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ABSTRACT

Transmission electron energy-loss has been used to determine the
angular and energy dependence of the cross-section for K-shell ionization
of af, and L-shell ionization of Cr, Fe, and Cu. On the basis of these
experimental results it was found that simple hydrogenic theory predicts
well the angular distribution of inner-shell scattering and shows a rea-
sonable absolute agreement for a large energy window. 1In addition,
total-inelastic cross-sections for these elements were measured and com-
pared with the free-electron Plasmon and Hartree-Slater theory. The ex-
periments show that a free-electron plasmon model predicts fairly well the
cross-section for elements such as Af. For Cr, Fe, and Cu an atomic mod-
el is more appropiate.

* This work is part of the thesis submitted to the Faculty of Graduate
Studies and Research, University of Alberta, Canada, in partial
fulfilment of the recuirements for the degree of Master of Science.
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RESUMEN

Usando espectroscopia de transmisidn de electrones se determind
la dependencia angular y de energia de las secciones-eficaces de ioniza-
cién de la capa-K en A{ y de la capa-L en Cr, Fe y Cu. Los resultados
de estos experimentos muestran que la teoria hidrogencide predice adecua
damente la distribucidn angular de los electrones gque han ionizado capag
internas de un dtomo y muestra valores absolutos razonables para una ven
tana de energia grande. Ademis, se midieron secciones-eficaces totales
de dispesidn ineldstica para los mismos elementos y se compararon con
los valores calculados usando la teoria del electrdn libre para un metal
y con los valores obtenidos con la teoria Hartree-Slater. Los experimen
tos muestran que la teoria del plasma de electrones libres predice ade-
cuadamente la seccibn-eficaz para elementos como el Af. Para Cr, Fe y
Cu un modelo atémico es mas apropiado.

1. INTRODUCTION

With the first papers dealing with collisions of fast particles
with atoms, which appeared at the beginning of this century, there began
a new technique for studying the structure of the matter by means of
this process. The process generally represents the interaction of parti
cles (in this case electrons) with atoms, the latter sometimes called
the target and the phenomenon itself scattering. Thus, a scattering
process depends on the characteristics of the incident electrons and the
atomic properties of the target (here we use the words specimen and sam-
ple as synonymous with target). The characteristics of the incident
electrons depend on how fast they are approaching the scattering atom,
4.e.,on the wavevector t, while the atomic properties are generally de-
scribed by probabilities of transition; these probabilities are related
to the kind of atomic wave function assumed and consequently to the atom
ic potential. When the incident electrons interact with the atomic po-
tential, the former may be deviated from their original direction (scat-
tered). There are basically two types of scattering process: elastic
and inelastic. In the former, the incident particles transfer momentum,
and in the latter transfer momentum and appreciable energy to the atoms
of the sample. This latter mechanism by which fast electrons (with ki-

netic energy greater than about 10keV) interact with a sample is the
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main concern in the present work.

If a beam of fast electrons impinges upon a sample, and the sam
ple is thin enough so that most of the beam is not absorbed, it is con-
venient to classify the transmitted electrons into three categories: (1)
the unscattered beam, (2) the elastically scattered beam, and (3) the
inelastically scattered beam. These groups are characterized primarily
on the basis of scattering mechanism and how much energy has been lost
by the electrons in passing through the material. The third group of e-
lectrons that are transmitted through a thin sample are those that have
interacted with the electrons within the sample and lost energy in the
process. The amount of energy lost depends largely on the material being
studied. That is, the distribution of energy losses is material depend-

ent and it is this property that we are going to use for obtaining infor-
mation about the atomic properties of the sample. The utilization of the
transmitted electron energy loss distribution to determine chemical and
structural properties of a thin sample is known as Electron Energy-Loss
Spectroscopy (EELS).

In an inelastic process, the incident electrons lose energy in
the interaction with matter. This energy loss is attribqtable to excita-
tion of atomic electrons, both inner-shell electrons and outer-shell elec
trons. The probability for any of these excitatiens to occur is given by
the corresponding cross-section.

Cross-sections for inelastic scattering of fast electrons by
atoms are of concern in many branches of Physics. One such area is elec-
tron microscopy, in particular EELS where a partial cross-section ok(u,A]
for ionization of shell k (=K, L, M, etc.) by fast incident electrons
(which are thereby scattered through angle <a and suffer energy losses
between Ek and Ek+A, Ek being the ionization energy of shell k) is re-
quired for quantitative microanalysis of light elementstl). Also total
inelastic cross-sections Sin (<.e., the sum of all possible inelastic col
lision cross-sections) are required for estimating the local thickness of
a specimen(z)_ Both ok(a,A) and 0;, €an bemeasured experimentally using
a thin sample of known thickness and composition or may be calculated on
the basis of an atomic model. Since these calculations neglect certain
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factors (such as solid state effects), it is of interest to compare the
theoretical results with experimental data. In this work, we present
such a comparison for Aluminum, Chromium, Iron, and Copper.

2. CALCULATIONS OF INELASTIC CROSS-SECTIONS

Inelastic cross-sections specify the probability of an incident
electron being inelastically scattered by an atomic electron of a sample.
The probability of an atomic electron being excited to a certain energy
is given by the Generalized Oscillator Strength (GOS). The GOS is propor
tional to the differential cross-section, which is the main concern in
this Section. Here, we are going to present the different alternatives
for calculating inner-shell ionization cross-sections; and finally, we
present the different methods used to calculate total-inelastic cross-sec
tions ((.e.,the sum of all possible inelastic-collision cross-sections).

