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ABSTRACT

We propose a method for obtaining a formal analytical exact
Hartree-Fock solution for a system of interacting fermions in the jellium
model. The Hartree-Fock orbitals are expanded in terms of a basis of
functions which have a continuous index. Then we obtain the algebraic
Hartree-Fock equations for the coefficients in this expansion and it is
shown that they satisfy a non linear, Fredholm, homogeneous integral
equation of the second kind. Equations of this type are well known and
there are several methods to solve them. Thus we claim that our problem
can, in principle, be solved, A brief discussion of some methods for
solving these equations is also presented.
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RESUMEN

Se propone un método para obtener analiticamente una solucidn
Hartree-Fock formal exacta, para un sistema de fermiones que interaccionan,
en el modelo de jalea. Los orbitales Hartree-Fock se desarrollan en térmi

nos de una base de funciones que tienen un Indice continuo. Se obtienen
las ecuaciones algebraicas de Hartree-Fock para los coeficientes de este
desarrollo y se demuestra que satisfacen una ecuacidn integral, no lineal,
homogénea, de Fredholm de segunda clase.

Estas ecuaciones son bien conocidas y existen varios métodos para
resolverlas. Por lo tanto afirmamos que, en principic, el problema estd
resuelto. Se presenta tambi&n una breve discusifn de algunos métodos para
resolver estas ecuaciones.

1. INTRODUCTION

The interacting fermion gas in the jellium model is a simple and
" successful model which finds applications in many branches of physics.
For example it has been extensively used in Nuclear Physics(l) and in
Solid State Physics. 2) This model lets us evaluate properties of many
body systems (in the case of zero temperature as well as in the finite
temperature regime); for example ground state energies, specific heats,
bulk modulus and so on. In order to explicitely calculate some of these
properties it is usual to begin with first order perturbation theory or
whith the Hartree-Fock (HF) approximation. In the latter case there are
many solutions to the HF equation in the zero temperature limit; for
example the trivial solution plane waves(s) and the periodic waves of the
type introduced by Overhauser(4) for the electron gas. These periodic
solutions, called charge density waves, are found to be better than those
of plane waves in the low density region(s). This result is related with
the Wigner's prediction about the electron gas cristalization(ﬁ). The
charge density waves are useful to evaluate physical properties of the
many body systems, but an anlytical exact HF solution for these systems
is still lacking.

In this work we propose a method for obtaining, in a systematic
way, an analytic self-consistent HF solution for the ground state of the
interacting fermion gas in the deformable jellium model. First of all,
we expand the HF orbitals in terms of a basis with a continuos index.
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We select this basis in such a way that we can easily reproduce some
properties of the many fermion system; for example the energy at the low
density regime. The proposition of expandind the HF orbitals in terms of
a continuous basis has already been done for a system of fermions in the
jellium model, interacting via interactions”’s) (in the general three-
dimensional case). We use the variational principle and find that the
algebraic equations which determine the coefficients in the expansion lead
to integral equations. This equations have been widely studied and there
are methods to solve them., We discuss the difficulties which we found in
the process of getting a solution in terms of a continuous basis and
finally we comment about scme of the methods which we chose to solve the

integral equations.
2. ALGEBRAIC HF EQUATIONS FOR CONTINUOS STATES

The Hamiltonian for the fermion gas in the jellium model is

bt w2
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where, as usual
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and N(R) is the background density.

As it is known, it has been proved that in the independent
particle model an in the deformable jellium model (where the background

deforms in order to obtain the minimum energy) the expresion for the

ground state energy reduces to )
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this is because the energy of the two background terms cancels out
identically with the direct part of the particle-particle interaction.

We propose to expand the orbitals in terms of a basis with a
continuous index, so the spin orbitals are

Y, @ =0, B (1) =0y Jq_c(g) la, > d’q , (3)

where ny are the spin functions.
Then from Eqs. (2) and the proposition given by Egs. (3), the
energy can be written as
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Making the variation to first order in the coefficients of the

expansion, with the normalization condition
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This equation gives us the next condition:
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We have a non linear, homogeneous, integral equation of third,
order in the coefficients Ck. We propose to identify the Kernel of this
eguation as a function of some of the coefficients Ck, then

k
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and with this proposition we can write Eq. (6) as

[kg,05:0) ¢ (@) a%a, = ¢,.c @) . ®)

This equation is well known. It is a homogeneous, non-linear,
Fredholm integral equation of second kind. There are many methods for
obtaining approximated solutions to this type of equations; for example
Ritz's method, the Trace's method and Kellog's method (10s11)

With this identification of our equation we have reduce the
problem to a known one. Fortunatelly there are theorems concerning the
convergence of this type of equations, however as these are not 1inear
equations we have not theorems about unicity of the solutions.

