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ABSTRACT

Classical finite-energy exact solutions of a "spin" 0-1/2 two
dimensional supersymmetric model are investigated. The static case can be
completely integrated in terms of any solution of the purely bosonic sector,
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for an arbitrary potential. The localized fermionic part of the solution
can always be rotated to zero by a supersymmetry transformation. This is
not the case for the Grassmannian part of the scalar field which can be
localized also. Stationary solutions for the fermionic field with
potentials corresponding to the $" and sine-Gordon theories, for specific
choices of the purely bosonic sector, are also considered. 1In the former
case we find a single localized fermionic solution which can not be
rotated to zero by a supersymmetry transformation. In the latter case no
such solution éxists.

RESUMEN

Se investigan soluciones exactas cliasicas de energia finita de un
modelo supersim@trico en dos dimensiones de espin 0-1/2. El caso estitico
se puede integrar completamente en términos de cualquier solucidn del sec-
tor puramente bos®nico, para un potencial arbitrario. La parte fermidnica
localizada de la solucidn siempre puede ser rotada a cero por medio de una
transformacibén de supersimetria. Este no es el caso de la parte Grassma-
nniana del campo escalar que también puede ser localizada. Tambi&n se con
sideran soluciones estacicnarias para el campo fermibnico con potenciales
que corresponden a las teorfas ¢ y sine-Gordon, para selecciones especifi
cas del sector puramente bosénico. En el primer caso encontramos una solu
cidn fermidnica localizada que no puede ser rotada a cero por una transfor
macidén de supersimetria. En el segundo caso no existe tal solucidn.

1. INTRODUCTION

Even at the level of non-operator fields, supersymmetric theories
require an extension of the usual commuting mumber concept to include
anticommuting objects (Grassmann mumbers) which are related to the fields
that describe fermions and to the parameters of the supersymmetry transfor-
mations. These Grassmann numbers seem to be necessary in order to have a
Lagrangian with a finite number of terms, invariant under transformations
that mix fermionic and bosonic fields. We will refer to this non-operator
formulation of the theory as to its classical version, even though we are
not dealing with commuting numbers only.

In order for this classical theory to be supersymmetric it is
necessary to take seriously into account the Grassmannian character of the
fermionic fields involved. The equations of motion for the fields will
thus contain both kind of mumbers and it will be interesting to look for
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exact solutions to them. In analogy with what is done in purely bosonic
systems, these sclutions could lead to useful insights with respect to the
corresponding supersymmetric quantum field theory.

One possible way of dealing with such a system of coupled
equations, suggested in Refs. 1 and 2, consists in introducing a basis for
the Grassmann algebra and expanding every field of the system as an even
(conmuting) or odd (anticommuting) element of the algebra. Once these
expansions are substituted in the equations of motion, these can be further
split because now we have to set equal each coefficient of the linearly
independent elements of the basis. Usually such a decoupled system is more
tractable than the original one and provides a natural algorithm to solve
for the unknown commuting components of the fields. It is then possible
to obtain a solution to the original system in terms of such components and
the independent elements of the basis for the algebra.

Now comes the problem of interpreting such solutions because all
physical quantities calculated from them will, in general, carry over some
dependence in the Grassmann algebra basis, whose elements are not directly
interpretable in physical terms. The ultimate resolution to this problem
might be that what really makes sense is the full quantum theory where all
physical quantities are non-Grassmann commuting mumbers arising from matrix
elements of the relevant operators. Nevertheless, it is very difficult
to obtain such a theory, especially in a non-perturbative way and when non-
linearities are present. Because of this, one might expect that the route
suggested in Ref. 3, would lead to useful insights regarding the quantum
theory, as it is in the case of purely bosonic systems. This approach
consists of performing a quantization around interesting non-perturbative
classical solutions which are required to have finite classical energy and
be classically stable as a minimal condition. Such an approximation can
be carried out in the path integral formulation for the generating func-
tional of the theory. Essentially, it amounts to an expansion of the ac-
tion around a relevant set of classical solutions followed by a gaussian
functional integration over the remaining field variables. As suggested
in Ref. 4, one could try to apply similar techniques for systems involving
fermions.

