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ABSTRACf

A very simple method to obtain rough analytical upper and lower
bounds to eigenvalues of one-dimensional quantum-mechanical models with
potentials that are bounded froro below is presented. The procedure is basad
on the properties of the eigenvalues of Hamiltonians with square step
potentials and also provides the correct behaviour of the eigenvalues in
the large quantum number limito

Se presenta un método simple para obtener cotas superiores e in
feriores para los autovalores de modelos mecano-cuánticos unidimensionalescu
yos potenciales están acotados inferiormente. El procedimiento se basa en -
las propiedades de los autovalores de hamiltonianos con potenciales escalo-
nados y proporciona también el comportamiento correcto de los autovalores en
el límite de grandes números cuánticos.
* 70 whom correspondence should be addressed.
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1. 1NTRODUCfWN

Since the SChrBdinger equation can be solved only for a íew.
quantum-mechanical models. the eigenvalues of mest problems oí real physical
intcrest are to be obtained through approximation methods. The variational
procedure, which is frequently used in this t>~c of approximate
calculations, yields upper bounds to the eigcnvalucs when certain conditions
are satisfied.

The accuracy of the computed eigenvalues can be assurcd only
after obtaining proper upper (UB) and lowcr bounds (LB) to the cxact ones.
For this reason, several cxpressions that provide analytical UB and LB to
eigenvalues ~ere reported in recent ycars. In ~hat follows, we discuss
sorne oí them using the k-oscillator roodel,

H = -d'/dx' + Ixlk •

as an example.
Recently, Crandall and Rcno(l) have shown that

E~ {(k/Z)sin(n/k)}2k/lk+21

and

(1)

(Z)

sup
O<Z<71/2

(3)

are good UB and LB, respectively, to the ground-state cigcnvalue of (1)
when k> 2. The first bound is exact in the limits k ..•.2-+ and k ..•<:o. For
k < 2, a good UB is provided by the expectation value oí thc Barniltonian
(1)(1):

E~=<flH'f> = {r(k/(k+Z))/r(Z/(k+Z)j}(k(k+Z)k/Z2k+l¡2/Ik+2). (4)

where
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The bound (4) is exact for k= 2 and in the 1imit k. 0+.

Lo"er bounds to the ground state of (1) .nen k < 2 can be obtained
from the Barns1ey's method(2):

E'ó'= inf 7 (6)
x>o

On using the wavefunction (S), the LB (6) is found to be(l)

E'ó'= (k/B)k/(k+2) (1 + k/2) (7)

This bound is exact in both limits k-+ 0+ and k.• 2-.
The pUIPose oí this paper is to develop a simple and useful

procedure for obtaining UBand LBto the eivengalues oí one-dimensional
quantum-mechanical models. Though OUT bounds are no! asaccurate as those
discussed in Reí. 1 when applied to the k-oscil1ator model, they exhibit
clear advantages: (i) they can be obtained easi1y; (ii) they ho1d for any
state; and (iii) they give liS the correet quantum-ntDT1ber dependence oí the
eigenvalues in the large quantum.number limito

The method is presented in Section 2 and the computed UBand LB
to the ground state of (1) are comparedwith (2), (3), (4) and (7) in

Section 3.

2. 1HEMEIHJD

Let liS consider the eigenvalues equation

whcrc

Hi' E~n n n

H = -d'/dx' + V(x) .

(Ba)

(Bb)

OuTprocedure can be applied to any onc.dimensional interaction potential
tha! holds at leas! one boundstate, but in arder to simplify the following
discussion we rcstrict ourselves to consider even potentials only:

V(x) = V(-x) (Be)
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Besides, we suppose that V(x) is a IOOnotonic increasing ftmction oí Ix l.
The eigenvalues oí the SChrBdingerequat ion

",'he re

(9a)

and

VU(x) • Vea) if

if

Ixl S a

Ixl > a

(9b)

(ge)

are UB to En because VU(x)> V(x) far all X values. The best UB is obtained
when EU attains its miniJruJJl value. O1oosing a'" a in arder to satisfy

n nthis condition, we have

where

EU, (n+l)'.'/(4a') + Vea ) > E
n n n n

(n=0.1.2 •.•• ) (lOa)

a' = (n+l)'.'/{2V'(a )}
n n

V'(x) • (dV/dx) (x) (lOb)

On the other hand, the eigenvalucs oí

",'here

and

yL(x) • VeO) if Ixl S a

{Ua)