2.1 Genenal considerations

Several mehods(s) have been developed to calculate both elastic
and inelastic cross-sections, since both calculations necessarly involve
the assumption of an atomic potential to calculate the atomic wave func-
tions. These wave functions may also have an analytical form for a given
atomic potential.

A mehod similar to that used to calculate elastic cross-sections
can be used to calculate cross-section for inelastic collisions of fast
electrons with atoms. Hence, the inelastic scattering may be treated by
regarding the atom as a static center of force which gives to an electron
a potential energy V(r). This potential is usually taken as spherically
symetrical. Furthermore, for sufficiently fast collisions, the influ-
ence of the incident electron upon an atom may be regarded as a suddend
and weak perturbation; that is, the first Born approximation can be used.
According to Born's theory(4), when a plane wave strikes the atom each
volume element in the atom sends out a spherical wavelet. These wavelets
start in phase but possess different amplitudes depending upon the value
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of the potential at the volume element. In the first Born approximation,
both the incident and scattered electrons are treated as plane waves.

The first step towards obtaining inelastic cross-sections is to
calculate the probability of transition from an initial (ground) to a fi-
nal (excited) state; that is, to calculate GOS (Generalized Oscillator
Strength). Ideally this would be done by solving the Schrédinger equa-
tion for the complete system, {.e., the wave equation which contains explic
ity the coordinates of both the incident and atomic electrons. The energy
term is the sum of the energy of the atom in its ground state and the
kinetic energy of the incident electron. The solutions of this equation
are generally assumed to be separable into a function of the incident
electron and another function for the atom.

The energy differential cross-section for a collision, in which
and incident electron of kinetic energy T is scattered with a momentum
change fk=h(k-k') and energy loss E, is given in the first Born approxima

tion by(s’ﬁ)
do, K. dma, df (E,K) )
b via o B S EIUNEE -
min ’

where-a, is the Bohr radius; R=me“/2fi*=13.6eV is the Rydberg energy. An
important point about Eq. (2.1), discovered by Bethe(s), is that the GOS,
dfn(E, K)/dE, should be independent of T if T is sufficiently large. In
such a case, the GOS can be computed from internal dynamics of the atom

by means of the following relation(ﬁ}:

df_(E,K) ; z e
I = (E/R) (Ka,) | f u;(r1,..,rz)j§1exp(ix-r)uo(r1,..,rz)dr1,...dg2,

(2+2)

with ry being the position vector of the jth atomic electron, uo(rl,..,rz)
and un(r1,..,rz) the wave functions of the atomic electrons in the initial
and final state. The total wave functions of the initial and final state

are ?0=u0exp(if-?j) and ?n=unexp(iﬁ'-?j), respectively. These, of course,

should satisfy the Schrddinger equation. We may rewrite Eq. (2.2) in a
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more convenient form given by

df ,(E,K) 2n E 5
P ﬁ]o grlet lepRF) |ne>|2 (23

where <n| 0> denotes an atomic matrix element between the excited state n
and the ground state. This matrix element depends on the quantum numbers
involved in-the transition. For a single atom the possible transitions
are between occupied and unoccupied single-electron states of the atom,
transitions to occupied states being forbidden by the Pauli exclusion
principle.

Since exact atomic wave functions for the initial and final

states, u, u_, are seldom available, approximate methods have been devel

0
opec to calculate these wave functions. These methods have given rise to
different methods for the computation of GOS by means of Eq(2.2) and con-
sequently for the computation of ‘inelastic cross-sections by means of

Eq(2.1). Some of these methods are described in the following sections.
2.2, Innen-shell Lonization cross-sections

By an inner-shell ionization cross-section, one means the cross-
section for excitation of electrons from an inner shell of an atom to the
continuum. Different approaches have been developed to carry out these
calculations; some of them are based on simple hydrogenic wave functions
and others are based on more sophisticated computational methods to ob-
tain more accurate atomic wave functions, Among these methods we describe
those which may be relevant to EELS.

2.2.1. The hydrogenic model

Egerton(7) has proposed the use of a simple hydrogenic model to
compute partial or total K- and L-shell cross-sections needed to carry
out elemental analysis be means of EELS. The model is based on previous

hydrogenic approximations(s’ﬁ) which use Coulombic-type wave functions.
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An important point about Coulombic-type wave functions is the
choice of a screening parameter. Because the choice is crucial to all
calculations involving such wave functions, we shall make some comments
are about the screening parameter.

The basic assumption underlying the use of screened hydrogen-1like
wave functions to describe a many-electron atom is that for a single elec
tron outside a closed shell, the field due to the nucleus and the other
electrons taken together can be assumed to be spherically symmetrical,
that is, to behave as %] Once this assumption is made, the effect of the
other electrons is accomodated by replacing the nuclear charge Z by an
approximate effective charge ZS=Z-AZ, AZ being a number characteristic of
the n and £ values of the electrons in the shell. The actual choice of
AZ would depend on what criterion one uses to compare a physical many-
electron atom with its idealized hydrogenic counterpart. Having decided
on this parameter, one makes another vital assumption: that'for a given n
and £, the normalized radial wave functions for atoms of different atomic
number 7 are similar, {.e., they are replicas of the same function on dif
ferent scales (scaled wave functions).

