1 | I | ? rh""“T““‘9'-‘='h
1.0 1.2 1.0 1.2 1.0 1.2
rlo

Fig. 9. Pair distribution functions for the dipolar hard-sphere fluid at
po? = 0.9.The points given by @ and 0 give the computer simulation
results for Ru?= 0 (hard-spheres) and Bu? = 1, respectively. The
solid and broken curves give the results of the MSA and Egs.
(7.35) and (7.36), respectively, for Ru? = 1.
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The mean spherical approximation free energy and dielectricconstant
for dipolar hard-spheres are plotted in Figs. 10 and 11. The results are
fairly reasonable. The mean spherical approximation dielectric constant
is much more satisfactory than the Clausius-Mossotti result,

b (7.37)
e+ 2

and the Onsager result,
(e-1)(2e+1 ., (7.38)
e
0| -«

Bu?/a®

Fig. 10. Free energy of the dipolar hard-sphere fluid (pg?= 0.8344) as a
function of reduced dipole moment. The points are the simulation
values of Patey and Valleau. The broken curves marked 2 and 2+3
give the results of Eg. (7.39) when truncated after 2 and 3 terms,
respectively. The solid curves give the results of Eq. (7.47) and
the curved marked MSA gives the results of the mean spherical
approximation.
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100

Fig. 11. Dielectric constant for the dipolar hard-sphere fluid for
p* = 0.8. The solid curve gives the perturbation theory results
and the broken curves give the results for some other theories.
The points marked © and @ are simulation estimates of Levesque
et al. and DeLeeuw et al., respectively. The points marked 0
and W are, respectively, simulation estimates obtained by Adams
using an Ewald-Kornfeld summation and an extrapolation to zero
field of the computed values of the polarization in the direction

of an applied field.
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Perturbation theory can also be applied to the dipolar hard
sphere system. The first-order term vanishes because of Eq. (7.17).
Similarly, only the first integral in the second-order term is nonzero
and only the ring diagram in the third order is nonvanishing. After
performing the angular integrations,

A= Ao + BPu'As + BIEAy 4 ooe, (7.39)
where

Az 1 go(r)

— =l (7.40)

NKT 6 r
and

A 1

L SR ; (7.41)

NKT 54  ddd

Similarly, the perturbation expansion for € is

e =1+ 3y + 3y + 3y?
16m?

o
—4dZ - g+ e, (7.42)

In Eqs. (7.41) and (7.42)

[1+ 3 cosB, cosB, COSQ,
1. = 80(123)dr,dr s (7.43)
ddad
ETLATE
and
3 cos?pr 1
IddA = -—I-‘s—ra_—gu(123)d:{2d{3 ¥ (7.44)

13 13
Barker et al.(zz)

calculated Iddd and Tani et al.
of their results is given by

5n2 1+1.12754p0° + 0.56192p2¢"
I [ Ry 0.5 (7.45)
e 1-0.0549500% + 0.13332p%g®

and, more recently, Tani et al.(zs) have
) have calculated IddA' A numerical fit

1712 1-0.93952p0° + 0.36714p20"
L o® . (7.46)
aas g 1-0.92398p0% + 0.23323p%g"
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The free energy calculated from Eq. (7.39) with Ao and A> and As included
is plotted in Fig. 10. The series converges poorl}. However, Rushbrooke
et al.(®®) nave found that the Padé sum,

A;
Aoy + GBS i (7.47)
1- guPAy/ p

(25). On the other hand, the

perturbation series for the dielectric constant seems to converge and, as
(26) ..
is

is in good agreement with computer simulations

is seen in Fig. 11, good agreement with computer simulation results
obtained from Eq. (7.42).

We have seen for the case of charged hard-sphere, it is helpful
to remove the mean spherical approximation results from the perturbation
series and wr.te the series as a correction to the mean spherical

approximation. This can also be done for dipolar hard-spheres. The

results is
A=A + BLutAL o+ BICAY 4 e 7.48
- Beu*A;z B u"A; ( )
where
A 1 [ hy(r)
e e dr (7.49)
NkT 6 ) o
and
Al 1 5m®
— i 5 ], - 8. 750
NKT 54 | ddd 30 e

The free energy calculated from Eq. (7.48) with AMSA, A}, and A} included
is plotted in Fig. 12, The series in Eq. (7.48) converges better thaég
that in Eq. (7.39). However, good agrcement with simulation results( )is

obtained only if the Padé series,
A

A=A + Bauu sa — (7.51]
MSA 1-Ru? AY/AS

is used.
The corresponding result for the dielectric constant is
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91 17)

a8 . (7.52)
16m? 16

The results of Eq. (7.52) are nearly identical to those of Eq. (7.42) in

Fig. 11.

l_

X

=
=

o

T
=

Bu?/o3
Fig. 12. Free energy of the dipolar hard-sphere (po® = 0.8344) as a

function of reduced dipole moment. The points have the same
meaning as in Fig. 10. The broken curves marked 1, 1+2, 1+2+3
give the results of Eq. (7.48) when truncated after 1, 2, and