This is essentially our main motivation for studying exact
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classical solutions of supersymmetric theories, which will be the subject
of the present work. Recently there has been some interest in looking for
exact classical solutions to supergrav1ty(2 35) but we feel that in order
to test these ideas it is convenient to start from a simpler system. To
this end we consider the following globally supersymmetric system in two
dimensions given by the Lagrangian

£ =3 (000%) - 3V2(6) * 7 VH - 7 V') - (1)
Here ¢ is a real scalar field, V'(¢) = %5 V(¢); ¢ is an anticommting
Majorana spinor (U = w+y°= yC); the metric is g““ = diag (1,-1); and the

Y-matrices are given by

A

The charge conjugation matrix C, which is defined by CY € = <Y can be
taken as C = v° in this representation, and then the Majorana congition
simply says that the spinor ¢ is real. As it is well known, the action
for such a system is invariant under the following supersymmetry

transformations:
8 =€ ;
(3)
sp = -[1dp + V(¢)le s

where the parameter ¢ is a constant anticommuting Majorana spinor.

The equations of motion arising from the Lagrangian (1) are
06 + V) V') +3 TV 4 =0 (4a)
[id - V'(®)ly =0 ’ (4b)

Equations (4) can be considered as the supersymmetric generallzat1on of
those purely bosonic systems described by a potential 2-V2(¢) which include
such interesting cases as the ¢* and sine-Gordon theories. In fact,

setting ¢ = 0 we recover the purely bosonic sector for which there are well
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known finite-energy classically-stable solutions.

Classical solutions to the coupled system (4) were found in Ref.
7, by using the invariance of the system under finite supersymmetry
transformations. In fact, as suggested in Ref. 8, it is always possible
to construct a solution to (4) by applying a supersymmetry transformation
to a solution corresponding to the purely bosonic sector ¢, # 0, y = 0,
which is already known for some class of potentials. The quantum theory
around such supertranslated solutions was constructed in Ref. 7 by using
Dirac's method for constrained systems and was later generalized to
arbitrary (non-supersymmetric) systems with classical solutions parametri
zed by anticommuting numbers in Ref. 9.

The problem was considered again in Ref. 1 paying attention,
among other things, to the question whether or not all solutions to the
system (4) are supertranslations from the purely bosonic sector. It was
found there that this is not always the case and that the bosonic part of
the solution which does not come from a supertranslation is non-localized.
The semiclassical quantization of the theory around such classical
solutions was also briefly considered in Ref. 1 and it was argued that a
naive application of the methods of Ref. 3 leads to inconsistences.

In this work we study only the classical aspect of the problem
and reexamine the coupled system (4). Section 2 contains a brief discus-
sion of the field equations (4) along the same lines of Ref. 1, where an
expansion of all the fields in terms of the simplest non-trivial basis of
the Grassmann algebra is made. We also write there the most general
supertranslated solution obtained from the purely bosonic sector(7) and
the expression for the energy associated with any solution of the field
equations. In Section 3 we show that for the static case and a general
potential V(¢) the system can be explicitly integrated in terms of a solu-
tion of.the purely bosonic sector. We prove then that the fermionic part
of the solution can always be rotated to zero by a supersymmetry transfor-
mation. The rotated bosonic part contains an extra piece of the type
suggested in Ref. 1, which cannot be made zero by the supertranslation.

In Section 4 we consider static solutions for the bosonic field but
stationary solutions for the fermionic field. We examine the cases
corresponding to the sine-Gordon and ¢* potentials, for a specific choice
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of the purely bosonic sector. In the former situation we find that it is
not possible to have a localized fermionic solution, while in the latter
case there is a single frequency such that a well behaved solution exists.
This solution has finite energy, which nevertheless is an even number in
the Crassmann algebra, and cannot be rotated to zero by a supersymmetry
transformation. .Finally, Section 5 contains a summary of the results
obtained in this work.

2. EQUATIONS OF MOTION

Following Ref. 1, we rewrite the system (4) introducing a
Grassmann algebra spanned by two real constant anticommuting numbers, X,
A2 (A1As = =AsX1), in such a way that a basis for our space is provided by
the four real quantities 1, A;, A, and iA;), (recall that (ab)* = b*a* for
Grassmann numbers). _

The two component fermionic field ¥ = le is a real (Majorana)
odd element of the algebra and can be expanded as :

XA H (5)

A1
A

¥

where X and y is a 2x2 matrix whose elements y, (i, j = 1,2) are
ij

four real non-Grassmann commuting functions of the space-time variables.

