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ABSTRACT

An integral representation of the Navier-sgtokes equations for an
incompressible viscous fluid is given. Making use of standard integral
transform methods and considering the longitudinal components of the
velocity field, thereby eliminating the pressure field, the Navier-Stokes
equations are cast in integral form. The structure of the resulting
equation for the velocity field, in time and space variables, is then
discussed. The stationary case is also considered.

RESUMEN

Se obtiene una representacidn integral de las ecuaciones de
Navier-Stokes para un fluido viscosc incompresible. Usando métodos con-
vencionales de transformadas integrales y estudiando la componente longitu
dinal del campo de velocidad, eliminando asi el campo de presién, se formu
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lan las ecuaciones en forma integral., Se analiza la estructura de la ecua
cin resultante para el campo de velocidad, asi como la dependencia espa-
cial y temporal explicita de los nficleos (kernels). Se considera también
el caso estacionario.

1. INTRODUCTION

The formulation of the equations describing the dynamics of a
fluid dates back to the first half of the past century. The first
formulation for a viscous incompressible fluid is due to C.L.M.H. Navier
(1822)(1). A few years later, the same equations were derived, without
the special assumptions regarding molecules and their interactions as
introduced by Navier, by Saint-Venant (1843)(?) and by stokes (1845)(®.
The foundations of the resulting equations are now well established and
stem from the conservation principles of mass, momentum and energy. When
these are supplemented by constitutive equations the result is a system
of partial differential equations characteristic of the classical theory
of fields for a system with an infinite number of degrees of fredom(4).

The intrinsically non linear character of the equations has
proved to be an unsurmountable difficulty that has severely restricted
their practical use. The limited understanding of the turbulent motion of
fluids and the lack of a comprehensive theory of turbulence is a consequence
of this mathematical compllcatlon(s)

Here, an equivalent formulation of the equations for a viscous
and incompressible fluid is presented. The motivation is that an
alternative point of view might help to gain new insights on this formida-
ble problem. The final result is a non linear integral equation for the
velocity field alone, involving a single convolution over the space and

time variables.
2. INTEGRAL REPRESENTATION OF THE NAVIER-STOKES EQUATIONS

As it is well known(4), the equations describing the space-time
behavior of a viscous and incompressible fluid are the so called Navier-

Stokes equations:
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v.0=0 , (1)
-g-fg + @00 = -v(p/p) + W+ F (2)

where U(T,t) is the velocity field at time t and at the point ;, p/p is the
pressure field divided by the (constant) density, v is the kinematic
viscosity coefficient and F a given external force density. This set of
four, coupled, nonlinear parabolic partial differential equations must be
solved on a certain domain @ with given initial and boundary conditions.
Let U(¥,0) be the initial velocity field and assume that U(%,t) vanishes
on all solid boundéries; the no-slip boundary condition holds on the
surface 30, (.e.,

UE,t) =0 T e

In order to transform the above posed problem into an integral
equivalent problem one can proceed as follows: The non-linear term is
expressed in terms of a suitably defined second rank tensor and the
resulting equations are then Laplace-Fourier transformed, Considering
only the longitudinal components, thereby eliminating the pressure fieid,
the equations are then transformed back by using the convolution theorem.
The final step is to restore the bilinear term and to integrate by parts.
The final result is a vector integral equation for the velocity field in
which the initial condition is incorporated in a natural way. All the
remaining quantities are either given or fully known.

The above sketched procedure is carried out explicitly in what

follows.
Define the symmetric second rank tensor V(¥,t) by
v=m s » Vi5 = UL . (3)

Equation (2) can then be rewritten, using the solenoidal character of the
velocity field, as

Boevev-wili=F-vw/p) . )
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Let ) be the Fourier transform of any of the components of the
fields:

= + >
£, = Jeik'rf(i-’,t)d? ;
The fields are assumed to vanish at infinity if the fluid is unbounded.
For a finite domain, which is usally the case, the assumption is that the
fields vanish on the boundaries and remain null on to infinity. In the
case of an unbounded turbulent flow the required conditions can be relaxed

(5,6)

by using instead generalized harmonic analysis Taking the space

Fourier transform of Egs. (1) and (4) leads to

kK-e=0 (5)
2 Uy - ik Y+ W = B+ ikndp 6)