3 terms, respectively. The solid curve gives the results of
Bg- (7.51).
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Equations (7.47) and (7.51) will be inadequate at low densities
because of the neglect of the two-fourth and higher-order terms. For
example, we could generalize Eq. (7.47) to

A-A, A/NKT 1
—_— g - o[ h,(r)h2(r)dr
A, 9 D A
NKT l-gi— 6
AZ

s |
“30 LT [HCLIOL [ D2R(1,2)dg,dn,

A,/NKT 1
B R eiae i s Jh P2 (r)dr
w5 ofmomme
o« AZ
1 f 2n '
-3p}] K_|g,r)he™(r)dr , (7.53)
2 S an ¥ D
where
r n! 2 n (21)!
K =2n . (7.54)
n | (2n+ 11| 450 (102

The perturbation theory considered above is upon a u-expansion.,
A perturbation theory based upon an f-expansion is also possible and has

some advantages.(27)

It does have the disadvantage that the angular
integrals cannot be evaluated analytically,

In Section 6 we consider a system of charged hard<pheres and in
this section we considered the dipolar hard-sphere system. It is tempting
to consider a charged hard-sphere/dipolar hard-sphere mixture as a more
realistic model of an electrolyte. For this system the interactions are

ziz‘e2
ug () =u () —rJ— (7.55)

for ion-ion interactions,

2.8y A A _
U 4{T) = u, (r) + (€ - xy) (7.56)

for ion-dipole interactions, and

- . o
ul](r) = uﬂs{r) ;!' D(loz) (r .31)
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for the dipole-dipole interactions. Note that € no longer appears in the
dcnominatm; of the Coulomb interaction,

The mean spherical approximation has been applied to this
system(zs). The results are complex and beyond the scope of these lectures
Perturbation theory can also be appliedtzg} to this system. Again the
results are complex. However, a few comments are of value, If all the
hard-spheres have the same diameter, the {irst-order terms vanish because
of charge neutrality or angle interactions. In second and third order

only the terms involving uzu oru u_ u survive. Thus,

1

A-A, 1 (
e DBZZ x.x_J dK,? Ju% (r,;)do,dg,
NkT ij 1 1]
1 <
¥z gipd dr.d 12 23 13)dq.do.do, .
L) xixjka % {SJuij( T }uij( )90t
1% (7.58)

Many of these integrals diverge. Thus, ring or chain summations must be
performed. These summations are complex and beyond our scope. However,
it is instructive to calculate the ring sum for the ion-ion interactions.
Defining

¢ (12) = gu (12) - sz”u_ (13)u_ (23)drsdg, +ees - (7.59)
ij i3 o ik kj Y
For the ion-ion interaction
8z z e? 2 dr,
C, .(ry,) =—~3—-82zze* ) z3k
= Ty, 1 k= T35
¢ €OS6,
- a2z 7z e2y2 dr: + ves 7.60
B%z,2 efu'o.x | — o , (7.60)
123

where species 1 and 2 have been assumed to be the charged hard-spheres,
species 3 is assumed to be dipolar hard-sphere, and Pg is the density of
the dipolar hard-spheres. Now using Eq. (3.14) and

2 2 2z
Tig * Loy = T
cosg, = — ; (7.61)
21y 3723
we obtain
[ COS8,4 4n
. 3, = = (7.62)

2 2
T,To3 T
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and, thus,
£ . ma) w843 ez( 1 (1-3y) xﬁl'dga + (7.63)
s ikyg W = =3 = vee |, -
d ® 2 Lrlz e T 3T
where
i, = 4ﬂBeZE 220, (7.64)
and
4
Yy =3 &, . (7.65)
Proceeding a before,
pz z e? & e
¢ =1 s (7.66)
* € T2
where k = g,/ and
1/e = 1-3y + «es (7.67)

is the inverse of the dielectric constant. Hence, even though the direct.
Coulomb interaction does not contain the dielectric constant, the chain sum
which includes the screening and solvent interaction does contain ¢.

The contents of this section give only and introduction to the
theory of molecular fluids. For further applications, especially to fluids
with nonspherical cores, the forthcoming book of Gray and Gubbins(so) is
recommended,

8. APPLICATION TO ELECTRIFIED INTERFACES (THE DOUBLE LAYER)

We consider an electrolyte near a charged electrode. As before,
we consider the ions to be charged hard-spheres of diameter . The
electrode is approximated as a uniform hard charged wall. First consider
the case where the solvent is a uniform dielectric medium whose dielectric
constant is ¢.

If the electrode is charged, there will be an accumulation near
the electrode of ions whose charge is opposite to that of the electrode.
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We can then speak of a double layer of charge.

