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ABSTRACT

Classical finite-energy exact solutions of a "spin" 0-1/2 two
dimensional supersymmetric rnodel are investigated. The sta tic case can be
completely integrated in terms of any solution of the purely besonie sector,
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for ao arbitrary potential. The localized fermionic part oE the solution
can always be rotated to zero by a supersymmetry transformation. This i$
not the case for the Grassmannian part oE the sea lar field which can be
localized also. Stationary solutions for the fermionic field with
potentials corresponding to the ~~ and sine-Gordon theories, for specific
choiees oE the purely besanie sector, are a150 considered. In the former
case we find a single localized fermionic solution which can not be
rotateQ to zero by a supersyrrmetry transformation. In the latter case no
such solution exists.

RESll-1EN

Se investigan soluciones exactas clásicas de energ!a finita de un
modelo supersimétrico en dos dimensiones de espín 0-1/2. El caso estático
se puede integrar completamente en términos de cualquier solución del sec-
tor puramente bosónico, para un potencial arbitrario. La parte fermiónica
localizada de la solución siempre puede ser rotada a cero por medio de una
transformación de supersimetría. Este no es el caso de la parte Grassma-
nniana del campo escalar que también puede ser localizada. También se co~
sideran soluciones estacionarias para el campo fermiónico con potenciales
que corresponden a las teorías ~4 y sine-Gordon, para selecciones espec!fl
cas del sector puramente bosónico. En el primer caso encontramos una sol~
ción fermiónica localizada que no puede ser rotada a cero por una transfo£
mación de supersimetrfa. En el segundo caso no existe tal solución.

1. 1NTRODUCTlON

Even at thc level of non-operator fields, supcrsymmetric thcories
require an cxtcnsion of the usual cornrnutingnumber concept to inelude
antiearnmuting objcets (Grassmann numbers) which are relatcd to the ficlds
that describe fcrmions and to the paramctcrs of the supcrsymnctry transfor-
~~tions. These Crassmann numbers seem to be neccssary in arder to ffilVC a
Lagrangian with a finite mnilberof tenns, invaríant tmder transfonnations
th..'1tmix fcnnionic and bosonic ficlds. \\'ewill l'eferto this non-opcl'atol'
fonmulation of thc thcory as to its classieal version, even though we are
not dealing with commuting n~bers only.

In onlel' fol'this classical theory to be superS}111Tletricit is
nccessary to takc seriously into account the Grassmannian charactcl' oE the
fe~onic fields involved. The equations oí motion fol'the ficlds will
thus contain both kind of numbers and it will be interesting to look for
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exact solutions to them. In analogy \iith what is done in purcly bosonic
systems, these solutions couId lead to useful insights with rcspect to the
corresponding supersymmctric quantum ficId thcory.

One possíble .ay of dealíng .íth such a system of coupled
equations, suggcsted in Reís. 1 and 2, consists in introducing a basis far
the Grassmann algebra and expanding every ficId oí the system as an even
(conmutíng) or odd (antícommutíng) elernent of the algebra. Once these
expansions are substituted in the equations of motian, thesc can be further
split becausc nowwe have to se! cqual each coefficient oí the linearly
independent elcments oí the hasis. Usually such a decoupled system is more
tractable than the original ane and provides a natural algorithrn to salve
far the lmkn~n commuting components oí the fieIds. It is then possiblc
to obtain a solution to the original system in tenms oí such components and
the independent elernents of the basís for the algebra.

