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ABSTRACT

A very simple method to obtain rough analytical upper and lower
bounds to eigenvalues of one-dimensional quantum-mechanical models with
potentials that are bounded from below is presented. The procedure is based
on the properties of the eigenvalues of Hamiltonians with square step
potentials and also provides the correct behaviour of the eigenvalues in
the large quantum number limit.

RESUMEN

Se presenta un método simple para obtener cotas superiores e in
feriores para los autovalores de modelos mecano- -cuinticos unidimensionales cu
yos potenciales estin acotados inferiormente. El procedimiento se basa en
las propiedades de losautovalores de hamiltonianos con potenciales escalo-
nados y proporciona también el comportamiento correcto de los autovalores en
el limite de grandes nimeros culnticos.

* To whom correspondence should be addressed.
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1. INTRODUCTION

Since the Schrddinger equation can be solved only for a few
quantum-mechanical models, the eigenvalues of most problems of real physical
interest are to be obtained through approximation methods. The variational
procedure, which is frequently used in this type of approximate
calculations, yields upper bounds to the eigenvalues when certain conditions
are satisfied.

The accuracy of the computed eigenvalues can be assured only
after obtaining proper upper (UB) and lower bounds (LB) to the exact ones.
For this reason, several expressions that provide analytical UB and LB to
eigenvalues were reported in recent years. In what follows, we discuss
some of them using the k-oscillator model,

H= -d?/dx? + |x|¥, (1)

as an example.
Recently, Crandall and Reno(l) have shown that

EV = {(k/2)sin(n/k)}2K/ (k+2) "
and
Et = sup (zKcot2z)2/(k+2) .
0<z<n/2

are good UB and LB, respectively, to the ground-state eigenvalue of (1)
when k> 2. The first bound is exact in the limits k+ 2" and k » «» . For
k<2, a good UB is provided by the expectation value of the Hamiltonian
(1)(1):

EG = <¥[Hy> = (I (k/(k#2))/T(2/ (k+2)) Hk (ke2)K/22K4112/ (k$2) (g

where

¥ = Nexp (-2} |x|7%2/ 002y} .
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The bound (4) is exact for k=2 and in the limit k+0".
Lower bounds to the ground state of (1) when k< 2 can be obtained
from the Barnsley's method(z):

Ef = inf B . (6)

x>0

On using the wavefunction (S), the LB (6) is found to be(l)
By = (/&) 2+ k/2) . Q)

This bound is exact in both limits k»0" and k+2.

The purpose of this paper is to develop a simple and useful
procedure for obtaining UB and LB to the eivengalues of one-dimensional
quantum-mechanical models. Though our bounds are not asaccurate as those
discussed in Ref. 1 when applied to the k-oscillator model, they exhibit
clear advantages: (i) they can be obtained easily; (ii) they hold for any
state; and (iii) they give us the correct quantum-number dependence of the
eigenvalues in the large quantum-number limit.

The method is presented in Section 2 and the computed UB and LB
to the ground state of (1) are compared with (2), (3), (4) and (7) in
Section 3.

2. THE METHOD
Let us consider the eigenvalues equation

HY =EY s (8a)
n

where

H = -d?¥/dx® + V(x) . (8b)

Our procedure can be applied to any one-dimensional interaction potential
that holds at least one bound state, but in order to simplify the following
discussion we restrict ourselves to consider even potentials only:

V(x) = V(-x) . (8¢c)
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Besides, we suppose that V(x) is a monotonic increasing function of |x|.
The eigenvalues of the Schrédinger equation

HYY = E%Y | HY = -a%/ax? + V) (9a)
n nn
where
W) =v@ if x| sa (9b)
and
VWx) =« if  |x] >a , (9¢)

are UB to E, because Vu(x) >V(x) for all x values. The best UB is obtained
when Eg attains its minimum value. Choosing a= a in order to satisfy
this condition, we have

E) = (n+1)*n?/(4a2) + V(2 )>E (m=0,1,2,...) , (10a)
where
= ()2 (V' ()}, V') = [@V/d)(x) . (10b)

On the other hand, the eigenvalues of

HLWE = Ei?i , HY = -(d%/dx?) + VE(x) , (11a)
where

VE(x) = V(0) if |x| sa (11b)
and

V(x) = V(@) if |x| >a (11c)

are LB to E because VL(x) <V(x) for all x values. Since EL< E for all
a and n values we can choose the a value (a=ap)in order to mallle EL

as large as possible. Due to the simple form of the potential (11 b,c),
the eigenvalues EI'n can be easily conputed(sj:

y tan(y_+p1/2) = @)}, p=(-(-DP)/2 (m=0,1,...), (12a)
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. . 2 & 42l
q? = a¥(a) , ¥ aE . (12b)
When applied to the model (1), Eq. (10) leads to
E;J = {(k+2)/2Hn2(n+1)2/ (2k) 1K/ (k+2) (13)