The techniques which have been developed so far can be applied to
the double layer if we regard the surface as a large ion whose diameter is
D>> o and whose charge is Q. Eventually, we take the limit Dsw ., It is
convenient to use the charge density on the electrode (or equivalently,
the electric field at the electrode, E, which is equal to 47 times the
charge density) as a variable. Thus,

T2
Q=-L-E—. (8.1)

1f: 6 (x) is the (number) density profile of ions of species i
at a distance x from the electrode, then the singlet distribution function

or reduced density profile, is

g =h () +1
1 1
=0, ()/p, (8.2)
= 1

where By ™ By (w) is the bulk (number) density of ions of species 1. The
distance x 15 measured from the wall itself so that the distance of closest
approach is o/2.

The density profile of all the ions is

p(x) = Z p, (X) = Zp g, () (8.3)
and the charge prof11e is
efzp (x) =elzpg (X
’ = fz Py h (x) (8.4)

i
Changing from g (x) to h (x) is justified because of the charge neutrality
L 1

condition in the bulk
Y Z.p, =0 (8.5)
= = s B

If -E/4n is the charge density on the electrode,

e] Z.D.r g (t)dt = E/4n . (8.6)
g b & -
i . . (31) )
Force balance considerations require that
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KT]p (0/2) =p * E*/8ne , (8.7)
i
where p is the pressure of the bulk fluid (the osmotic pressurc of an

electrolyte). The first term is the momentum transfer to the wall and the
second term is the Maxwell stress., The potential at a distance x from the

electrode is given by

£

o(x) = i ) Zioir{t'x)gi(f)dt- (8.8)
i x

Thus, the potential difference across the interface is

vV =94(0)

& s (8.9)
2e
where (8.6) has been used.

If the solvent is discrete, consists of molecules, then most of
the above considerations remain valid. The density profile of the ions is
given by Eq. (8.3) and the charge profile is given by (8.4). The density
profile the solvent molecules is

p,(¥) = 0,830, (8.10)

where

g, (x) 41—v Jrgd(x,ﬂ)dsz . (8.11)
One projection of gd(x,ﬁ) which is of interest is
Ahd(xJ = ggﬁJgd(x,ﬂ)cosedQ i (8.12)
Equation (8.7) is modified slightly to become
kT):pi(o/ZJ + kTpd(cd/Z) =p + E}/8n , (8.13)
i

where the sum is over the ion species and p is the actual bulk pressure of
the electrolyte. The potential difference across the interface is given
by
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{v el I(m
Ve 4nezzip,[ tgi(t)dt + 4—1 P4 J Ahd(t)dt . (8.14)
i oy 3 0./2
where 9y is the diameter of the solvent molecules.

A. Gouy-Chapman Theory

Using the charged hard-sphere/dielectric continuum model of an
electrolyte, we can apply the Gouy-Chapman theory, developed by Gouy(sz)

and Chapman{SS), and subsequently Stern(34). Assume that

0 (x<o0/2),

g (x) =< (8.15)

f:xp{szieds(x}} (x>a/2),

where ¢(x) is the electrostatic potential which satisfies Poisson's equation

4% . EIE_Z z.ng. (x)

e e A in=d
4
- _gg § zipicxp{ﬁzie¢} % (8.16)
A first integral is always possible since
2 2
W7 & [?{;%J . (8.17)

Using the fact that
¢ = %% =0, (8.18)

at x=w», we have

(do)?, BukT
{UkJ £

Z pi[cxp{szic¢}—l]. (8.19)
1

Now E is constant in the region 0« x< ¢/2. Thus

and, thus, Eq. (8.19) for x= /2 becomes Eq. (8.7) but with p equal to the

=0/2
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perfect gas result, pkT.

To complete the solution, we must integrate Eq. (8.19). In
general, this cannot be done analytically, However, for the special case
of binary n:n and 1:2 solutions, analytic results can be outlined,
Restricting ourselves to the symmetric n:n case,

Bzep(x)/2 = In {1+ Ae™(x=0/2) _ 1 (1. p KX-0/2) | , (8.21)

where: z = |z [,
1
b/2
A= (8.22)
bZ
i | +/]_+-4—
_ BzeE
b= ==, (8.23)
and « is given by Eq. (6.5). Also,
sinhBze¢(o/2) = b/2 (8.24)
so that
E 2 =1
=225 + 57g sinh” b/2. (8.25)
At contact
b? b?
g,(a/2) =1+ T 1 vy (8.26)

which satisfies Eq. (8.7) with p equal to pkT. The integrals of h (x) can
1
also be obtained. The results is

(8.27)

Jw hy(t)dt = 2 (T
a/2 < g

L./ 1 & E%— & %—~ 1
where the positive sign applies to the counterions, etc. From this result
we see that Eq. (8.6) is satisfied.

The Gouy-Chapman theory fails to satisfy the contact value
theorem, Eq. (8.7), by the difference between p and pkT. At low
concentrations this difference is small. In any case, as the electrode is
charged, the quadratic temms, E2/8q¢, rapidly becomes dominant. As a
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result, for most situations the Gouy-Chapman theory satisfies the contact
value theorem to a very good approximation.