Now comes the problem oí interpreting such solutions because all
physical quantities calculated from them will, in general, carry over sorne
dependence in the GrasSmanTI algebra basis, whose elemcnts are not directly
interpretable in physical tenms. The ultimate resolution to this problem
míght be that .hat really makes sense ís the full quantum theory where .11
physical quantitics are non-Grassmann cornmuting numbers arising from matrix
elements of the relevant operators. Ncvertheless, it is very difficult
to obtain such a theory, especially in a non-perturbative way and when non-
lincarities are presento Because of this, one might expect that the route
suggested in Ref. 3, .auld lead to useful ínsights reg.rdíng the quantum
theory, as it is in the case of purely bosonic systems. This approach
consists of performing a q\uU1tization around interesting non-perturbative
classical solutions which are required to have finite classical encrgy and
be classically stablc as a minimal condition. Such an approximation can
be carricd out in the path integral formulation for the gencrating func-
tional oí the thcory. Esscntially, it amounts to an cxpansion oí the ac-
tion around a relevant set of cIassical solutions followed by a gaussian
functional integration over the remaining fieId variables. As suggested
in Reí. 4, one couId try to apply similar techniques for systems involving
fennions.

TIlis is esscntially our main motivation for studying exact
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classical solutions of supersymmetric theories, which will be the subject
of the present work. Recently there has been sorne interest in looking fay

exact classical solutions to supergravity(2,S) but we feel that in arder
to test these ideas it is convenient to start from a simpler system. To
this end we consider the following globally supersymmetric system in two
dimcnsions given by the Lagrangian(6)

(1)

Here t is a real sca1ar fie1d, Y'(t) = ~ Y(~); W is an anticornmuting
~mjorana spinor (~= W+yo= wC); the metric is g~V = diag (1,-1); and the
Y-matrices are givcn by

[
O -i]yO =
i O

(2)

TIICchargc conjugation matr i.x e, which is defined by e y c- J. = -y can be~ ~taken as e = yO in this representatian, and then the ~illjoranacondition
simply says that the spinar W is real. As it is wcll known, tlle action
far such a system is invariant under the following supersymmetry
transfoTITh~tions:

(3)

ow -[ii~ + Y(t)]£

where thc pararneter £: is a constant anticomnw.ting Majorana spinor.
The equations of motion arising from the Lagrangian (1) are

D~ + Y(~) Y' (~) + i iPw V" (t) = O

[i¡i - Y'(t)]W = O

(4a)

(4b)

EquatioTIs (4) can be considered as the supers}~etric generalization of
thosc purc1y bosonic systems described by a potentia1 i y2(~) which inc1ude
such interesting cases as the ~4 and sine-Gordon theories. In fact,
setting W = O we recover the purcly bosonic sector for which there are well
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knOwTI finite-energy classically-stable solutions.
C1assica1 s01utions to the coupled system (4) were found in Ref.

7, by using the invariance of the system lUlder f ini te supers)'ITlJiEtry

transfonnations. In fae!, as suggested in Ref. 8, it is always possible
to construct a s01ution to (4) by applying a supersymmetry transformation
to a solution corresponding to the purely bosonic sector ~o I 0, $ = 0,
which is already known for sorneclass of potentials. The quantum theory
around such supertranslated solutions was constructed in Reí. 7 by using
Dirac's method for constrained systems and was later generalized to
arbitrary (non-supersyrnmetric) systcms with classical solutions parametri
zed by anticornmuting numbers in Ref. 9.

The problem was considered again in Reí. 1 paying attention,
among other things, to the question whether or not al! s01utions to the
system (4) are supertranslations frem the purely bosonic sector. 1t was
found there that this is not always the case and that the bosonic part of
the solution which does not come froro a supertranslation is non-localized.
The semiclassical quantization oí the theory around such c1assica1
solutions ""as a1so brief1y considered in Ref. 1 and it ",'asargued that a
naive application oí the methods of Reí. 3 1cads to inconsistences.