Because reality is the only condition imposed by the Majorana condition on

v, we disagree with the general parametrization
x = 1A + B ; (6)

proposed in Ref. 1, in terms of only two real functions A and B. In parti
cular, Eq. (6) would imply the relation y;, = -x,; which does not need
to hold in general, as we will see in some examples considered later.
Nevertheless it is still conceivable to perform a supersymmetry transforma
tion on the fields (x—+y' in particular) in order to require yi, = -xz1 -
Having in mind that we are dealing with global supersymmetry, which means
that the arbitrary parameters of the transformation are constants (instead
of space-time dependent) Majorana spiners we can see that it is impossible
the fullfill such requirement in general just by changing the gauge.
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The bosonic field is an even element of the algebra, and
consequently can be expanded as

o = o *+ 1X1A202 ’ (7

where ¢,, ¢, are non-Grassmann real commuting functions.

Substituting Eqs. (6) and (7) in the system (4) and comparing
the coefficients of the elements of the basis of the Grassmann algebra we
recover Eqs. (8) of Ref. 1 which, in our notation, are

Odo + VoV =0 , (8a)
(i3 - V§)x =0 , (8b)
(O+ Vi? + VoVi)¢, = (det. )V§ (8c)

where V, = V(¢,) and V} V'(¢}i¢==¢o . In the following we will look for
sclutions to Eqs. (8)-which are generated by localized solutions of the
non-linear equation (8a).

The purely bosonic sector corresponding to system (8) is
defined by taking ¢, as any solution of Eq. (8a) together with
Y =¢, = 0. From this sector we can obtain a full set of solutions to
Egs. (8) (with ¢ # 0, ¢, # 0) just by making a supersymmetry
transformation on ¢, , ¥ = ¢, = 0, with parameters €, K A',
i,j = 1,2, (¢ = K\), where K ; are arbitrary real constant commutlng
numbers(7}. The resulting solutlon has the form given in (5) and (7) and

is determined by

x5 = -(i¥¢e + Vo)K (9a)

|

¢3 = (det. K)V, , (9b)

where the superscript s is to remind us that this solution is obtained

by supertranslating the bosonic sector. We remark is passing that for

this case we have

X?z = K12(¢'ux = V) = Kz?(%t ’ (10)
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X21 = K11¢at = K21(¢ux +Vy) , (10)

which does not satisfy, in general, the constraint X§, = -X§, imposed by
the parametrization (6). The subscripts x and t denote the derivatives of
the function with respect to the corresponding variables.

The. Lagrangian (1) does not depend explicitly on time so that the
energy of the system is conserved. The expression for the energy associa-
ted with a general solution ¢,, ¥, ¢, of the field equations is given by

+co
1 :
E = z.J_qu {¢ﬁt + ¢§x £V ® 21A1A2[¢ux¢2t + ¢°x¢2x + VoVig, +

1 3
- + 2 = - - L
i '2'(X11X22x )(22)(1.1x leXl?.x X12X21x) (det. Xx) Vg ]}‘» B
(11)

which in general is an even number of the Grassmann algebra.
3. STATIC SOLUTIONS

In this section we consider the case where all fields are time
independent, We show that under this circumstance it is possible to fully
integrate Eqs. (8b) and (8c) in terms of a solution ¢,(X) of Eq. (8a). In
fact, this last equation can be integrated once to give the relation

Vo= xMbioa (12)

where o is an integration constant. From here we can write

Py o P
/¢ .a =1Ex-— In l%x + ¢°x - a } 3 (13)
Uy

which allows us to directly integrate the fermionic equation,

v

=4

1
0

' E=vix (14)
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for each component X _ separately because yY' is a diagonal matrix. The
1
result can be cast in the form

= -G "6+ Vo)C (15)

which is valid for both signs of Eq. (12), and where C-—[C ] is a real
2x 2 matrix arising from the corresponding integration constants That X
in (15) is a solution of Eq. (14) can be verified by direct substitution
using the properties (iY')2? = 1, V,V} = G0, (obtained from the first
equality in Eq. (13)) and V“x - V5¢ux- The fact that we have four real
independent constants of integration, Cij, assures us that X is indeed the
most general solution to Eq. (14).