>
Solving for py/p by eliminating the transverse components of U, one gets

e >
11:.1:]{_5.3&.
k k

/P =

= |y

Upon substitution of this result into Eq. (6) gives

2 G+ WK = (R Y+ B W %)

where Ty is the Fourier transform of the Oseen tensor:

1 o kK
(B) *~= taij- _1_;1_} . (8)
b . 7,8,9
Equation (7) is a well known integro-differential equation for m,( »8,9)

since Vk is explicitly given by
oo
-+ -+ ¥
Vk - u(_kl u(v dk

—-00

By taking the one sided Laplace transform of Eq. (7) it follows
that

Sﬁ(s - ﬁco * \)kzq(s = (ii-yks + .f“ks) * vsz.k ’
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here

oo

_f -st
e Jne fk(t) dt .

and ﬁko is the Fourier transform of the velocity field at time t=0. Next,

£

=
one solves for Uks:

=+ 1 vk? Lo
i, = g+ T +(F, _+ik.V ,
ks sz +S kO vk2+S k ks kg

and takes the inverse Fourier transform:

o]

o
ﬁs =1 [ e-lk'rﬁk dk
(zm? S

00

The result, in three dimensions, is

00 oo

0= J ar' T,(¢- 1,903 ,0) +J d¥'G(r - 1',5) (Tfs(r') -y -ys(}")),
- - ©)
where
3 roo __+.+ > —rm
Tys) =T | €T HRE K08 : (10)
(2m? vkZ+ § dmur .
and
ad o
= 2 ~iker
GEF,s) = — vk’e T,k
= (2m)? vkZ+ S
- 1TG,9) + 3 WLES - LE0) | (11)

I is the unit second rank tensor and VV is the dyadic representation of
the tensor that results from applying twice the gradient operator. Note
that

[VVf(r)] =aij%-§;f+_i_j I Y

12
Iss (12)
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Then, by taking the inverse Laplace transform of Eq. (9) and again making
use of the convolution theorem and of Eq. (12), one obtains
UE,t) = Jd?' I,(&- 1,00 ,0 +
t @ -~
-
]dt'J dr' g(r- 7', t-t')-l_?(?',t'} -7 -y(‘f',v):l[,
O -0
where

#(3/2, 3/2; - r2/4\t) o T’/ avt
) 7: (13)

Iﬂ{?st)'= 3/2 =
(4mvt) (4mit)

(1) = ;[ [1+-2;‘E} To@t) - le(F,t):l .

7 o1 @ - |1+ 8@
e 6L 0) (1 i ] () ] (14)

and

(15)

Li(T,t) =|— =
' 2] amt)V? g vz

(10)

vt] 6(1/2,3/2; - r%/4vt) 1 [ T
= erf .

¢(a,b; x) is the confluent hypergeometric function The final step
is to integrate by parts the last term in the second integral in order to
eliminate the differential operator. The boundary conditions are then
again implicitly incorporated into the equations. The expressions given
by Egs. (13)-(15) are valid for an unboundend fluid. Should this not be
the case, the kernels would show an explicit boundary dependence (their

geometry).
The resulting integral equation for the velocity field is

@, = L:i?' LG- 1,00 ,0)
Jdt'Ldr' GE-1', t-t) . B@,tY)
Ly (16)
dt' dar’ r I g@,en P (F-T, t-t") - U(@F",t")
D t

’ (dt' ar' U(r',t") O(r-1', t-t') « U(E',t") ,
0
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where
AR | 1 [ 6vt o
Pij(r,t) = 6ijL? I(r,t) - = {1 + :E—J Ip(;,t)J
_ (7
x;%; T8 [rz (wt] 30
v =2 + 1+ — Io(r,t) - — ILi(r,t)| ,
r? llOvt o J r
and
x, [12 2 [rz 6vt 1
Qi &= le—Ti(r,t) = = [— % 1 + — To(r,t) 5 (18)
r |r r l4vt g

for i,j = 1,2,3; the remaining terms have been previously defined. Again,
these last two expressions hold for an unbounded fluid.

The physical basis for Eq. (16) is clearly the same as for the
Navier-Stokes equations with the prescribed boundary and initial condi-
tions. However, from the mathematical point of view the equivalence is
not altogether simple. There is a single integral over each independent
variable left to be done. This means that the class of fields ﬁ(?,t) that
can be solutions of Eq. (16) is larger than those satisfying Eqs. (1) and
(2). The latter being of second order in the spatial deérivatives require
additional regularity conditions. The former is therefére what is called
a weak formulation of the problenm.