The Gouy-Chapman theory profiles have the approximately correct
area, i.e., they satisfy Eq. (8.6), and have almost the correct contact
values. As a result, we would expect them to be quite accurate. That this
is the case can be seen in Fig. 13, where the g, (x) are compared with recent
computer simulations(zs) for z=1. The agreeme;t is less satisfactory when
z= 2(36) but is still much better than would be expected given the relati-
vely crude assumptions of the Gouy-Chapman theory.

20 —
10
b=3.8
0.22 ¢/m?
£ I ™
x
-
24 .
1 -
[ | |
0 4 8 wx 12

Fig. 13. singlet distribution functions for the 1M charged hard-sphere/
continuum dielectric model electrolyte near a uniformly charged
hard wall (charge density=0.22 coul/m?) whith z=1,0= 4.258,
T=298°K, and £=78.5. The points give computer simulation
results and the broken and solid curves give the GC and HNC/MSA
results, respectively.
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The Gouy-Chapman values for the diffuse layer potential, ¢(g/2),
are compared with computer simulations[ss) in Fig. 14 for z=1, The
Gouy-Chapman values of ¢(g/2) are significantly in error. The error is
even more pronounced for the z =2 case(36). Whether this error can be seen
experimentally is problematic since the diffuse layer potentials is small
compared to the contributions of the metal and the solvent to the potential.
We shall discuss these latter contributions shortly. However, a heuristic

theory of these effects can be developed now.

=T 0.01™M
% /"/r"”/
X =
o
= .
N T
3 .
% e 0.1M e
0.1
./ ”d—-_—‘
e L
il
* ™
°«
0 | | |
0.2 0.3
Charge Density (c/m?)
Fig. 14. Diffuse layer potential difference for the charged hagd—sPhere/

continuum dielectric model electrolyte (z=1, o= 4.25A,
T=298°K, and € = 78.5) near a uniformly charged hard wall as a
function of the charge density on the electrode. The points

give computer simulation results and the curves marked ——— ,
and — give the Gouy-Chapman, mean spherical approximation and

the HNC/MSA results, respectively.
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We see from Eq. (8.25) that V divides itself into two terms, the
potential difference across what we can call an "inner layer' where the
field is constant and the diffuse layer potential. Let us assume that the
effects of the solvent structure and the electronic structure of the metal
is such as to modify the effective dielectric constant inside the inner
layer but that within the diffuse layer the dielectric constant is equal
to the bulk value. If this is the case,

v=9E + 2 4inh? b2, 8.28)
2e* Rze

where ¢* is the effective dielectric constant in the "inner layer'.
Thus, the differential capacitance,

c = » (8.29)

is given by

b2
€ ik 3
c,= = - = (8.30)
1 * T [? 1 + _li_
For small charge on the electrode, Eqs. (8.28) and (8.30) become
-0, E
V = 5% + = (8<:31)
and
.2 L 8.32
Cd 41 1+ X0 & ( )
2 e

In Table I we see that Eq. (8.32) with ¢* =¢= 78.4 is in poor agreement
with exporiment(37) but is in good agreement if e* = 4.6



198
TABLE 1

Differential Capacitante (f/m?) in the Limit of Zero Charge

fone:  Bugl®D B, Esig?i b, (8:52) . (8.65)  Ea. (8.00
107"M 0.0227 0.0211 0.0201 0.0212
107 0.06 0.0710 0.0577 0.0503 0.0579
100 0.13 0.218 0.128 0.0965 0.129
10°'M  0.21 0.630 0.207 0.136 0.210
M 0.26 1.57 0.257 0.156 0.262

Table I. The experimental results are for an aqueous solution of NaF near
a mercury electrode. The theoretical values are calculated with

T=298°K, £ = 78.4, and 0 = 0 = 2.76 k.

Both Eqs. (8.30) and (8.32) have the property that c;l consists
of two terms, the inverse of the diffuse layer capacitance,

£ b
Cdlza—_‘TK 1 "T (8.33)

or, for small charge
£
= .34
Cdl T K (8.34)
which is concentration dependent, and the inverse of a concentration

independent term, the "inner layer' capacitance,
G =55 . (8.35)

If we differentiate Cél, given by Egs. (8.30) or (8.32), with respect to

-1 )
€ we obtain
a1’

-1
aC
a._,

" (8.36)

g dl

We see from Fig. 15 that the experimentaltsg)
a function of C.| is indeed unity except at very high concentrations. The
good agreement of Egs. (8.30) and (8.32) with experiment in Fig. 15 and

Table I might be thought of as a confirmation of this macroscopic picture

slope of C;l when plotted as
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Fig. 5,

0.00911M
— N
- —— MISA

rlo

Radial distribution functions for the charged hard-sphere/
continuum dielectric model of a 1:1 electrolyte at 298°K,
o=4,258, and £€=78.5. The points give the computer simulation
results.
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where p = N/V (N = IN;) is the density of all the hard-spheres and
1
Ei = E-3NkT/2 is the internal energy. From Eq. (6.9)

A- A (2r;3(1+3re/2)

= - s (6.10)
NKT 121p
P- Po (2r)?
& » (6.11)
okT 247mp
and
3(p- po) (2r)* 1 #To
& - : (6.12)
ap l6mp 1+ 2l0

The MSA internal energy and pressure are plotted and compared with
computer simulations and the hypernetted chain approximation results in
Figs. 7 and 8. The hypernetted chain approximation works well. The mean
spherical approximation is less satisfactory but improves as the
concentration is increased.