Now we consider Eq. (8c) for the bosonic component ¢,, which can
be written as

d2
[_ Sreviz vy = a(det. OV, (16)
where we have used Eq. (12) in the calculation of det. X. The relation

vv2+vv'—a—-(v =$l-¢o an
0

XXX

X
allows us to rewrite Eq. (16) in the form

6
& P’ﬁ 4 [%iﬂ = adet. OV 4, (18)
=X x

which can be completely integrated to produce
_ dx
- @et. OV, + o, [8 [+ (19)
X Ox

which is the general solution of Eq. (16). In fact, the first term on the
right hand side of Eq. (19) corresponds to a particular solution of Eq.
(16) while the other two terms are the general solution (two integration
constants) of the homogeneous equation associated with it.

The expression (15) together with (19) constitute the general
static solution for the system (8), written in terms of a given solution
¢y of the non-linear equation (8a). Now we proceed to compare this
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solution with the one obtained by supertranslating the purely bosonic
sector ¢,, ¥ =¢, = 0, Taking the matrix X in Eq. (9a) ecfual tor C in Eq.
(15) we see that it is pnssible to obtain x and ¢, - ¢°xiY + BJ %?—
from the purely boscnic sector via a supertranslation. In other ﬁérds,
the only piece of the general solution in the static case which cannot be
generated by a supersymmetry transformation from the purely bosonic sector
is the contribution to ¢2 arising from the homogeneous equation related to
Eg. (16). This way of generating solutions to the system (8), which are
not supertranslations of the bosonic sector, was already suggested in Ref.
1, and here we have shown that it is the only possibility for the static
situation.

The energy corresponding to the solution given by Egs. (12), (15)
and (19) is

. >, 9l . *+° dx

E = J_“ﬁx[vd + 7] + 1), 2,08 J’m V+a 5 (20)
provided that V,-»0 as x++ «» . Under this circumstance the contribution
to £ comming from the fermionic part y together with the one comming from
the non-hcmogenccous part of ¢, vanish identically. The same happens with
the contribution from de y-dependent part of ¢,. We then see from Eq.
(20) that in order to have finite energy it is enough to reguire that
a = 0. Then E in (20) has only a non-Grassmann component even though the
associated sclution is not a rotation from the purely boscnic sector
(8 #0, vy #0). This result is consistent with the corresponding statement
made in Ref. 1 for the case y = 0 = ¢, because the energy is invariant
under supersymmetry transformations.

Now we discuss the asymptotic behavior of the solutions X and ¢,
for the case a = 0. When this happens we have that gafo\L in such a way
that X » 0 as x-» + = according to Eq. (15). The Eq. (16) for ¢, reduces
to the corresponding homogeneous and this shows up in the explicit solution
(19) in the fact that now the term proportional to det.C is of the same
type as the one proportional to Y. In fact we have

o ‘ v [dx 21
$2 VnY + 8 J-ﬁ- . ( )
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The asymptotic behavior of ¢, is related to the asymtotic equation

d? 2
[‘ o Tl ]¢2= o, (22)

where we have considered potentials such that V! =y (u = constant) when
x+te which is the case of the sine-Gordon and ¢" theories. From Eq.
(22) we have two possibilities for the asymptotic behavior of ¢,: (i) ei-
ther ¢2a-et”x which blows up at +« (this term must arise from the g' part
in Eq. (21)); (ii) or ¢,+0 and ¢, -~ 0 separately when x+ +« which is
the case of the y' term in Eq. (21?? Thus, contrary to what is stated in
Ref. 1, not all solutions of the homogeneous equation related to (16) are
non-localized (scattering states) as shown by setting g' =0, ' # 0 in

Eq: (Z1)s
4. STATIONARY SOLUTTONS

In this section we still require the bosonic field ¢, to be time
independet but now we look for fermionic solutions of the type

x(x,t) = et 4(x) , (23)

with real frequency w # 0. Because Eq. (8b) is linear and we restrict
ourselves to real spinors it will be necessary to consider only the real
part of X at the end of the calculaticn,