In this work we study on1y the classical aspect of the problem
and reexamine the coup1ed system (4). 5ection 2 contains a brief discus-
sion of the fie1d equations (4) along the same lines of Ref. 1, where an
expansion of all the fields in terws of the simplest non-trivial basis oí
the Grassmann a1gebra is made. We a1so write there the most general
supertrans1ated s01ution obtained from the purely bosonic sector(7) and
the expression for the energy associated ~ith any solution of thc field
equations. In Section 3 we show that for the static case and a general
potentia1 V(~) the system can be explicitly integrated in terms of a solu-
tion oí the purely bosonic sector. We prove then that the fcnnionic part
oí the solution can a1~ays be rotated to zero by a supersymnetry transfor-
mation. The rotated bosonic part contains an extra piece of the type
suggested in Reí. 1, which cannot be made zero by the supertranslation.
In Section 4 ~e consider static solutions for the bosonic field but
stationary solutions for the fennionic fieId. "'e examine the cases
corresponding to the sine-Gordon and ~4 potentials, for a specific choice
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of the purely bosonic sectoT. In the former situatían we find that it is
no! possiblc to have a localized fennionic solution, while in the latter
case there is a single frequency such tha! a well behaved solution exists.
This solution has firrite energy, which nevertheless is an even number in
the Grassmann algebra, and cannot be rotated to zera by a supersymmetry
transformatían •. Finally, Scction S contains a surnmary oí the results
obtained in this work.

2. EQUATIONSOF ~IOTION

Following Ref. 1, we re""ite the system (4) introducing a
Grassmann algebra spanned by biO real constan! anticornmuting mnnhers, Al,

A2 (\1A2 = -A2A¡), in such a way that a basis for OUT space is prov]ded by

the four real quantities 1, Al' A2 and 1A1A2 (recall that (ab)* = b*a* for
Grassmann numbers).

The t-\,;,o component fermionic fjcld 1JJ = [~~Jis a real (Majorana)
odd elerent of the algebra and can be expandeu as

(5)

where A = [~~) and X is a 2x2 matrix whose elements X~J (i, j = 1,2) are
four rAal non-Grassmann comnuting functions of the space-tlilc variables.
Because reality is the only condition imposed by the l-bjorana condition on
~, we disagree with the general parametrization

x = i'iA + B (6)

proposcd in Ref. 1, in tenns of only two real functions A and B. In partl:.
cular, F4. (6) would imply the relation X12 = -X21 which does not need
to hold in general, as we wiII see in sorne examples considcrcd latero
Nevertheless it is still conceivable to perform a supersymmetry transform~
tion on the fields (X-+X' in particular) in order to require XI2 = -X~l •

Having in mind that we are dealing with global supers)'TIU!letry,which mean:,>
that the arbitrary paramcters of the transformation are constants (instead
of spacc-time dependent) Majorana spinors we can see that it is impossible
thc fullfill such requircment in general just by changing the gaugc.
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111e bosonic ficId is an even cIernent oí the algebruJ and
consequently can be expanded as

(7)

where ~o, ~2 are non-Grassmann rcal cornmuting functions.
Substituting Eqs. (6) and (7) in the system (4) and eomparing

the coefficients oí the elements oí the basis oí the Grassmann algebra we
recover Eqs. (8) oí Ref. 1 which, in OUT notation, are

(ij!- V¡Jx = O

(0+ V¡' + VoV'ó)~, = (det. x)V'ó

(8a)

(8b)

(8e)

where Vo = V(~o) and V¡ = V' (~)I~= ~o In the following we will Iook for
solutions to Eqs. (8).which are generated by localized solutions oí the
non-linear cquation (8a).

"TIlepurcly bosonic sector corresponding to system (8) is
defined by taking ~o as any soIution of Eq. (8a) together with
W =~2 = O. From this sector wc can obtain a full se! oí solutions to
Eqs. (8) (with ~ f O, ~, f O) just by making a supersymmetry
transfonnation on <Po , 1JJ = 4>2 = 0, with pararneters £. K, .A.,

1. 1.) J
i,j = 1,2, CE= KA), ""here K, . are arbitrary real constant cOTImuting
numbers(7). The resulting s~iution has the forrogiven in (S) and (7) and
is detennined by

XS -(ij!~o+ Vo)K (9a)

~~ = (det. K)Vo (9b)

whcre the superscript s is to remind us that this solution is obtaincd
by supcrtranslating the bosonic sector. We remark is passing that for
this case we have

S
X12 (10)
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(10)

which does no! satísfy, in general, the constraint Xf2 = -Xrl ~sed by

the parametrization (6). The subscripts x and t denote the derivatives of
the ftmction with respect to the corresponding variables.