3. DISCUSSION

The above formulation is genmeral and should be adequate to
describe a stationary flow. The corresponding integral equation in this
case is obtained as follows.,

The first term in the right hand side of Eq. (16) is the one
that involves the initial condition. The kernel I,, given by Eq. (13),
exhibits the well known t /3 (t'd/Z, in d dimensions) persistence of the
initial condition for a diffusion process. The structure of the kernel
follows directly from the difussion operator (at - W?). In the opposite
limit of very short times the kernel is exactly a delta function, as it
should. The remaining three integrals vanish identically and the flow
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is that given at time t=0. In order to get rid of the initial state
consider the limit of very long times. Assume that the velocity field and
the external force density do not depend on time. Then, from Eq. (16),
® ®
U@ = l dr' U dt g(?-?,t)] cE(@Y)

-0 0

6 - [ a1 - B

+ Jr & G-y UEn) E-T) i@y (19)

where

- i 1 rl i 1
0= 2

is the Oseen tensor and
3rT

=+ 1
BWD(T)‘“? [l‘ )

is the dipole tensor. The proof that

J GF,t) dt (20)
ooo

> [ >
D = -| PG &, (21)
0

n

()

and

jé@ﬂ)u=o , (22)
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is sketched in the Appendix. Equation (19) is satisfied by-any steady
state flow with the prescribed ncn-slip boundary condition. It can also
be derived by carrying out the same procedure followed in the previous
section by dropping out the time derivative at the outset.

It is clear that the Oseen tensor appearing in Eq. (19) is the
Green's function for the linearized steady-state Navier-Stokes
equations(ll’lz). The tensor G plays the same role for the time dependent
case. The long range effect of an external force can clearly be seen from
the spatial structure of the corresponding kernels.

The last two terms in Eq. (16) are the contribution of the
convective term, hence their bilinear form. The vector structure is
different on each term as expected on general grounds. The original
nonlinear term, being quadratic in U, must lead to terms, in view of the
transformations that were used, of bilinear character. Integrands of the
form UinSijk, with the summation convention, are to be expected. Symmetry
arguments lead to a spherically symmetric third rank tensor:

Sige = X XNt (1) + (X6, + 2.6, + X 8;58(r,t)

which, upon contraction with a bilinear form, gives rise to terms whose
tensor nature is precisely that found in Eq. (16).

The time and spatial structure of the kernels, defined by Egs.
(17) and (18), stems essentially from the overall structure of the
differential equation; the linear part defines the basic features of the
kernels.

In summary, the integral equation for the velocity field, Eq.
(16), is an alternative formulation of the Navier-Stokes equations. As
such, it has a richer structure in view of the explicit details amenable
to analysis; it might be usefull to tackle certain formal problems
connected with the global existence of solutions and it seems to be
specially suited to obtain numerical solutions. The use of an integral
equation, such as the one presented here, to study certain aspects of
turbulent flow, could prove to be more than an academic exercise.
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APPENDIX

In order to prove relations (20)-(21) one can proceed as

follows{u’ls) .
Let
K(r,t) = Lt - 2 Lt
i

with I, and I, given by Eqs. (13) and (15), then

» o 1 . [ )
JOK{r,t) dt = Judt [E;-;a er l;/:v%}

(\)t e_rz/‘h/";'!
er, (41Tvt)3;2J (A1)

-1 I $(3/2,5/2; - s*) ds = (16mr) ",
12m/mr 7y

also

Jlr Talr,t) dt = (tlrrv“r)"1 ;.
0

(A2)

From Eqs. (14), (17) and (18) one can see that

-+ >
'L

1 [romo - xK(r,0)| 3 [oKer,0) - Lt

(7]
~N

Lg
-

+
~

u
—

[% K(r,t) - = Io(r,t)]

* Ta s il 30 1
[— [s i Ty lEHR = K(r,t)J ,

Hy o

' _r_; T thJ T
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r?)

z (
G0 =5 [ Zxen -2 1+ L)

Using relations (Al) and (A2) to evaluate the integrals in G, P and 5 one
gets Egs. (20), (21) and (22).
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