Assumptions of the hydrogenic model.-In additidn to the consider
ations made in Section (2.1), the hydrogenic calculations are based on
the following assumptions:

(1) Relativistic effects within the atom (due to the high or
bital velocity of atomic electrons, on a classical pic-
ture) are neglected. Relativistic effects due to the
high velocity v, of the incident electron can be incorpo
rated to first order by avoiding the approximation :
Eg=(1/2)mv? instead the incident electron may be charac-
terized be the parametgr T=(1/2)m0v2 5 m0=e1ectron rest
mass,

(2) In common with other calculations of inner-shell cross-
sections, an atomic model is assumed. That is, solid
state effects are ignored; the cross-section for a given
atom (integrated over an energy range greater than 50eV)
is assumed to be independent of its physical and chemi-
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cal environment.

(3) Exchange effects (which are possible because the inci-
dent and atomic electrons are the same type of particle
and can interchange roles) are neglected.

(4) The wave functions used for the initial and final states
of 1s electrons are solutions of the Schrddinger equation
for the hydrogen atom, scaled to take into account the
effective potential of the nucleus.

(5) The screening effect of outer shells is accounted for
(to first order) by adding to the nuclear potential ener
g& a term ES, corresponding to an approximately spherical
distribution of outer charge. Screening of the nuclear
field by the second K-electron is included by using an
effective nuclear charge of Zg=2-AZ, AL taken as the val
ue 0.3125 calculated by Zenerts).

(6) For L-shell ionization, the hydrogenic model in its bas-
ic formpredicts too large a cross-section at an
energy near the ionization edge; the calculations must
be modified by adding an energy dependence to the GOS,
to bring this into agreement with X-ray absorption meas-

(9)

The generalized oscillator strength.- The first step towards ob-

urements

taining cross-sections is to calculate the GOS for a transition which ab-
sorbs energy E and momentum KK from the incident electron. In the hydro-
genic model, the initial and final state, u, and u, in Eq.(2.2), are
scaled Coulombic wave functions which yield an analytical for the GOS
which can be evaluated and integrated over scattering angle and energy
loss by means of a short (<100 line) computer progran&lol The GOS, as
indicated in the Section (2.1), is a fundamental property of the atom and
the full momentum-transfer dependence of the ionization cross-section is
implicity contained in it. The GOS for a given atom can be represented
comprehensively by a 3-dimensional plot of dfn(E,K)/dE as a function of
£n(Kao](2) and E. A surface resulting from that plot is called the Bethe
surfacetﬁ). As an example, the hydrogenic GOS for carbon K-shell excita-
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tion is shown as a function of E and ﬂn(KaD)(z) in Fig.1l. In this figure

two main features can be observed: First, individual curves show qualita-

tively the angular dependence of K-shell scattering, for different
amounts of energy loss. For an energy loss not much larger than

the threshold value EK, the scattering is forward-peaked ({.e., is of max

imum intensity at 6=0) whereas for large energy loss (several times Ek)

the scattered electrons are concentrated around an angle given by

(Ka0)2=E/R, forming a Bethe ridge which represents hard collisions, that

is, those with small impact parameter. Second, the energy dependence of

GOS is represented by cross-sections through the Bethe surface at con-

stant K: in particular, planes corresponding to very small K give the op-

tical oscillator strength, which is poportional to the photoabsorpticn

cross-section.

4 diy,

dE

levix10?] .

H8

%ﬁ

S500eV
= = 1000eV
P S Lo R R
i v >
E
Fig. 1. The Bethe surface for K-shell ionization in carbon, calculated

from the hydrogenic model(T).



The energy differential cross-section.-The number of incident
electrons scattered as a result of k-shell excitation into angles less
than @ and energy loss E can be obtained by integration of Eq.(2.1) over
appropriate limits of integration: (Kao);in and (Kao];ax, which may be ob
tained from the scattering kinematics (conservation of momentum and ener-
gy). The energy-differential cross-section, dck(a)/dE, computed from the

hydrogenic model for various values of o and E shows (Fig. Z) an approxi-

mate energy dependence of the form

»d—hﬁ «E % (2.4)
25 26 2.7 2.8 29 3:0
log, £ ———=
CARBON , Ez80keV
o

(mrad)
1000
100 ]
10

3 e +0

i 1
300 500 700 1000

Fig. 2. The K-shell energy-loss spectrum of carbon for 80keV incident
electrons and various collection semi-angle a(Ref. 7).
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Partial cross-sections.- The partial cross-sections Uk(a,A),

which specify the probability of k-shell scattering through angles up to
a and with energy losses covering a range A above Ek (the binding ener-

gy), is given by

Ep+A dck(a}

Uk(O:,A) =é 'dT— dE. (:..5)
k

For numerical integration of this equation, use was made of the approxi
mate power-law dependence, Lq.(2.4), to reduce the number of steps re-
quired, s being calculated for each energy increment. In Section 4 we
present some hydrogenic calculations for selected elements for comparison
with experimental results.

Integral and total cross-sections.- For large A, the partial

cross-section ok(a,A) becomes equal to the integral cross-section ok(a}
for k-shell scattering into angles up to o and energy loss above the
threshold Ek. Uk{a) can be evaluated numerically as:

2, dck(a) )
Gk(&) =/ E (I.E, {2.6)
By

where E, is chosen such that contributions to the integral from higher
energy losses can be neglected. In the limiting case a=m, Lq(2.6) gives
the total cross-section for k-shell scattering.