The.Lagrangian (1) does not depend explieitly on time so that the
energy oí the system is conserved. The expression far the energy associa-
ted with a general solution ~o, x, ~2 oí the fieId equations is given by

X12X21 ) - (det. X) V;
x

which in general is an even number of the Grassmann algebra.

3. SfATlC SOLlITIONS

In thi5 section we consider the case where a11 fields are time
independent. Weshow that tmder this circumstance it is possible to fully
integrate Eqs. (8b) and (8e) in terros of a solution ~o(X) of Eq. (8a). In
faet, thi5 last equatían can be integrated once to give thc relatían

Vo = • /~; -a (12)
x

where a is an integratían constant. Fromhere we can write

~o d
V' =:t--~ =:t-ln
o /,¡' -a dx'x

(13)

which allows us to directly integrate the fermionic equation,

iy' ~ = V~ X (14)
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result can be cast

X separately becausc yl
')in the fonn

is a diagonal rr~trix.
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TIle

-ti '~. + V.)Cx
(15)

which is valid for both signs of Eq. (12), and where C = [C ..l is a real
')

2 x 2 matru arising írem the corresponding integratían constants. 1ñat X
in (15) is a solution of Eq. (14) can be verified by direct substitution
using the properties (iY')' = 1, V.V: =~. (obtained frcm the first

xxequality in F4. (13))and V. = V;~.. TIle fact that we have four real
x xindependent constants of integratían, C"J assures liS that X is indeed the

1)
mest general solution to Eq. (14).

Now we consider Eq. (Sc) for the bosonic component ~" which can
be written as

where "" have used Eq. (12) in the calcl1lation of det. X. TIle relation

V" + V V" - d (V V') - 1 ~ (17)... -~ .. -r.
o o xxxx

allows us to rewrite Eq. (16) in the fonn

which can be completely integrated to produce

~, = (det. C)V. + ~. [8 f#- + y]
x 4lox

(19)

which is the general solution of Eq. (16). In fact, the first tenn on the
right hand side of Eq. (19) corresponds to a particular solution oí Eq.
(16) while the other two terros are the general solution (two integratían
constants) of the homogeneous equation associated with it.

TIle express ion (15) together with (19) constitute the general
static solution for thc system (8), ~Titten in terros oí a given solution
~o oí the non-linear equation (8a). Now we proceed to compare this
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solution with the one obtaincd by sl~ertranslating the purely bosonic
sector epo' 1.1-' = .•\ = O. Taking tlle matrLx K in Eq. (9a) C1ua1 tOr e i:i1 Eq.
(15) •....e see that it is pt"lssiblc to outain X and f;2 - lt0x y + 8 J ~ )
fTom thc purely bosonic sector via a supertr~ls1ation. In other w~rds,
the only piece oE thc general solution in thc static case "..hich cannot be
generateJ by a supcrsymmetry transfonnation from the purely bosonic sector
is the contribution to ~2 arising íTem the homogcncous equaticn related to
Eq. (16). This ""ayof gcncrating solutions to the system (8), h'hich are
no! supcrtranslations of thc Uosonic sector, \'o'as alrcady suggested in ReL
1, and here \.:ehave 5ho••.•71 that it is the only possibility for the static
s itu..1.tion.