The charged hard-sphere system can also be used as a model for
molten salts. The densities are large and the interactions are very
strong. Both the mean spherical and hypernetted chain approximations
give reasonable results when compared with computer simulations(lo).
Perturbation theory can also be applied to the charged hard

sphere system. Using the u-expansion with a hard-sphere reference system,

A- Ao 1
B o ; (12 12 s 6.13
] % T TACEI LS (6.13)

where x; = Ni/N (N = ﬁNi). Because of charge neutrality,
1
i) z,x=0 , , (6.2)

the first-order temm in Eq. (6.13) vanishes.
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Fig. 6. As in Fig. 5 but with conc=1.000 M.

In second-order, only the first term in Eq. (4.5) contributes.
The other terms vanish because of charge neutrality. Likewise in third-
order only the ring diagram is nonzero. Thus,
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W\ ——HNC
—1"\ X ———MSA
o\ \ —-—ORPA+B,

E/NkT

V'conc

Fig.7. Values of the internal energy for the charged hard-sphere/
continuum dielectric model of a 2:2 electrolyte at 298°K,
o=4.25 R, and €= 78.5. The points marked, O ,®, and O give
simulation results of valleau and Cohen, Valleau and Card, and
van Megen and Snook, respectively.

A"A@

1
— B? 2 (12 12)d
ot . Bp gjxiij Ulj( )go(12) T2
1
+3 eEingkxixjxkl ug, (120, (1), (23)g0 (123)dpadgs + ==
(6.14)

We see that the cancellation among integrals which leads to small values
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of the high-order perturbation terms at high densities in the application
of perturbation theory to the lattice gas and to simple fluids is not
present in this system. Thus, approximations such as Egs. (4.18) to (4.20)
would not be useful for this system. The perturbation series will

converge more slowly. None-the-less, we can make progress.

1.0

——— HNC
——— MSA

~—-— ORPA+B, p
/)
s
0.8 //’/D
i /
¢ za
i
().(3 B \\Ez:‘*~,_h£l_____,-::£3’
\\-~__..—-"
| | |1 ] A |
0.0 0.5 1.0 15

Vv conc

Fig. 8. Values of the osmotic coefficient ¢ = p/pkT for the charged hard-
sphere/continuum dielectric model of a 2:2 electrolyte. The
parameters and points are as in Fig. 7.

If we restrict our attention to the symmetric two-component
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system where z=| z,|= |z,|, Eq. (6.14) becomes

dr.idr. Feew
LV

Vo sgag
mp j Figkia¥oy (6.15)

A-h [goclz} <[ 8,023)

T, +
2
NkT 64n2p I‘iz

Each integral in (6.16) is divergent because of the long range of the
Coulomb potential. To get anything useful we must sum these divergent

terms.
It is convenient to rewrite Eq. (6.15) as
= b 6
b s LA B N
NKT 64n2p | T2, 38dndp | T,,T,.T,,
K8 h, (12)dr,dr,
+ J LR (6.16)
128n%p T3aTa3%2n
K h,(12) K& h,(123)
& d{z + drdr, + ... .
64n%p | T2, 3843, | ry,r,,r,, VN

Each of the members of the first sequence of terms is divergent, as is
each member of the second sequence. Only the members of the last sequence
of terms, involving h,(12)=g,(12) -1 and

h, (123) = g, (123) = 1= hy(12) <}k, (13) =h,(23) , (6.17)

are convergent. All of the integrations are outside the cores

(d.e. s rij 20). However, to evaluate the sum of the first sequence, let

us extend the range of integration to include all r, > 0. No error is

introduced since we have merely added and subtracted the regions 0<r; 450,
Rather than deal with Eq. (6.16), it is simpler to obtain the

sum of the first sequence of terms by considering the corresponding

expansion of gij ()5 die.;

Bz.z.e? [ 1 K2 drs ]
g”(rlz):l-__.]‘_l_._ A + ess
=2 £ Tya 4m T13T33 J
RZz2z2e" Bz, 2. o* k* [ drs
+ ___&_J__ IR R (e
2e? 12 € 4m T13T23

ZBz ze™ i [ Hytl3) Bz, z e?
* 1] e dps + -+ ho(rya)-—=4— hy(12)

(4 4m T13T23 ET12
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ziz?e" gz z e? g?f hy(123)
+_._..2'._..J_h0(12) SR b s | " dr!

Zszriz E 47| Ty4Tp, *
e . (6.1‘8)

Again we can assume without loss of generality that Eq. (6.18) is valid
for all rijs 0. The sequence of terms in the curly brackets is called a
ring or chain sum since their terms in this sequence are simple ring
diagrams consisting of repeated convolutions of 1/r .