2.2.2 Hartree-Slater Model

A nonrelativistic Hartree-Slater central-field model was used by
(11) 5 e
to calculate cross-sections for ionization

of atomic K-, L-, and M-shells by fast electrons. The Hartree-Slaten ter
(12)

Leapman, Rez, and Mayers
minology was first used by Manson to indicate the use of Hartree wave
functions with the Slater approximation for exchange. Manson also pointed
out that the more usual Hartnree-Fock-Sfater terminology incorrectly sug-
gests an improvement on the Fock exchange.
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In the central field approximation, the radial part of the
single-particle orbital satisfies the Schrt’ dinger equation

h?  d¢R AL+

x~ — nf + {e - V(r) . g 0. (2.7)

Zmr

Here € is the single-particle energy eigenvalue. An interesting point

about this equation is that the potentialV(r) seen by an electron in the
orbital (nf) depends on the orbital. To solve this equation, Hartree(ls)
suggested the following procedure. By associating a charge density

p(r}=—4ﬂeRif
potential from the total charge distribution due to the electrons and the

(r) with each electron, we could construct a tentative

nucleus. Solving Eq.(2.7), we could obtain solutions Rnﬁ(r) which now
determine a new potential. This procedure is continued until the final
wave functions is self-consistent to a high order of accurancy.

Assumptions of the Hartree-Slater Model.- The calculations car-
(11)

ried out by Leapman, Rez, and Mayers are based on previous calcula-
tion done By kbnson(lz) and McGuire(14) who make use of the general con-
siderations mentioned above. In addition, the following assumptions are
made.

(1) Relativistic effects within the atom are neglected. Rela-
tivistic effects due to the high velocity v of the incident
electron are accounted by using Ey=(1/2)mV* instead of the
most general expression E=mc® -mc”.

(2) An atomic model is assumed. Consequently, solid state ef-
fects are neglected.

(3) Exchange between the scattered electron and the ejected
atomic electron is not taken into account, since this ef-
fect is negligible except for very high energy losses and
scattering angles.

(4) The initial and final states of the atom are expressed as
products of one-electron wave functions for a central at-
omic potential. Thus, wave functions of the electrons not
directly involved in the transition remain unaltered.

(5) The initial state is a one-electron Herman-Skillman wave
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function, a solution of the Schrédinger equation with
the self-consistent atomic potential

VEELE (r)=(2/1) (1-(142gn)exp(-22,/T)}, e

where Zy is the effective screened nuclear charge for a
1s electron. The final states are found by solving the
radial Schrddinger equation, Eq.(2.7), with the same cen
tral field for the continuum energies. The outer states
are normalized by matching Coulomb wave functions at lar
ge radius.

The generalized oscillator strength.- The GOS needed to calcu-

lated the cross-sections is calculated by computing the matrix elements
in the following equation (cf. Eq. 2.3):

dfnﬁ(E’K)= ZmOE

L |<el! |exp(ik-T) |ne>|2
dE {1

(2.9)
,h2K2

Here, n and £ refer to the initial and final state principal and angular
momentum quantum number, respectively, e and £' refer to the final state
with continuum energy € and angular momentum £' . The energy loss E is
related to € by E=s-En£, where l:;n£ is the binding energy of the initial
state. The computation of the matrix elements in Eq.(2.9) is carried out
(12)
spherical Bessel functions which leave a radial integral to be evaluated
numerically. The total GOS is obtained from Eq.(2.9) by summing over the

final angular momentum £' which is determined by the number of partial

following Manson , who expanded the operator exp (iK:T) in temms of

waves, that is, the number of terms in the superposition of one-electron
wave functions required to describe the final state. This number was
estimated as follows: the continuum wave function sees an effective poten
tial in Bq.(2.:7)

U ' 2
v =V(r) + AN CARAD: . (2.10)

eff 2
bnor

For large £', this is dominated by the second term, the centrifugal poien
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Liak. If the continuum energy is less than the centnifugal poten-
tiakl, overlap between the initial and continuum states is small and there
fore these values of {' will contribute little to the GOS. It was as-
sumed that most of the initial state is contained within a distance a,
(the Bohr radius), where the centrifugal potential is less or approxi-
mately equal to e, that is {ﬁ‘(£'+1)h2/2mga§}2e. For £=1000eV, typical-
ly 10 partial waves were required to describe the continuum wave fuction.
As an example of this calculations, in Fig. 3a is shown the GOS for tran-
sition into the continuum from the 2p subshell in Silicon.

The differential cross-section.- The differential cross-section,

written in terms of the scattering angle, yields a double-differential
cross-section which gives the energy differential cross-section per unit

solid angle Q:

dzcne(E,e)= 262 i c'ifnz (E,K)

T a@E = (211)

mov2E 6%+02
where h?K?/2mgEg=6%+62 and 6,=E/2E,. The last relation is obtained from
conservation of momentum and energy in the scattering process for E<E,
and 6<r . E is the energy lost by the incident electron with energy By
and 6 is the scattering angle.

The differential cross-section derived from the GOS by integra-
tion of Eq.(2.11) up to momentum transfer defined by different angular
apertures gives rise to an energy-loss spectrum which may be used to ob-
tain partial or total cross-sections. The energy-loss spectrum was com-
puted within this model up to some hundreds of eV above threshold for se-
lectea elenents. Some of these results are shown in Fig. 3b.

2.3 Teial-inelastic Cross-Sections

The total cross-section for inelastic scattering Oin is defined
as the sum of all possible inelastic-collisions which may result from dif
ferent processes. These processes are generally transitions of ground to
excited states, including discrete and continuum. In this section we pre-
sent two udifferent nodels to calculate oip.
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Fig. 3. (a) GOS for transition into the continuum from 2p subshell in

Silicon. (b) Ly 3 edges for 10mrad collection angle for ele-
nents in the third period(11).

2.3.1. Total-inelastic cross-sections based on the hartree-slater model

Inokuti et aﬁ.(is) have reported values of two parameters in-
volved in the evaluation of the cross-section for inelastic scattering of
fast electrons by atoms. Their calculations are based on a single-elec-
tron approximation using Hartree-Slater independent-electron wave func-
tions. In addition the first Born approximation is used.