The fermionic Eq. (8b) reduces to

d :
[3?( * V‘;]Alk Ly »
. (k = 1,2)
[%f - V3|8, = tus , (24)

after the sustitution (23) is made. This is a simple system of coupled
linear equations which can be dissentangled in the usual way yielding two
Schrddinger equations

{dz + w2+ V la =0 (25)
[E]Iz ak 3 .

a/
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where a=1,2 is not surmed. The corresponding potentials are

V= %5 -viE e, (26a)
!
Vg = %‘l -v.r . (26a)

We will be interested in solutions to Eqs. (25) which give finite contribu
tions to the classical energy (11). This can be guaranteed by requiring
the solutions to go to zero fast enough when x-+ +« and we will take this
behavior as our boundary conditions for Egs. (25).

Contrary to the situation in the static case, we can no longer
study the problem in general terms and we are forced to specialize to some
specific potentials in order to find explicit solutions. We are going to
consider the following two examples whose bosonic sector is well understood

V=2sing/2 , ¢, =4t (27a)
_ A} 1 ¢ _ 1 .3

V= [ ] [¢2- 'J , ‘o =—tgh — 3 (27b)
A 1 A2

which are the one soliton solution to the sine-Gordon potential and the
kink solution to the ¢“ theory respectively. The functions ¢, chosen in
(27) obviously satisfy Eq. (8a) and we want to look for the localized
supersymmetric extension of such bosonic solutions. Besides, both functions
correspond to the choice o = 0 in Eq. (12).

In both cases (27a) and (27b) the potentials associated with the
fermionic Schrédinger equations (25) can be written in the form

V =p +u sech (vx) , (28)
a a a
where
Py = iy = =1 ’
fp =0 e = 2 ’ (29)
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in the sine-Gordon theory, while

p1 = p2 = -2 3
iy BBy sl " (30)
1
y
2

in the ¢* case. That is to say, we have to look for solutions, with
appropriate boundary conditions, of the generic equation

2
%;2+UF + p +usech?yxfp =0 ¥ (31)

paying attention to the fact that we must find eigenfunctions A with the
same frequency w for the different values of y in each case. Eq. (31) is
solved in Ref. 10 and we adapt those results to our particular situation.

Let us begin with the sine-Gordon case. From the fact that
V, = -1 (u; = 0) we see that Eq. (31) reduces to the Schrédinger equation
for a free particle. Thus we conclude in this case that there are no
solutions of the type (23) (w # 0), which satisfy the chosen boundary
conditions, for the particular election of the function ¢, made in Eq.
(27a). Of course we can always go back to the static case y = 0, where
equation (31) does not appear and where we can certainly find adequate
solutions.

Now we turn to the ¢* theory with ¢, given by Eq. (27b). The
spectra for solutions of Eq. (31) which go to zero as x++ = 1is

(w® =2)y =<2, =i )

(32)

(w? - 2)s ® -3 3

where the subscripts 1 and 2 refer to the potentials V, and V,, respective
ly. We have then found a common real frequency 2 = 3/2 whose correspond-

(10)

ing eigenfunctions are given by

i = sinhx//7Z

(33a)
1k K cosh? x//Z
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A =B -

————— 33b
ah k cosh x//2 G

which behave 1ike eixﬁﬁgas X++ o , thus describing a highly localized
fermionic configuration. The complex integration constants A and B
are related through A = i3 B, , which is a consequence of the first

order equations (23). The final answer for the components Xsq is

g ™ -3 b sin(wt +y,) EEEHEEZIZ: 5 (34a)
% k cosh? x//2
X,, = b, cos(ut + p) —E+—— , (34b)
k ¥ cosh x/vVZ

which is obtained by taking the real part of Eq. (23) and where
By = beiPx, w2 = 3/2,

In order to complete the solution of system (8) for this particu
lar case of the ¢" theory we need to find ¢, from Eq. (8c), which can be
written as

sinh x//Z
cosh?® x/VZ

g;z - 2+3 sech? é] ¢, = /B byb,sin(y, - p,) , (35)

under the assumption that ¢, is time independent. Eq. (35) can be fully
integrated in terms of a particular solution plus the general solution of
the corresponding homogeneous equation which was written in terms of ¢,
in Eq. (19) of Section 3. A particular solution is

1

—_——e (36)
cos h? x//2

¢, = - % bleSin(lpi = ‘«Pz)

which also describes a localized excitation. In the following we will set
the homogeneous term equal to zero because, in general, it leads to non-
localized contributions to ¢, as shown at the end of Section 3.