. g . 13
Thus, defining the ring or chain sum,
Bz z e? 1 k* [ drs
C..(ryp) = —=1— ’[—- - — 3 + ases L . (6.19)
13 £ Ty, 471 ) Ty3T,,
and taking the Fourier transform,
= _An .
cij(k) ¥ |, rcij(r) sinkrdr, (6.20)
we have
~ 4mRz .z e? J k2 &
O ilk) mm—dtde edee ¥ # e
13 ek? |k x
4Rz .z | 1
- o YN (6.21)
€ K2 4 2
Hence,
gz.z e? e KT
C..(r) =—= (rz0) . (6.22)
1 € T

Keeping only the first two terms in Eq. (6.18) we have the Debye-Hickel
approximation

gij(r) = l-cij (r] (6.23)

Equation (6.23) is identical to Eq. (6.8). From Eq. (6.23) we obtain

3
-
Ei/NkT Bip ° (6.24)
Hence,
A- A, 2

wr-** e (6.23)
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Thus, Eq. (6.16) becomes

A-A, K3 K [ho(l.?)
= = A dr;,
NKT 127p b4ﬂsz riz v
e h,(123) K® h (12)
+ d£2d£3+ d{zdgg * o s

] 3
384n%p | Ty,T 5T,y 12873p | 1 ,T 4T,

(6.26)
Note that as a result of the resummation, the free energy is not an
1 1
analytic function of B and p but is an analytic function of 8% and o2.
We must still resum the last sequence (which contains divergent terms).
We do this by techniques similar to those used to obtain Eq. (6.22). The

result is

A- Ay &> * [ he(12)
= - - - -2kr 12dy,
NKT 12mp  64m®p | ri,
x% ([ ho(123)
* d{zd{, + see - (6.27)
384m3p | Ty,T),Ty,

which may be expanded into the Stell-Lebowitz(ll) series

A- A, K3 K" h, (12) K5 h, (12)
& 2 = dr, + dr,
NKT 12rp 6472 . . 7' r v
K6 [ 1 ( hy(123)
- d| ho(A2)dps ~ — | ——— dr dr, |+sss. (6.28)
32m2p || Sl e

This series converges very slowly. The sum of the series may be

(12) are very similar to

approximated by a Padé approximant. The results
the mean spherical approximation results, obtained from Eqs. (6.9) to
(6.12).

We have derived the Stell-Lebowitz expansion from perturbation
theory. Stell and Lebowitz did not use this method but obtained their
series in a more direct manner. Although the method given here is less
direct, it does indicate how improvements may be made.

The integrations in Eq. (6.28) are over all space (rijz 0).

This is natural in the Stell-Lebowitz derivation. However, in our original
perturbation expansion, the integrations are over rjj2o- This suggests
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that improved results might be obtained by taking the integrals for the
regions Osrijs o and combining them with the «® term. Thus

A- A, 'S

B2 -

NkT 12np
At first sight k®(1- 3ko/4+ 3k?0%/4 - Tc%03/8+ «++) seems like an
unpromising combination; it is, in fact, (2r)3(1+ 3r¢/2). Thus

A- A, (2r)*(1+ 3ro/2) K
= - - hy(r)dr + oo . (6.30)
NKT 127p 16m1p |,

[1-%0*%K0'-£—K303+---]+ N (6.29)

Retaining only the first term gives the mean spherical approximation.
The corresponding result for 813 (r) is

Bz z e*
g;5(0) = ga(1) - (YA - —d—ho() + +o+ (r>0),  (6.31)
ET
where
Bz z e? f(r-og)
cMsA - i3 (6.32)

ij g1 *Te)* T

Again, truncation of (6.31) after C M5B(r) gives the mean spherical
approximation. The optimized randomlgjahase approximation of Anderson

et al.(ls) consists of truncation of Eq. (6.31) after C MSA(r) and so is
equivalent to the mean spherical approximation. -

The series of corrections to the mean spherical approximation
still converges slowly and must be summed by Padé methods. There must be
extensive cancellation among the terms as the Padé results are not much
different from the mean spherical approximation results.

Henderson and Blum(ld) have suggested changing the expansion
parameter from « to 2r. Thus,

-]

A-A (ary®(1+3ro/2) (2r)*
2 = - - he(r) dr + <.« (6.33)
NkT 12mp 16mp

&

The higher-order temms in this expansion are given by Henderson and Blum.
Since 2r< « this series of corrections to the mean spherical approximation
is better behaved. In fact, at normal electrolyte concentrations the
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corrections are negligible,

At low concentrations, the correction terms, given in Egs. (6.30)
and (6.33) are not the most important corrections to the mean spherical
approximation result. This is because, there is, in the fourth-order term
[see Eq. (4.12)], the contribution

N%‘ = - alg B“p.zxixjj u;jfr)go(r)dg . (6.34)
1]