From previous WKB results(d) we know that E «n?k/ (%+2) \pon 1 s large
enough. Then, we can conclude that our UB gxhibits the proper n dependence
in the large n regime. Furthermore, this dependence is exact for all n
values when k=-1,2 and =. This is a very suggestive fact because these
are just the only problems of the form (1) for which the exact solutions
are known,

Lower bounds to the eigenvalues of Hamiltonian (1) are obtained
easily by replacing V(x) = |)(|k in Eq. (12). A straightforward calculation
yields

EL = y2K/(k+2) |cos(y +pn/2) |4/(k+2) ; (14a)
n n n
a_ = {y /|cos(y_+ pn/2)|}?/(k+2) ; (14b)
n n n

1
Y, = (-p/2)m + tan" ({a/y? - 1)F) . (14c)

In order to be a solution of (l4c), yn has to obey the inequality
mr/2<yn< (m+D)n/2 . (15)
From Eqs. (14a) and (15) it follows immediately that
E > Bg > (nn/2)2K/(k+2) (16)

Eqs. (13) and (16) are analytical UB and LB, respectively, to
the eigenvalues of (1) and clearly show that E, has to grow as nZk/(k+2)
in the large n regime. Besides, our UB and LB give us the exact result
when k + « and k- 0:

lim EU = lim EY = (n+1)2n2/4 aan
T S
lim EY = 1im EL =1 (18)

k+0 k+0
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Then, these bounds will be better for very large and very low k

values.
3. RESULTS AND DISCUSSION

In Table I, our UB and LB are compared with those obtained by
means of Egs. (2), (3), (4) and (7) for the ground state of (1). As
stated before, our results are quite a rough approximation to the exact
eigenvalues but the accuracy is markedly improved when k grows.

Although our bounds are not as accurate as the other ones, our
method exhibits clear advantages for it is easy to apply to more
complicated (bounded from below) one-dimensional potentials. Besides, it
gives us only one analytical expression for all eigenvalues, whereas Egs.
(2), (3), (4) and (7) are bounds to E, only. The procedure can also be
used to obtain UB and LB to the eigenvalues of multidimensional systems,
provided their potentials are bounded from below. For example, it could
be powerful to deal with coupled anharmonic oscillators, these models being
of great importance in the study of the vibrational motions of polyatomic
molecules.

The accuracy of our bounds may be largely improved by increasing
the number of steps in vV and V¥, but in this way the number of variational
parameters as well as the difficulties of the calculation of EY and E*
also grows.

In its present form the method just described is very useful
because it not only yields UB and LB to the magnitudes of all the
eigenvalues of the model under consideration but also gives bounds to the
growing rate of them. By this we mean that

lim E:/En = constant # 0, B=1,U. (19)

n+oe
Finally, we want to stress that our method may also be useful
to calculate the number of bound states of a given potential. This
(5)

knowledge is of great importance in several branches of Physics
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TABLE 1
k EE a EE a E? b LUﬁc E? d EE )
0.05 0.892 1.146 0.906 1.055
0.1 0.826 1.264 0.852 1.078
0.5 0.615 1.976 0.750 1.078
1 0.554 2.554 0.854 1.029
2 0.561 3.142 1 1 1
5 0.732 3.467 0.781 L..:733
10 0.998 3331 1.010 2.065
16 1:227 3.163 1:231 2,206
32 1.577 2.926 1.578 2333
64 1.881 2750 1.881 2.399
128 2.105 2.635 2,105 2.433
256 2.253 2.2564 2.253 2.450
1024 2.399 2.491 2,399 2.463
A present calculation
® Ea. (3)
“ Eq. (2)
‘K. ()
€ Eq. (4)

Table I. Upper and lower bounds to the eigenvalues of the k-oscillator
model (1).

REFERENCES

R.E. Crandall and M.H. Reno, J. Math. Phys. 23 (1982) 64.

M.F. Barnsley, J. Phys. A 11 (1978) 55.

E. Merzbacher, Quantum Mechanics, Second Edition, John Wiley & Sons,

New York, (1970), Chapter 6.

4, E.C. Titchmarsh, Eigenfunctions expansions associated with second-order
differential equations, Cxford, University Press, (1946).

5. H.S. Benett, J. Res. Natl. Bur. Std. 86 (1981) 503.

w N =
« o