When one integrates Eq.(2.1) over all possible values of momen-
tum transfer hK for a given excitation energy E corresponding to the
state n, one obtains a coulpact expression called the Bethe cross-section:
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o = 4maf(R/T){ M;(zn{32/1-82} - 8%) + C}. (2.12)

This expressions is actually the result incorporating relativistic ef-
fects, where B=v/c, Ay R, and T as defined in Section Z.1. The two
parameters M; and Cn are atomic properties derived from the GOS. In par
ticular, Mi is the density of the dipole matrix element and is given by

df |

C, being related to M; by
- 2
Cn = Mn(ﬂn <, * 11.2268). (2.14)

Any sum of o, over different n values has the same analytical dependence
on T and is characterized by two parameters Mi and C,. In particular,
the total inelastic cross-section, {.e., the sum of o over all n (discrete

(15)

and continuum energies), may be written as
= 2 2 2 _p2} - p?
o, = 4nal(®/T) { MZ_ (en{8? /1-8%} - 8% + C o)) (2.15)

where the total dipole matrix element square Miot is obtained by summing

Eq.(2.13) over all n, that is: M}  =1Z MZ. The second quantity in the
n

total cross-section is Ceot = Mot {£n(ctot )+11.2269}. According to the

general theory(ls) it may be evaluated by means of the relation

2

Mtotﬂn(c

ot =-2L(—1)+I1—12,where L(-1) is a quantity defined by

L(-1) = / (R/E) £n(E/R) %%—dE, (2.16)

and the quantities I, and I, are integrals containing the incoherent scat
tering function Sin(K) which is an internal state property. These quanti

ties are given by
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Iy™ ? 28, () (Kay) *d(Kap)?® , (2.17)
2 Zsin(K) T 2 2.18
I, = Z M, = =P} (a ) * difad?, (2.18)

(Kay)®

Thus, tn(ctot] can be computed from two items of information, namely, the
optical oscillator-strength distribution df/dE and the wave fuction of
the initial state (most commonly the ground state).

Using the parameters, Miot and Miot ﬂn(ctot), for different
elements(ls) we have evaluated Eq.(2.15) for 80keV incident electrons.
The results are presented in Section 4 for comparison with the experimen-
tal results,

2.3.2 Free electron theory

It is known from the work of Bohm and Pines(lﬁ) that electrons
in a solid can undergo collective or plasma oscillations of fairly defined

frequency. For a free-electron plasma the frequency is given by
w,= (ne?/me )2, (2.19)

where n; is the free electron density in the plasma and m and e the elec-
tron mass and charge respectively. If fast incident electrons of energy
E, traverse a sample, they are able to excite quanta of these oscilla-
tions, known as plasmons, of energy

E = . s
o = Ty (2.20)
In this scattering process the momentum and energy must be conserved.

This conservation yields an equation which relates the momentum transfer
hK to the scattering angle 6 of the incident electrons with momentum hf,
as follows:
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K2 =KTI i (2.21)

i

Here gl_= k6 and K, = keE, where 6, = EP/ZEO is the half-width of the
angular distribution of these scattered electrons. Typical values of the
plasmon energy Ep lie in the range 10-30eV.

The differential inverse mean free path for electrons which suf-

fer a loss Ep has been calculated(17} as a function of the scattering
angle 9:
dany) dbo) & | (2.22)
dan df 2mag 62 + 52

Ap is the mean free path for plasmon excitation, its reciprocal value is
nog, N being the electron concentration per unit volume and 9 the cross-
section per atom. Integration of Eq.(2.22) gives the integral cross-sec-
tion GP for plasmon scattering through any angle up to CI

gp = (es/nao) £n(ec/8E). (2.23)

Taking calculated values of 6.=k./k.(k,=critical wave vector and k=wave
vector of the incident electron) for different elements an E,=80keV, the
dependence of op on the atomic number Z according to Eq.(2.23) is given

in Section 4 for comparison with experimental data.

3. EXPERIMENTAL DETERMINATION OF INELASTIC CROSS-SECTIONS

In the Conventional Transnission Electron Microscope (CTEM) the
spectral energy distribution in the transmitted beam, which results from
the interaction between the primary electron beam of energy Eo and the
specimen, contains useful information concerning the physical and chemical
properties of the sample. The analysis of the energy of these transmitted
electrons is in essence a kind of spectroscopy called Electron Energy-
Loss Spectroscopy (EELS).

In order to carry out an energy-loss experiment to measure
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inelastic cross-sections we require: (1) a source of electrons, (2) a
suitable sample of the material to be studied, and (3) a device (spectro-
meter) for analyzing the energy of the transmitted electrons. In general,
these components can take a variety of different forms, but we are mainly
interested in an experimental arrangement which is compatible with the
operation of a CTEM. In this case, the source of electrons will be the
gun of the microscope and the incident electrons will be assumed to have
a well defined energy E, (say 80keV). Because we are using a microscope,
the incident beam will be capable of being focussed on to a specimen area
whose size and position can be controlled, and which can be imaged using
the normal optical system of the instrument. The specimen will be a thin
film or section of the material that we wish to study; some of its charac
teristics will be discussed in the next Section. The spectrometer is
placed after the specimen, as shown in Fig. 4, to analyze the transmitted
electrons,

«+— ELECTRON
SOURCE

CONDENSER OR
«— PROBE-FORMING
LENSES

SPECIMEN

POST-SPECIMEN
+— (PRE-SPECTROMETER)

LENSES
ELECTRON
SO-¥ ¥ DETECTOR
SPECTRUM
STORAGE/
DISPLAY

ELECTRON SPECTROMETER
Fig. 4. Typical EELS system; lens column can be either conventional or
scanning transmission microscope(24) .
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All the information that is obtained about the sample is contain
ed in the angular and energy distribution of the electrons that have
passed through the specimen. By studing these distribution, resulting
from the interaction between the incident electrons and the sample, the
required information relating to inelastic cross-sections can be meas-
ured. The method used to carry out the analysis is described below.