lhe cncrgy corresponding to t}le solut ion given by Eqs. (12), OS)
and (19) is

E (20)

providcJ that Vo.~O as X ...•.i oo. Under this circtUTIstance the contribution
to E cOilll1ingfrom the fennlonil: part X together rdth the one cornming from
the non-hcmagcr.cous part af !Jl2 vanish iJentically. 1'hc SaIne happcns Hith
the contribution from de y-depenJent pan of 4>2' \':c then see fram Eq.
(20) that in arder to have finitc energy it is cnough to require that
el = O. 111enE in (20) has enl}' a nC'n-Grassmarmcomponent even though the
associated solution is not a rotatian from the purely basonic sector
(6 I O, Y I O). This rcsult is consistent h'ith the corresponding statement
f!'••.'lde in ReL 1 for the case X = O = :h bccause the energy is invariant

lD1der supers}'lT1ITICtrytransformatiens.
Xo\-.. he discuss tlle asymptotic tchavior of the solutions X and 92

for th(' case a = O. Whcnthis happens \-,e havc that t!.Q '\, \~ in such a \~-a)'
x

that X -~ O as x ...•.:!: a> according to Eq. (lS). loe Eq. (16) for 4>2 reduces
to the corresponJing homogencousand this 5hO\..'5 up in the explicit solution
(19) in tht' f~ct that no,,",thc ter.n proportional to Jet. e is oí the sarnc

typc as thc one proportional to Y. In faet "e have

~, = V, [y' + 6' J~J (21 )
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The asymptotic ber~vior oí ~2 is related to the asymtotic cquation

(22)

whcre we havc considered potentials such that V~ =u (u = constant) when
X-+!a> v..lüch is the case of the sine-Gordoo and 4>4 thcories. FremEg.
(22) we have two possibilities for the asyrnptotic behavior of ~2:(i) ei-
ther <P2-+ e!:ux which blows up at :!:: 00 (this tenn MUS! arisc frcm thc Si part

in Eq. (21)); (ii) or h+ O and ~2 + O separately when X+' 00 which is
xx

the case of the y' term in Eq. (21). Thus, contrary to what is statcd in
ReL 1, not all solutions of the homogeneous equation related to (l6) are
non-localized (scattcring stntes) as sho"n by setting 6' = 0, y' f O in
Eq. (21).

4. STATIONARYSOLUTIONS

In thi:; section we still require the bosonic field ¡Po to be tune
independet but n~' we look far fcrmionic solutions of the type

x(x,t) = eiwt Il(x) • (23)

with ~eal frequcncy w r O. Bccause Eq. (8b) is linear and wc restríet
aursclvcs to real spinors it wiU be neceSS3l)' to consider cnly the real
part of X at the cnd of thc calculation.

The fermionic F~. (8b) reduces to

[ik + v} i w t.
2ko lk

(k = 1,2)

[ik - )

V~J t.2k
i w ti (24 )lk

after thc sl~titution (23) is made. This is a simple system oC couplcd
linear cquations ~hich can be dissentangled in the usual way yiclding t~o

Schrodinger cquations

O
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where a = 1,2 is no! SUT.ITlccl. The corresponding potentials are

dV'
Yl = -ax' y' ,, (26a)

(26a)

We will be interested in solutions to Eqs. (25) which give finite contribu
tions to the classical energy (11). This can be guaranteed by requiring
the solutions to go to zera fast enough whenx .• .:!:: (lO and we will take this
behavior as our boundary conditions for Eqs. (25).

Contrary to the situation in the static case, wc can no longer
study the problem in general terms and we are foreed to specialize to sorne
specific potentials in arder to find explicit solutions. We are going to
consider the following two examples whose bosonic sector is well understood

y = 2 sin ~12 (27a)

y '" 1 x" = - tgh -
/1 12"

(27b)

which are thc ane soliton solution to the sine-Gordon potential and the
kink solution to the 4l~ theory respcctively. The ftmctions Iflo chosen in
(27) obviously satisfy Eq. (8a) and we want to look for the localized
supersymmetric extension oí such bosonic solutions. Besides, both functions
correspond to the choice a = O in Eq. (12).