Contributions analogous to this appear in every even-order perturbation
term. The corresponding terms in the odd-order perturbation terms do not
contribute because of charge neutrality,

The integral in Eq. (6.34) converges because r™* goes to zero
sufficiently fast to prevent a divergence. However, since the mean
spherical approximation works well at higher densities, the contribution
of this g* term must disappear at these higher densities due to some
cancellation with temms which are higher-order in the density. Hence,
even though a resummation is not forced upon us to prevent a divergence,
a resunmation is desirable as it approximates this cancellation., The
effect of the resumation is to replace

Bz z e?
Buy(r) = —=1 (6.35)

ET

bycij (r). Thus, we have led to the approximate correction term

_ 1 v ! MSA 2n
T ST 7 olf xiijnzz {W [Cij (12)] 8::(12)‘1,{2} . (6.36)
We could add AA given by (6.36) to (6.30) or (6.33) with all the
known terms, that is, the integrals (6.28) with the integration region
rija o. Andersen et al,(!3) keep only the «" term in (6.30) and replace
g?ul(r) in this temm by C;.(r) to obtain what they call the ORPA+B,

approximation. In this approximation

A- A (2r)¥(1+ 3re/2)
). o 1Zmo0

ik MSA
30l xpx, [ 1o (12) ¥R 12)] 2,

-{,oizj xx [ 802 ] ohyr E¥ami?e, 6

n=2
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which becomes
A- A, (2rj*(1+3ro/2) (2r)* [ ho(r)
= d f2(r- o)dr
NKT 12mp 64n2p r? W
1 @ 1 gz 2e? 2n gu(r)
30 £20(% o)dr ,  (6.38)
n=2 (2n)! |e(1+ To)? r?n

where the integrations are over the region r z g. The results of this
approximation are shown in Figs. 7 and 8. They are an improvement over
the mean spherical approximation results and are comparable to those of
the hypernetted chain approximation.

In addition to the theories of electrolytes outlined above,
there is another theory of electrolytes which as been useful. It is the
modified Poisson-Boltzmann approximation. We do not have time or space
to outline this approach here. We have limited ourselves to theories
based upon either the Ornstein-Zernike equation or perturbation theory.
The modified Poisson-Boltzmann approximation and other approximations have
been admirably reviewed by Outhwaite(ls) 5

The theories outlined above provide reasonably good descriptions
of the model ionic fluid defined by Eq. (6.1). The main deficiency is the
nommolecular model of the solvent which appears only through the dielectric
constant €. What is needed is a more realistic treatment of the solvent.

7. APPLICATION TO MOLECULAR FLUIDS

Molecular fluids, in which the intermolecular potential depends
on orientation as well as position, can be treated by fairly straightforward
extensions of the methods discussed above.

First let us consider integral equation approaches. It is
sometimes helpful to expand the pair-potential and the correlation
functions using an orthogonal basis set. Restricting ourselves for
simplicity to molecules with cylindrical symmetry, we have

U(I,Z) - uOOO(r) i ulll](r)¢‘llu 5 u112(T)¢112 ¥ e (7.1)
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etc., where the coefficients are obtained as projections,

Ju(lyz)d)mnl (Ql :and‘QldQZ

u™ () = : (7.2)
J[qa"‘“‘(ﬂl,nz}]’dmdnz
The first two ¢mn1(after ¢°°%=1) are
¢*1° = cos@, cose, + sing, sing, cos(¢y=dz) » (7.3)
$11? = 2cosg, cose, - sing, sing, cos(¢1-9,) , (7.4)

where & , ¢ are the polar angles of molecule i.

: C;upling some approximation with the Ornstein-Zernike equation,
Eq. (3.11), gives an approximate integral equation. The simplest is the
mean spherical approximation, where

e(1:2) = - Bu(llz)! (7.5)
outside the hard core, and
h(l,ZJ = =i » (7.6)

inside the hard core. Because of the linear relation between c(1,2) and
u(1,2) in Eq. (7.5) a truncated series for u(l,2) with a limited number
of umnl(r} will produce a similarly truncated series for c(1,2) and
h(1,2)

A nonlinear approximation, such as the hypernetted chain
approximation, would produce an infinite series for h(1,2) and ¢(1,2)
even if the series for u(1,2) contained a small mmber of terms. An
approximation, based upon the hypernetted chain approximation, which does
limit the number of terms in the h(1,2) and c(1,2) expansions is
obtained by truncating the expansion of the logarithm in the hypernetted
chain approximation,

In g(1,2) + gu(1,2) = h(1,2) - <(1,2) , (7.7)
to first order. Thus,

c®®®(r) = h°°(r) - In [1+h°°°(r)] - guooo(r) (7:8)
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cnnl(r) = DT pnd () - gumnlr), (7.9)
1xh i(r)
for m, n, 1 not all equal to zero. Equations (7.8) and (7.9) are called
the linearized hypernetted chain approximation®. Although this is a
linearized version of the hypernetted chain approximation, it is different
from the mean spherical approximation. The linearized hypernetted

approximation reduces to the mean spherical approximation if
il O Y (7.10)