3.1 Sample preparation

There are many conditions which the ideal sample should fulfill
(i.e., have a clean surface, be homogeneous, etc.) and most preparations
methods involve a compromise with respect of them. The most obvious re-
quirement is that the specimen be transparent to electrons (with and
without an objective aperture in place). In other words, that the speci-
men be thin enough for an electron microscope investigation.

To perform energy-loss experiments we required thin uniform films
or sections of known thickness. The specimen thickness should in general
satisfy the relationship(ls) t<(Ain/2), where lin is the total mean free
path for inelastic scattering and t the specimen thickness, which for
80keV incident electrons and a typical sample containing light elements
(2<30) is in the range 20-60nm.

Thin carbon films were evaporated on mica then floated off, on
the surface of distilled water, by dipping them under the water and pick-
ing the up on 3-nm diameter copper grids (150 mesh per inch). These
carbon films were used to support thin polycristalline metallic films
which were prepared by evaporation in vacuo at a base pressure of about
1075 Torr. The film thickness of 33rnm Aluminum, 28nm Chromium, 24nm Iron,
and 48mm Copper were measured using a quartz-crystal thickness monitor
situated near the electron microscope grids. Because accurate film thick
ness measurements are of crucial importance in the present work the quartz-

crystal monitor was previously calibrated by interferometry.*

*Experimental details are available from the author.
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3.2 Collection and analysis of an energy-Loss spectrum

To characterize the interactions of the incident electrons and
the sample we collect all the transmitted electrons lying within a cone
of some semi-angle o (in a CTEM this angle is limited by an objective ap
erture located on the back focal plane of the objective lens) about the
incident beam direction, and then analyze these for their energy loss.
The result that we obtain from such an experiment is an energy-loss spec-
trun (ELS), in which we plot the transmitted signal intensity J as a func
tion of the energy-loss E for all the electrons scattered within the angu
lar cone a accepted by the spectrometer. Figure 5 shows schematically an
ELS. The spectrum consists of:

(1) A sharp peak at E=0 representing the elastically scat-
tered and unscattered electrons from the incident beam
(one normally refers to this as the zero-loss peak) .

(2) A broad peak in the range E=10 to 40eV indicating energy
loss due to excitation of plasmons or valance-electron
transitions. These two peaks lie in the region of the
spectrum known as the low-loss regions.

(3) An abrupt rise in the transmitted intqﬁsity representing
excitation of inner shell electrons to vacant states in
the continuum. This rise, in the high-loss region of the
spectrum, takes place above an energy loss equal to the
binding energy Ek, where k is the type of inner shell ex-
cited (k=K, 1, M, etc.).

3.2.1 Measurement of ionization partial cross-sections

The excitation edges in the ELS are normally used to identify
the presence of a given element within the area of specimen defined by
the incident beam of electrons. A quantitative estimation, giving the
number N of atoms of the element per unit area of specimen, is obtained
from the area Ik(a,ﬁ) measured directly under an excitation edge, after
extrapolating and subtracting the background wich precedes the edge (see
Fig. 6). In such a case, the formalism due to Egerton(lg)can ben used to
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Fig.
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Electron intensity J(E) as a function of energy loss E (the
energy-loss spectrum) for 80keV electrons transmitted through

a 30nm specimen of amorphous carbon. The spectrum is shown for
tiwo different values of collection semi-angle o. It exhibits
(from left to right) a zero-loss peak, a valenceexcitation peak
and an inner-shell edge due to excitation of 1s (K-shell) elec-
trons. For convenience of display, non-linear scales have been
used on both axes.

obtain the concentration N of a given element, £.e.,

_1, L@ 1

B A CRY A CRY I (3.1)

N

here Iz(a,A) is an area measured from the low-loss region of the spectrum

(Fig. 6) and ok(a,A) is a partial cross-section of the element, correspon
ding to inner-shell losses between E and Ek+ﬂ. The factor G allows for
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any difference in the detector gain between the low- and the high-energy
region of the spectrum.

Ey b

1 e I8 | JEE - ,—f,—[(ﬁ.;A)”-E;']

B

2

r = 2 log(L,/1,)/ log(E,/E,)
A= (I, I)(1-r)/(Ey-Ed )

L
Wl

Schematic energy-loss spectrum illustrating ene method of back-
ground fitting and measurement of the integral I (a,A) for quan

titative analysis.

Pig. 6.