In both cases (27a) and (27b) the potentials associated with the
fermionic SChr5dinger equations (25) can be written in the form

y p +" scc rt (vx)
a a a

whcre

P, p, -1

u, O u, = 2

V =

(28)

(29)
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in the sine-Gordon theory, while

PI P2 = -2

~l 3,

v = 1-rz

~, 1 (30)

in the ~4 case. That is to say, we have to lcok far solutions, with
appropriate boundary conditions, oí the generic equation

(31)

paying attclltion to the faet that we mus! find eigenfunctions ~ with the
same frequency w for the different va1ues of ~ in each case. Eg. (31) is
sol ved in Reí. 10 and we aJapt those results to OUT particular situation.

Let liS begin with the sine-Gordon case. FroID the faet that
V, = -1 (~l = O) we see that Eq. (31) reduces to the Schr~inger equation
far a free partiele. Thus we conclude in this case that there are no
solutions of the type (23) (w 'f O), which satisfy the chosen boundary
conditions, far the particular election oí the function $0 made in Eq.
(27a). Oí COUTse we can always 20 back to the static case w = O, wherc
equation (31) dces not appear and where we can certainly find adequate
solutions.

Now we turn to the ~4 theory with ~D given by Eg. (27b). The
spectra far solutions of Eq. (31) which go to zero as x ..•.:!. 00 is

(w' 2), -2, -1
(32)

(w' - 2), = -1

wherc the subscripts 1 and 2 refer to
Iy. We have then fotu1d a COITUllonreal
ing eigenfunctions are givcn by(lO)

6 - A sinhx/12"
lk - -1<cosh' x/II

the potentials Vi and V2, respectiv~
frequency w2 = 3/2 whose correspond-

(33a)
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, - B 1
°2k k eos h x/12

(33b)

\':hich beh.'1vclike eix12 as x.+-! 00 , thus describing a highly localizcu
fc~ionic configuration. lhc complcx integration constants ~ and Bk
are relatcd through i\ = il3 Bk, \\'lüch is a cons(:'(¡ucnceof the first
arder equations (23). Thc final <illswer fol' the components Xik is

x = -/3 b sin(wt +,n)lk k ~
sinhx/IZ
eosh' x/II

(34a)

1X2k = b
k

cos(wt + 1\) ----
eos h x/12

(34b)

whieh is obtained by taking the real part of Eq. (23) and where
Bk = ~eiPk, w' = 3/2.

In arder to complete the solution of system (8) for this partic~
lar case of the ~~ thcory we need to find ~2 from Eq. (8e), which can be
WTitten as

[d' xl<IX' - 2+3 seeh' ¡¿ <1>, = l6A b,b,sin(~, - ~,) sin h x//Z
eos h' x//Z

,(35)

under the assumption that <1>,is time indepcndent. Eq. (35) can be fully
intcgrated in tenms of a particular solution plus thc general solution of
the corrcsponding homogencous equation ",.:hichwas wri ttcn in tcnns of 4>0
in ~l. (19) oí Scction 3. A particular solution is

<1>, l"3X b,b,sin(~l _ ~,) 1
2 cosh2 x//¿

(36)

which a1so describes a localizcd. excitatian. In the follO\'áng \.¡ewill set
thc homogeneous tenn cqual to zera because. in general, it lcads to non-
localizcu contributions to $2 as ShOhTI at the end of Section 3.

l11e main point to be noticed regarding the solution oí systcm
(8) given by the fields [27h) , (34) and (36) is that, contrary to
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the situation in thc static case, the fenmionic part oí thc solution
together with the non-homogeneous part of ~, cannot be obtained frcm the
purely bosonic sector via a supersymmetrytransfonnation. This can be
easily seen for the time dependent ferrnionic field (34) because a supers~
metry rotation with constant parameters from a time independcnt purely
bosonic sector cannot produce a time dependent ficId. 1t is a150 a sLmple
matter to see that ~, in r~.(36) is not of the rotated form (9b). In this
sense the ahove solution differs drastically from those already fotmd in
the literature for the system Jescribed by the Lagrangian (1). The
fenmionic part of this solution a150 fails to satisfy thc requiremcnt
X
12