We remark that handling this equation in an appropiate way is
very cumbersome because the index k is a continuous one. Next we discuss
the difficulties which appear and the methods that we propose to obtain
a solution for the HF equations.

DISCUSSION

Among the methods found in the literature to solve Eq. (8) we
selected Ritz's method because it was the way followed by C.C. J.
Roothaan to get solutions for the HF albegraic equations for finite
systems.(lz) The Ritz method gives us the coefficients Ck(g) in the
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in the approximation we require and the efficiency of this has been widely
showr.

The function Ck(g} is expanded in terms of a basis with a
discret index -

C@ <IREE ©)

This expansion is introduced in the equation which defines the function
K(q:, 9s C); and this function is substitued in Eq. (8). Multiplying
Eq. (8) by £ m(g) and integrating with respect to q we obtain the self-
consistent, matricial equation of eigenvalues

a . (10)
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To solve this equation we give initial values for the

coefficients a_ in the function K[g:1, 43, C(a,9)] and with the usual
techniques we get a solution to the resulting eigenvalues equation. The
eigenvector obtained is substituted in the Kernel of Eq. (10). This
equation is solved again yielding a new eigenvector. We repeat this
procedure iteratively until self-consistency is achieved up to a given
accuracy. )

The coefficients a% are functions of the discrete index n, and
the continuous index k. The dependence on the continuous index k obviously
introduces serious difficulties, because the infinite number of equations
involved. In order to solve these difficulties we propose two methods: in
the first one we separate the dependence of the coefficientskon the index
k from the dependence on the discrete index n, 4.e., a: = Bbs this
kinds of separation allows us to handle the equations, mumerically, for
the coefficients a% along with the corresponding diagonalization and self-
consistency.

In the second method we consider the index k as a continuous
variable all the time and we propose an expansion in a six dimensional
basis, three dimensions for the coordinates r and the othcr three for the
components of the vector k. This is done instead cf the usual expansion
in a three dimensional basis. There are references about the utilization
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of basis with more than three dimensions.{ls) Following this procedure
we can get a solution to our equations.

In this way we have shown how one can get solutions to the HF
equations for a three dimensional gas of interacting fermions in the
deformable jellium model. The type of basis we choose in our expansions
will depend on the kind of interactions between the particles and on the
properties of the system which we are interested in reproducing.

This method provides a systematic way for obtaining algebraic
self-consistent H.F. solutions for the systems here considered and we
hope that this will encourage further research on systems of many fermions,
using solutions of the type considered in this work.

ACKNOWLEDGEMENTS

The authors wish to thank Dr. R. Soto for useful comments
concerning this work.

REFERENCES

b
.

A.W. Overhauser, Phys. Rev. Let., 4 (1960) 415.

2. A.W. Overhauser, Phys. Rev. B., 3 (1971) 3173.

3. A.L. Fetter and J.D. Walecka, Quantum Theoty of Many-particle
Systems, McGraw-Hi1l, New York (1971).

4.  A.W. Overhauser, Phys. Rev,, 167 (1968) 691.

5.  R.M. Méndez-Moreno, A. Calles, E. Yépez and M.A. Ortiz, Phys. Rev.
A., 28 (1983) 3561.

6. E.P. Wigner, Phys. Rev., 46 (1934) 1002.

7. A, Cabrera, A. Calles, R.M. Méndez-Moreno and M.A. Ortiz, Proceedings
of the XXIII Congress of Sociedad Mexicana de Fisica, 6 (1980) 141.

8. G.Gutiérrez and A. Plastino, Phys. Rev. C., 25 (1982) 1028. This

problem has been solved numerically for nuclear matter.

9. M.A. Ortfez, R.M. Méndez-Moreno, A. Calles and E. Yépez, Rev. Mex.
Fis., 29 (1982) 69.

10.  J.I. Irving and N. Mullineux, Mathematics in Physics and Engineering,
Academic Press, New York and Leondon (1959).

11.  D. Krasnov, A. Kiseliov and G. Makarenko, Ecuaciones Integrales,
Mir, Moscd (1977).

12. C.C.J. Roothann, Rev. Mod. Phys., 23 (1951) 69.

13. E. Chacon, 0. Castafos and A. Frank, J. Math. Phys., (to be
published).