There are two methods, direct and indirect, in which Eq.(3.1)
can be used to obtain partial ionization cross-sections. The direct method
(used for elements) involves knowledge of the concentration N per unit
area of specimen. This quantity is known if one takes the bulk density p
of the element and assumes a specimen thickness t, since N is related to
the concentration per unit volumen n by N=nt=gNgt/A, where A is the atamic
weight of the constituent atoms and N, the Avogadro's number. Knowing N,
it is possible to obtain the partial cross-sections from the same measur-
able quantities mentioned above (Lslic; Ik(a,A) and Ip(a,4)). The indirect
method (used for stoichiometric compounds) assumes, according to the
stoichiometry, the relative abundance N;/N; of the two elements in a com
pound. In this case the ratio of the two partial cross-sections Ok1(a,4)

and okz(a,ﬂ) can be obtained if two excitation edges in the same spectrum
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are measured under the same conditions, £.e., with the same a and A.
Ip(a,A) and G in Eq.(3.1) cancel giving

ckT(a,A} Ny Ik1[a,A) 5,55
ckz(a,A) N, Ikz(u,A)

where Ik1(a,A) and Ikz(a,A) are the quantities to be measured in the ELS
It is important .to point out that the ratio N1/N2 is independent of the
specimen thickness.

Measurement of areas in the ELS.- The area Ip(2,A) under the
low-loss energy region of the spectrum is obtained by straightforward
surmation of the channel counts. For measurements on inner-shell ioni-
zation edges, the background due to other loss process (excitation of
plasmons or valence-electron transitions) has to be stripped. The gener-
al method for background stripping is to define before the threshold ener
gy Ex a fitting region of interest, or fitting window, which is typically
50 to 200eV wide and where a power law AE = (Ref. 20) is adjusted to the

data. To determine A and r we have used the following fornulae(21):
A= (141 (1-0)/(E) " - B9, (3.3)
r=2 log(I1/12)/10g(E2/E1), (3:4)

where the fitting window (E,, E,) is divided in two halves (Fig. 6) of
respective integrals I, and I,. Once the fit is made, the power law AE™T
is extrapolated under the characteristic edge (Fig. 6) up to few hundreds
of eV. The area Ik(a,A] is then evaluated using the relation
I (a,8) = Zk+A
2

JE)E - P (€, + )" - BT, (3.5)

3,2.2 Measurement of total-inelastic cross-sections

The area I, under the zerc-loss peak, relative to the total
area IT under the energy-loss spectrum, can be used for measuring the
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total mean free path for inelastic scattering Ain’ according to the equa

tion

)\iz = (1 /1), (3.6)
If the thickness t is known one can find A by measuring I0 and IT.
These two quantities are obtained by straight forward summation of the
channel counts corresponding to the zero-loss peak and to the total spec-
trum (typically recorded up to 2000eV for analysis of light elements).
The total inelastic cross-section per atom is found using the relation
Oin=1/nAj,, where n is the concentration of atoms per unit volume of spec

imen.
3.3 Experimental details

The experimental system for recordlng the energy loss spectrum
(22). This consists of a JEM 100B transmis-
sion electron microscope combined with a custom-made nagnetlc spectro-

(23)

has been described previously

Using the electron microscope in the diffraction mode, a spot
diameter of about 4um at 80keV primary electrons is incident on the speci
men. The transmitted electrons lying in a cone of some width o and focus
sed on the object plane of the spectrometer by means of an intermediate
lens of the microscope operated in "high-resolution diffraction" mode (in
this mode the projector lens is switched off). The electron spectrometer
produces its energy dispersion by applying to the transmitted electrons a
magnetic field. Spectra are recorded by scanning the exit beam of the
spectrometer across an adjustable slit located at the spectrometer image
plane, causing electrons of a particular energy loss to fall onto a trans
mission phosphor screen with a resulting voltage at the output of the
photomultiplier tube,

The spectra are acquired in 1024 channels, of a TN-1710
Multichannel Analyzer (MCA), using a typical dwell time (the time for
which the data is stored in each channel) of approximately 40 msec. After
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acquisition the data is processed with the help of a TN-1117 Floppy disk
merory system (used for recording spectra, and loading the system operat-
ing program when necessary). This is controlled by a Texas Instruments
Silent 700 data terminal, which contains an alphnumeric keyboard and a
silent printer. In Fig. 7 recorded spectra are shown for the different
elements analyzed. The experimental inelastic cross-sections will be

given in Section 4 for comparison with the theory presented in Section 2.

- I e 28 & | 5 20

Fig. 7. Recorded spectrum from (a) a 33nm thick AE film, (b) a 28nm
thick Cr film, (c) a 24nm thick Fe film, and (c) a 48nm thick
Cu film.

4, COMPARISON BETWEEN CALCULATED AND EXPERIMENTAL CROSS-SECTIONS

In Section 2 the different models for calculating inelastic
cross-sections were presented. In this Section we will compare the re-
sults of calculations based on these models with experimental measure-

ments carried out for different elements ({.e., Al, Cr, Fe, and Cu).
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4,1 Pantial {onization cross-sections

The cross-sections for excitation of atomic electrons from the
K-shell in Al, and from the L-shell in Cr, Fe, and Cu is shown, as a func
tion of the collection angle, in Fig. 8. 1In this figure, the hidrogenic
calculations are compared with experimental measurements. For all the
elements studied, the experimental measurements show, within the experi-
mental standard deviation, a similar trend as the hydrogenic calculatians.
This similarity indicates that the hydrogenic model predicts well the
angular distribution of the scattered electrons which have excited inner-
shell atomic electrons. A similar comparison with the Hartree-Slater cal
culations is not possible, due to the lack of published data. However,
the angular distribution predicted by the Hartree-Slater model can be ob-
tained from Eq.(2.11); this equation shows that d?e/dEdR is proportional
to 1/6* + 62 . By integrating d”c/dEdQ over a unit of solid angle dg,
it can be seen that do(a)/dE is proportional to kn{1+(u/9EJ2}. In fact,
this results from small angle approximation which can be justified be-
cause we are in the dipole region (momentum transfer hk=0). In Fig. 8b
we compare a single calculation based on this model with the experiment.
Agreement is closer than with hydrogenic value, which may be a result of
the more accurate wave functions used for calculating the GOS.