Gaylor et al.(197) have proposed an alternative linearized hypernetted
chain approximation which is an improvement at low densities, at least.
An improved approximation, called the quadratic hypernetted chain
approximation follows if the logarithm in Eq. (7.7) is expanded to second
order, :

Other integral equations can be fornulated. Cummings et al.(lg)
have considered some of these and obtained numerical results for short-
ranged anisotropic potentials. Here we will limit ourselves to the
relative simple dipolar hard-sphere potential,

= i
u(1,2) UHS(T) ) D(1,2), (2.30)

where u is the dipole moment of a molecule and
D(1,2) = ¢ (7.11)

is given by (2.31) or (7.4), and the mean spherical and linearized
hypernetted chain approximations. The dipolar hard-sphere potential is
simple not only because of the limited basis set but also because the

potential core is spherical.

Wertheimtlg) has obtained an analytic solution for the dipolar
hard-sphere potential using the mean spherical approximation. Following

his notation, he finds

h(1,2) = h_(riz) + hy(r;,)D(1,2) + b (r,,)8(1,2), (7.12)



180

where
hs(r) = h?9%T); (7.13)
BB =BT, (7.14)
h,(r) = h*1°(x), (7.15)

D(1,2) is given by Eq. (7.11), and

= 110, (7.16)

We note that
Jpc2anda, = [s1,23d0,00, = o, (7.17)
J132(1,2)d;21c192 -1, (7.18)
Jaﬂ(l.Z)dnldnz =3 - (7.19)

and that D(1,2) and A(1,2) are orthogonal, i.e.,
JD(I,Z)A(I,Z)dQLde 0 (7.20)

Wertheim found that hg(r) is just the Percus-Yevick/mean spherical
approximation result for hard-spheres which can be obtained from Eq. (3.28).
Further, he found that if « is defined by

E ™ iy (7.21)

where n = 12p0®/6 and £ is obtained from

y = dmgutp
=31; [a(28) - q(-€)1, (7.22)

where
q(x) = Arel’ s (7+23])

L1~ xp*



then
(0
hA(r) = d
2¢[h (r,2¢p) - h (1, -kp)]
8 8
and
]
h (1) = < v
- h (r) - -3’—1 h (s)s2ds
D 3 Jg D
where
h (1) = «[2h (r,2¢p) * h (1, -xp)].
D s s

The apparently mysterious equations for « can also be written as

h (r
K=r D() dr.
¥
o

The thermodynamic functions can be calculated from

. (h@
_E- =1 + 4ny [G) - 3. Bpuz N ¢ il d'l\:
pkT s )

KT %‘% =1+ pJ h_(r)dg ,

or

(h (1)

dr .
n

1
B = - 3'NDUZ

1

Equation (7.30) gives by far the most reliable results.
The dielectric constant ¢ is calculated from

!5-1!!29*'1! _ ng ,

9
where
- %1 Bou?
and

gk-1+1_1;pJ'hA(r) ar .

(z< U)!

(E> gl

Lo gl

(r>a),

b
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(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

CZ-32)

(7.33)
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It is interesting to note that Onsager's approximation for ¢ is obtained
from Eq. (7.31) by putting g,=1. In the mean spherical approximation

e={t4°Axg" (7.34)

(L-2ZEY®

The mean spherical approximation pair distribution function for
dipolar hard-spheres is compared with computer simulation results(ZD’ZI)
shown in Fig. 9. The mean spherical approximation gives fairly good results
for h_(r). Furhter we see that the simulation hs(r] for dipolar hard-
spheres is very nearly equal to that for hard spheres but is somewhat
larger. The mean spherical approximation for hD(r) and hA(r] are rather

poor. Interestingly, the approximations

h (1) = g_(Mh**A(r) (7.35)

Hylr) = g, =) (7.36)

are much better.

O
L @ = =
4 — \ - b=
4 n
i 95 (r) i CI)\\ hD (r) i hA (r)
\
[ ) \\
- - \ -
. o\
\ 6%\
L AN %
- \‘ O \\\\ — i c\)\\\
P\\“‘“-~‘__: H c;s\h
0:"’-. .-""'-..__
| | L | i [---_T--‘-QJ"JH'Ea
1.0 1.2 1.0 1.2 1.0 1.2

rfo

Fig. 9. Pair distribution functions for the dipolar hard-sphere fluid at
po? = 0.9.The points given by @ and o give the computer simulation
results for Au?= 0 (hard-spheres) and g_2 = 1, respectively. The
solid and broken curves give the results of the MSA and Egs.
(7.35) and (7.36), respectively, for gp2 = 1.
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arose naturally and simply. The difficulty with perturbation theory is

that it is unclear how to proceed beyond the simple linear approximation
in Eq. (8.96). The Bz approximation is one possibility. Unfortunately,
we do not have a theory analogous to the Gouy-Chapman theory to guide us

as was the case with Eq. (8.86). However, something analogous to Eq.
(8.86) may have some promise.
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