(Ub)

yL(x) • Vea) if Ixl > a (Ue)

are LB to E beeause yL(x) < V(x) for aU x values. Sinee EL< E for aU
n n n

a and n values, we can choose the a valuc (a = an)in arder to makeEL
nas large as possible. Due to the simple form oí the potential (11 b,c),

the eigenvalues EL can be easily computed(3);
n

ytan(y+¡m/2):(q'-y')! • p'{l-(-1)n}/2 (n.O.l •.•. ). (12a)
n n n



q' = a'V(a)
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(l2b)

.hen applied to the model (1), Eq. (10) leads to

EU = {(k+2)/2){n'(n+I)'/(2k)}k/(k+2)
n (13)

From previous WKBresults(4) we know that E o:n2k/(k+2) whcn n is large
nenough. Then, we can concludc that OUT UB exhibits thc proper n dependence

in the large n regime. Furthennore, this dependcnce is cxact for a11 n
values \<o'henk= -1,2 and "". This is a vcry suggestive faet bccause these

are just the only problcms oí thc fonm (1) for which the cxact solutions
are knm.n.

Lowerbotmds to the eigenvalues oí Hamiltonian (1) are obtained
easily by replacing V(x) = Ixlk in Eq. (12). A strmghtforw:nU calculation
yields

EL = y2k/(k+2) Icos(y +pn/2.) 14/(k+2)n n n
a • (y /Icos(y + pn/2)1}2/(k+2)n n n
y = (n-p/2)n + tan-1({q'/y' - I)! )
n n

In arder to be a solution oí (14c), y has to obey the inequality
n

M/2 < y < (n+l)n/2
n

Froo Eqs. (14a) and (15) it follows icrnediately that

E > ~ > (nn/2)2k/ (k+2)
n n

(14a)

(14b)

(14c)

(15)

(16)

Eqs. (13) and (16) are analytical UB and LB, respectively, to
the eigenvalues of (1) and clearly show that En has to grow as n2k/(k+2)
in the large n regime. Besides, OUT UB and LB give us thc cxact result
when k -+ 00 and k ..•..O:

lim EU • lim EL • (n+I)'n'/4 (17)n k- nk-
lim EU • lim EL • I (lB)o ok--<l k--<l
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Then. these bounds will be better for vcry large and very l~. k
values.

3. RESULTS A,\TI DISQJSSIO~

In Table 1, our UB and LB are compared wi th those obtained by
means o[ Eqs. (2), (3), (4) and (7) for the ground state of (1). As
stated before, our rcsults are quite a rough approximation to the exact
cigcnvalucs but thc accuracy is markedly improved when k grows.

Although our bounds are not as accurate as the other ones, our
method cxhibits clcar advantages [or it is easy to apply to more
complicatcd (bounded from below) one-dimensional potentials. Resides, it
givcs us only one analytical exprcssion for all eigenvalues, whereas Eqs.
(2), (3), (4) and (7) are bounds to E, only. The procedure can also be
used to obtain UB and LB to the cigenvalues oí multidimensional systems,
providcd their potcntials are bounded from below. For example, it could
be powcrful to dcal with coupled anharmonic oscillators, these models being
of grcat ilTIportancc in the study of the vibrational motions oí polyatomic
molecules.

The accuracy of our bounds may be largcly improved by increasing
thc number oí stcps in VU and vL, but in this way the number oí variational
pararneters as wcll as the difficulties oí the calculation of EU and EL
also grows.

In its present form the method ju~t described is very use fuI
because it not only yields UB and LB to the magnitudes of a11 the
eigenvalues of the model under consideration but also givcs bounds to the
growing rate of thcm. By this we mean that

11m E"/E constant f O,
n nn~

B = L, U • (19)

Fina11y, we want to stress that our method may a150 be useful
to calculate the numbcr of bound states oí a givcn potential. This
knowledge is oí great importance in several branches oí Physics(S).
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TABLE 1

k EL a EU a
,'" b FU e ¡eL d EU e, , " . , " "

---------0.05 0.892 1.146 0.906 1.055
0.1 0.826 1.264 0.852 1.078
0.5 0.615 1.976 0.750 1.078
1 0.554 2.554 0.854 1.029
2 0.561 3.142 1 1 1
5 0.732 3.467 0.781 1.733

10 0.998 3.331 1.010 2.065
16 1.227 3.163 1.231 2.206
32 1.577 2.926 1.578 2.333
64 1.881 2.750 1.881 2.399

128 2.105 2.635 2.105 2.433
256 2.253 2.2564 2.253 2.450

1024 2.399 2.491 2.399 2.463
a present calculation
b Eq. (3)

e Eq. (2)
d Eq. (7)

e Eq. (4)

Table r. Upper and lower bounds to the eiqenvalues ai the k-oscillator
model (l).
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