The main point to be noticed regarding the solution of system
(8) given by the fields (27b), (34) and (36) is that, contrary to
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the situation in the static case, the fermionic part of the solution
together with the non-homogeneous part of ¢, cannot be obtained from the
purely bosonic sector via a supersymmetry transformation. This can be
easily seen for the time dependent fermionic field (34) because a supersym
metry rotation with constant parameters from a time independent purely
bosonic sector cannot produce a time dependent field. It is also a simple
matter to see that ¢, in Eq. (36) is not of the rotated form (9b). In this
sense the above solution differs drastically from those already found in
the literature for the system described by the Lagrangian (1). The
fermionic part of this solution also fails to satisfy the requirement
Bz * s imposed by the parametrization (6) used in Ref. 1.

Finally we have calculated the energy associated to the above
solution according to the expression (11). The finite result

E=22 4 iy, L bb,sin, -y, (37)

3) g
is an even number of the Grassmann algebra and the purely numerical part
comes from the contribution of the kink ¢ .

5. SUMMARY

In this work we study the classical finite-energy solutions of a
two-dimensional '"'spin'' 0-3 globally supersymmetric system given by the
Lagrangian (1) and characterized by the superpotential V($). Special
emphasis hasbeen made in the rearch of solutions for the bosonic and
fermionic fields which cannot be generated from a purely bosonic field via
a supersymmetry transformation.

We have taken the point of view that the fermionic field components
must be considered as anticommuting mumbers (elements of a Grassmann alge-
bra) in order to realize the supersymmetry invariance with transformations
(3) in the Lagrangian (1). Notice for example that yy would be identically
zero if the components of y were commuting numbers. This forces us to
extend the meaning of the bosonic and fermionic fields to even and odd
elements of the algebra respectively. In order to implement this idea in
a simple way we follow the suggestion of expanding such fields, according
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to Eqs. (5) and (7), in terms of a basis which generates a real two-
dimensional Grassmann algebra(l). This expansion provides us with the set
of equations (8) for the non-CGrassmann components of the fields, ¢, , Xij’
¢, which can be solved in a sequencial manner.

The static case is considered in the first place. We show that
the linear equations (8b) and (8c) can be fully integrated for an arbitrary
superpotential in terms of any solution ¢, of the non-linear equation (8a).
Having found the general solutions for X; 5 and ¢, we then prove that the
fermionic components X 5 can always be rotated to zero by a global supersym
met1y transformation. However such transformation does not reduce to zero
the general expression of the corresponding component ¢, of the bosonic
field. The remaining part comes from the solution of the homogeneous
equation related to Eq. (8c), as suggested in Ref. 1, and may be a localized
function according to the choice of parameters. The energy associated to
such static solutions can always be made finite by the choice o = 0 in (12).
Besides, it is a pure non-Grassmann number even though the ¢, component of the
bosonic field cannot be completely rotated to zero.

The next thing we do is to look for solutions of the system (8)
which are static in the bosonic field but stationary in the fermionic field.
Here we cannot proceed in full generality and we discuss the separate cases
where the non-linear equation (8a) corresponds to a sine-Gordon theory or a
¢* theory. We need to specify further the solution ¢, of Eq. (8a) which
is chosen to be the one-soliton and the kink respectively. In the former
case we find no localized solution for the fermionic equation (8b). In
the latter situation a single frequency (up to + signs) is found such that
a localized fermionic solution exists. This solution camnot be rotated to
zero by a supersymmetry transformation. The ¢, component of the bosonic
field can also be determined exactly and for the sake of simplicity we
consider only a particular solution of Eq. (8c). This piece of the bosonic
field is localized also and camnot be transformed to zero either. The
energy of such complete solution is finite but this time it is an even
number of the Grassmann algebra.

As we mention in the Introduction we expect that the physical
meaning of such solutions will be revealed only after a semiclassical
approximation to the full quantum theory is made. Such approximation
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would use these solutions as a starting point and would take proper care

of the anticommuting parameters already introduced.
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