Figure 8 shows the partial ionization cross-sections (for K-
shell excitation in Al, L-shell excitation in Cr, Fe, and Cu) integrated
up to two different energy windows A=100eV and A=200eV. In this figure we
compare the hydrogenic calculations with experimental data. On the one
hand, the experimental values do not lie consistently below or above the
values predicted by the hydrogenic calculations (of. figures). This in-
consistency can be attributed to the fact that the hydrogenic model does
not predict well the shape of the edge near the threshold. For example
the L-edge for Cr shows a slight peak at the threshold (see Fig. 7b) which
is presumably due to excitation of electrons from the 2p-subshell to the
partially filled 2d-subshell. This peak at the threshold contributes to
the partial ionization cross-section, so we expect the experimental meas-
urements to lie above the hydrogenic calculations, as observed in figure
8b. For the other elements studied (<{.e., Al, Fe, and Cu) the edges are
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Calculated and experimental cross-sections for excitation of

atomic electrons from the k-shell of Af, and from the L-shell
of Cr, Fe, and Cu.
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not peaked at the threshcld and the experimental values lie below the
hydrogenic calculations. That is, the hydrogenic model predicts slightly
high values for the cross-section. On the other hand, when the partial
ionization cross-sections for L-shell excitation (both experimental and
hydrogenic) are integrated up to an energy wuindow A=200eV, the agreement
between the experiment and theory becomes better (see Fig. 8 ). The disa
greement for small energy window (A<200eV) might be expected; since the
hydrogenic model in its basic form predicts too large a cross-section
near the edge, the program used for calculating the cross-section for L-
shell excitation adds an extra energy dependence to the GOS, to bring
this in to agreement with X-ray absortion measurements(g]. If this modi-
fication is not exact, the percentage error is less for large energy
window. For the elements studied the hydrogenic model agrees, within the
experimental standard deviation, with the experiment for an energy win-
dow A=200eV.

It is relevant to point out that the error bars shown along with
the experimental values represent the experimental standard deviation cal
culated from 10 separate measurements -n each element studied. In addition,
it is important to discuss possible sources of systematic error which
couldeffect our results. First, there may be a systematic error arising
from the thickness measurement. This error is estimated to be about 5%.
Secondly, error may arise both from the instrument itself and from the ex
perimental procedure. In extreme cases, this procedural error may be as
high as 20% (Ref. 19).

4.2 Totak-inefastic crhoss-sections

In Fig. 9 the cross-sections for inelastic scattering, based on
the Plasmon and lartree-Slater models, are shown as a function of the
atomic number (Z), for comparison with the experimental measurements. The
experimental values for Cr, Fe, and Cu are all greater than predicted by
Plasmon calculations, whereas for Al this model gives the best agreement.
This good agreement is no doubt because Al is more like a free-electron
metal than the other metals, as can be seen from the fact that the experi
mental plasmon energy (16eV) is approximately equal to that predicted by
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the free-electron plasmon theory (15.8¢V). For the other elements the
energy difference is appreciable (e.g., for Cr 18.5 and 27eV, for Fe 16.7
and 23eV respectively) so we might expect the cross-section to be given
more accurately be the Hartree-Slater model, as in fact is observed in
Fig. 9. For all, the experimental value is a factor of 2.6 less than
predicted by Hartree-Slater calculations. This large discrepancy is pro-
babily due to solid-state effects, which shift the oscillator strength to
higher energy loss. This shift can be seen from the fact that in a sin-
gle Al atom the ionization energy is 5.99eV, whereas in the solid the
plasmon energy is approximately 16eV. The energy shift decreases the
cross-section, since do/dE is proportional to(1/E)df/dE {cf. Eq.(2.1)}.
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Fig. 9 Inelastic cross-section as a function of the atomic number (Z)
for 80keV electrons. The calculations are based on the Hartree-
Slater and Plasmon model.
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5. CONCLUSIONS

Comparison between the hydrogenic model and experiment indicates
that for all the elements studied the former predicts well the angular
distribution of the scattered electrons which have excited inner-shell
atomic electrons. Although these measurements were carried out only for
a few elements we might expect similar results for other elements. The
comparison also indicates that the hydrogenic model is less accurate for
calculating L-shell cross-sections with low energy windows (A<200eV).
This discrepance between theory and experiment may be due to both atomic
and solid-state fine structure near the edge. On basis of the present
experimental results this effect was found to be less for a large energy
window (A=200eV).

Comparison between the different models for calculating total-
inelastic cross-sections and experiment indicates that no single model
predicts well the cross-section. However, the cross-section for metals
whose valence losses are mainly due to single-electron transitions should
be predicted more accurately be atomic models. Furthermore, for metals
(like Al) whose valence losses are mainly due to collective excitations,
the cross-section should be predicted more accurately by the plasmon
free-electron theory.

For estimating the local thickness t of a specimen, by means of
Eq.(3.6), it would be convenient to have a model for calculating the re-
quired mean free path for inelastic scattering. On the basis of the pre-
sent experimental results the mean free path for free-electron metals
(e.g. Mg, Ca, In, Sn, Cs, and Rb) can, in principle, be estimated using
the plasmon free-electron theory. For elements like Cr, Fe, and Cu the
mean free path can be estimated using the Hartree-Slater model. However,
in many cases (e.g., compounds and organic substances) it is not obvious
which model is more appropriate. In this case one must rely on experimen
tal measurements of the inelastic mean free path. B
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