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ABSTRACT

Perturbation theory is used to solve the problem of the preces
sion of Mercury's perihelion, this phenomenon being a relativistic ef-
fect. The expansion parameter appears naturally when the orbit equation
is written in an appropriate form and it completely justifies the use of
the first order approximation.

RESUMEN

Se aplica la teoria de perturbaciones al problema de la prece-
sion de origen relativista del perihelio de mercurio. EI1 parametro del
desarrollo aparece naturalmente al reescribir la ecuacidn de la orbita y
justifica completamente la aproximacidén a primer orden.

* Also at Universidad Autdnoma Metropolitana (Iztapalapa).
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It is well known“’2J that, in order to describe the preces-
sion of the bounded noncircular orbit of a given planet, the best exam-
ple being Mercury, it is first necessary to take into account the influ-
ence of the rest of the planets besides the interaction between the sun
and Mercury. Secondly, it is also necessary to treat sun-Mercury inter-
action beyond Newton's gravitational theory and use the linear approxima
tion of the General Theory of Relativity, i.e., weak fields and small ve
locities, since in Newtonian theory only closed orbits are allowed. The
first correction predicts for Mercury a precession of 531 seconds of arc
per century, therefore existing a difference of about 43 seconds of arc
between the theoretical and observed values.

The second correction accounts for such a difference and the
perihelion shift is calculated through the solution of the corrected dif
ferential equation for the orbit(zj:

d?u/de? + u = Gm2M/J? + (3@M/c2)u? @)

where m and J are the mass and the angular momentum of the planet, M is
the mass of the sun, G the gravitational constant, ¢ the speed of light,
u is the reciprocal of the distance between the planet and the sun and
the last temm is the general relativistic correction.

Eq. (1) is obviously nonlinear and its approximate solution,

(2)

as found in standard text books'”’, corresponds to a method of succesive
approximations.

On the other hand, straightforward application of Perturbation
theory(s) produces both the correct value for the advance of the perihe-
lion and the equation for the precessing orbit, thus providing a natural
and systematic way to obtain approximate solutions of Eq. (1).

In order for Perturbation theory to be useful, it has te be
shown that the contribution from the nonlinear term in Eq. (1) is

small(s'4J and this can be achieved by defining the lengths

2, = J/Gn M

o
n

4 3GM/c?
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Here 2%, corresponds to the "Latus rectum'" of the orbit and 2, is rela-
ted to the "gravitational radius' of the sun. We also set

E = Byl W
and write Eq. (1) in the form
n"+n o= 1+ €n2 . {2)

where n=2,u is a dimensionless variable. Eq. (2) shows that the nonli-
near, or perturbative, term is indeed small.

If € in Eq. (2) is made to vanish, the motion described by the
resulting equation corresponds to a closed orbit of period 27m but, since

€ # 0, the period must change(a}

and the new period can be written as
P(e) = 2m+a(e) (3

where A(e) is a function assumed to be analytic, such that A(0) =0, hence
for € small

P(e) = 2n(1 + aje + ae? + ...) ,

the a's being so far undetermined constants related to the derivatives
of A(e). In order to find their values we introduce the new variable ¥
through the expression

»

6 = ¥(1 + a)e + azEz ! raad)

and realize that, after a complete revolution of the planet, © goes from
0 to P, while ¥ increases from 0 to 2m. Hence as a function of ¥, n has
a period of 2m.

Since e is small, the equation for n(¥) up to first order in e,

N+ (1+ 2a;e) = (1 + 2a;e) (1 +en?) |, (5)

is a good approximation and, to solve this equation, we assume n to be
of the form

n(¥) = ny(¥) +en(¥) . (6)
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After substituting this into Eq. (5) and equating the coefficients of
the same powers of e in both sides, we obtain two linear differential
equations:

g *+n, = 13 n(0) = 1+e; n,(0) = 0

and
nytmp=-2amg +2ap +nf 5 m(0) =0;  nl(0) =0 (7

where e stands for the eccentricity of the orbit and the initial condi-
tions have been chosen as to start from the position of the planet at
the perihelion of the orbit.

The first of Eqs. (7) is immediately solved to yield the zero-
order solution,

ng = 1+ecos¥ , (8)

which is now introduced into the right hand side of the second equation
to give

ny + np = (-2a; + 2)e cos ¥+ (e2/2) (1+ cos2¥) # 1 (9)

and the necessary and sufficient condition for periodic solutions to
exist is the elimination of the secular term, it implies that the coef-
ficient of cosY must vanish, or a; = 1.

The above result is better understood if we think of Eq. (9)
as representing an harmonic motion of unit frequency acted on by period-
ic forces of frequencies 1 and 2. If the force of unit frequency does
not vanish, the oscillations amplitude would increase indefinitely as a
result of the resonance. Such a case is not allowed in our problem and,
therefore, the term containing cos¥ must vanish.

From the value of a, and Eqs. (3) and (4), we have that the
period shift introduced by the perturbation is

A(e) = 2me 5

and the solution to Eq. (9) satisfying the initial conditions given in
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Eqs. (7) is given by

n(¥Y) =1+ e2/2 - (e2/6)cos 2¥ - (1 + e2/3)cos¥ (10)

so that the complete solution to Eq. (2) is then obtained from (6), (8)
and (10), and it is written as

e? 20 e?

5 :
u(@)=r]]— {ecos—f%-a—+1+s[1+%—-Tcosm+(‘l-3—]cos%] J>,

where it is clear that the period of the motion is now 2m(1+¢€) in such
a way that the perihelion, defined by the equation

G/ o= Lu(@=0) = l1+e

advances an amount
A = 2me = 2mRy/L, = Omn(6mM/J)?2

after a complete revolution of the planet. In terms of the geometrical
parameters of the orbit this shift is

A = 6m@M/ac? (1 -e2) , (n

where a is the semimajor axis of the orbit.

Eq. (11) is the standard expression for the perihelion shift
and, when appropriate numerical data are used to compute Mercury's pre-
cession, it yields the value of 43.03 sec. of arc per century, while the
observed value has been reported(s) to be 41.4 + 0.9 sec. of arc per cen
tury, in reasonable agreement with the theory.
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