= -X~l impo5cd by the pararnctrization (6) used in Ref. 1.
Finally we lli~ve calculated the energy associated to the aboye

solution <:lccordillg to the expression (11). The finite resul t

E = Z,!Z + iA A. ~ b b sin(,p - ,n ) (37)
3,\, 1 L;1 1 2 1 n

is an cven number oí thc Grassm&~algcbra ~ldthe purely numericaI part
comes írom the contribution oí the kink $ .,

5. SlUIARY

In this work ~c study the cIassicaI finite-energy soIutions oí a
two-dimcnsionaI "spin" 0-1 gIobally supersynmctric systcm given by the
I~grangian (1) anJ characteri,eJ by the superpotentiaI V(~). Specia1
emphasis hasbccn made in the rearch of 501utions for the bosonic and
fenmionic fieIus which carmot be generated from a purely bosonic ficId via
a supersyrnmctry transfo~ltion.

Wc have takcn the point oí view that the fcnnionic ficld components
must be considercd as anticornmuting numbers (clements of a Grassmann alge-
bra) in order to realizc the supcrsymmctI)' invariance with transfonnations
(3) in the Lagrangi,m (1). Kotice for example that ~wwould be identicaI1y
zero if thc componcnts oí ~ ~erc cornmuting nwnbers. This forces us to
extcnd the mcaning oí thc bosonic and fenmionic ficlds to cven and odd
clemcnts of the algebra respcctively. In order to implement this idea in
a stmplc way we follow the suggestion of expanding such fielus, according
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to Eqs. (5) and (7), in terms of a basis which generates a real two-
dimensional Grassmann algebra(l). This cxpansion provides us with the set
of equations (S) for the non-Grassmann components of the fields, ~o X

J ij'
4>2which can be solved in a sequencial manner.

The static case is considered in the first place. \'le show that
the linear equations (Sb) and (Sc) can be fully integrated for an arbitrary
superpotential in tcrms oí any solution ~o oí the non-linear equation (8a).
fbving found the general solutions far X .. and 4>2we thcn prave that the

1)
fennionic components X .. can always be rotated to zero by a global supcrsym

1) -

rretlY transfonnation. Howcver such tréUlsfonnation tices not reduce to zero
thc general cxpress ion oí the corresponding component 4>2of thc bosonic
ficId. TI1Crcmaining part comes from the solution of thc homogcneous
equation related to Eq. (Sc), as suggested in Ref. 1, and may be a localized
function according to the choice oí parrumeters. The energy associated to
such static solutions can always be madc finite by the choice o = O in (12).
Besicies, it is apure non-Grassmann number even thoug~ the 412 component ofthe
bosonic field cannot be completely rotated to zero.

Thc next thing we do is to look for solutions of the s~'stem (8)
which are static in the bosonic fieId but stationary in the fermionic field.
f~re we cannot proceed in full generality and we discuss the separate cases
where the non-linear equation (8a) corresponds to a sine-GorJon theory or a
~. theory. Wc nced to specifr further the solution ~o of Eq. (Sa) which
is chosen to be the one-soliton and the kink respectively. In the former
case wc find no localized solution for the fermionic equation (Rh). In
the latter situation a single frequency (up to ! signs) is founJ such that
a loca1ized fermionic solution cxists. This solution cannot be rotated to
zero by a supcrs)'nunctrytransfonnation. lhe <P2component of the bosonic
field can a1so be determined exactly and for the sake of sbnp1icity wc
consider only a particular solution oí Eq. (Se). This piece of the bosanic
field is localized a1so and caMat be transfonned to zero cither. TIte
energy of such complete solution is finite but this time it is an even
number oí the Grass~~ algebra.

As we mention in the Intromlction we expect that the physical
meaning of such solutions will be revealed on1y after a semiclassical
approximation to the full quantum theory is made. Such approximation
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would use these solutions as a starting point and would take proper care
of the anticornmuting parameters already introduccd.
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