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An integral representation of the Navier-Stokes equations for an
incompresslble viscous fluid is given. Making use of standard integral
transferm methods and considering the longitudinal components ef the
velocity field, thereby eliminating the pressure field, the Navier-Stokes
equations are cast in integral formo The structure of the resulting
equation for the velocity field, in time and space variables, is then
discussed. The stationary case is also considered.

RESUl-lEN

Se obtiene una representación integral de las ecuaciones de
Navier-Stokes para un fluido viscoso incompresible. Usando métodos con-
vencionales de transformadas integrales y estudiando la componente longitu
dinal del campo de velocidad, eliminando así el campo de presión, se form~
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lan las ecuaciones en forma integral. Se analiza la
ción resultante para el campo de velocidad, así como
cia! y temporal explícita de los nGcleos (kernels).
el caso estacionario.

1. INl'RODUCfION

estructura de la ecua
la dependencia espa--
Se considera también

The formulation of the equations describing the dynamics of a
fluid dates báck to the first half of thc past century. The first
formulation for a viscous incompressible fluid is due to C.L.M.H. Navier
(1822)(1). A few years later, the same equations were derived, without
the special assumptions regarding molecules and their interactions as
introduced by Navier, by Saint-Venant (1843)(2) and by Stokes (1845)(3).
111efoundations of the resulting equations are nowwell established and
stcm froro too conservatían principIes oí mas s , moroontum and energy. When

these are supplemented by constitutive equations the result is a system
oí partial differential equations characteristic oí the classical theory
of fields for a system with an inf ini te number of degrees of fredom(4) .

The intrinsically non linear character oE the equations has
proved to be an unsurmountable difficulty that has severely restricted
their practical use. The limiteu understanding of the turbulent IllOtion of
fluids and the lack oí a comprehensive theory oí turbulence is a consequence
of this mathematical complication (5).

Here, an equivalent fonrnliation of the equations for a viscous
and incOl'11'ressiblefluid is presented. The motivation is that an
alternative point of view might help to gain new insights on this tonnida-
ble problem. The final result is a non linear integral equation for the
velocity fieId alone, involving a single convolution over the space and
time variables.

2. INTEGRALREPRF.SENfATlONOF1liE NAVIER-SfOKESE<;UATlONS

As it is well known(4), the equations describing the space-time
behavior of a viscous and incomprcssible fluid are the so called Navier-
Stokes cquations:



V. u o

au + (U, V)U = -V(p/p) + vV'U + tat

S9

(1)

(2)

where U(r,t) is the velocity field at time t and at the point ~, p/p is the
pressure field dividcd by the (constant) density, v is the kinematic
viscosity cocfficient and t a given external force density. This set of
iour, coupled, nonlinear parabolic part.ial differential equations nn.lSt be
solved on a certain uomain n with given initial and boundary conditions.
Let U(r,O) be the initial velocity field ana assume that O(r,t) vanishes
on all solid boundaries; the no-slip bo,mdary condition holds on the
surface 50, -t. e. ,

U(r,t) = O

In order to transfom the aboye posed problem into an integral
equivalent problem ene can proceed as follows: Thc non-linear term is
expressed in te~ of a suitably defined second rank tensor and the
resulting equations are then Laplace-Fourier transfonned. Considering
only the. longitudinal canponents, thereby eliminating tRC pressurc field,
the equations are then transforrr~d back by using the convolution theorem.
The final step is to restore the bilinear tem and to integrate by parts.
The final result is a vector integral equation for the velocity field in
.11ieh the initial condition is incorporated in a natural way. A1I the
remaining quantities are either given or fulIy known.

The aboye sketehed procedure is carried out explicit1y in what
follows.

Define the S)'!l1Iletricsecond rank tensor !:(r,t) by

v.oo .t. e. , (3)

Equation (2) can then be Tewritten, using the solenoidal character of the
velocity field, as

~
au + v. V - vV'U • t - V(p/p)at - (4 )
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Let fk be the Fourier t ransfonn oí any oí the components oí the

fields:
00

fk J eik.;f(r,t)dr .

The fields are assurned to vanish at infinity if the fluid is tmbotmded.
For a finite domain, which is usally the case, the assumption is that the
fields vanish on the botmdaries and remain null on to infini ty. In too
case oí an tmboundedturbulent flow the required conditions can be relaxed
by using j.nstead generalized hannonie analysis (S.6). Taking the space

Fourier transform of Eqs. (1) and (4) leads to

• 7

ik • ~ + vk'~

(S)

(6)

Solving for Pk/ p by eliminating the transverse eomponents oí Uk one gets

ik .•
Pk/p • - • !1<

k'
k k'

--'¥k'-
k k

Uponsubstitution of this result into Eq. (6) gives

a .•.•.•.• 'T
- lI< + vk'~ = (ik' Se + !1<) • vk fr ,3t

where !k is the Fourier transfonn of the Oseen tensor:

(7)

Equation

sinee '!í<

= _1 l(6i.- kikiJ
vk' ) k'

(7) is a well knownintegro-differential

is explicitly given by

(8)

equation for~. (7,8,9)

By taking the one sided Laplaee transform of Eq. (7) it follows

that

si\s - 1\0 + vk'l\s (ik '!I<s + fks) . vk':!k



61

here ~
fks = J,e-stf/t) dt

and UkOis the Fourier transfonn of the ve10city fie1d at time t = O. Next,

ane salves far UkS:

and takes the inverse Fourier transfonn:
~

L 77
U = _1_ e-ik''U dk

s (2n)' ks

The resul t, in three dimcnsions, is

J dr' 10(r- r',5)U(r',O) +J dh,(r- r',5)¡¡
s

where
-~ -~

(f (r')-V'.V (r')),
s -s

(9)

and

10(r,s)

- 7

G(r,s)

e-r/STV

4lTvr
(10)

Ilo(r,s) + ~ W[lo(t,S) - 10(t,O)] (11)

l is the tmit second rank tensor and ViJ is the dyadie representation oí
the tensor that results from applying twice the gradient operator. Note
that

[W f(r)] .
.J

(12)
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111en,by taking the inverse Laplace transfonn of Eq. (9) and again making
use of the convolution theorern and of Eq. (12), ane obtains

U(r,t) = J dr' 1o(r - r' ,t)iJ(r' ,O) •
t 00 _00

Jdt'J dr' Cier-r', t-t')'f(r',t') - V' .y(r',t')].
o _~

where
$(3/2, 3/2; - r'/4vt)

(hvt),¡, (13)

G(r,t) = r[ [1' ~:J10(r,t) - 21,(r,t)] •

~ [6I¡(r,t) - [1 • ~]Io(r,t) ] (14)

and

(15)I,(r,t)
=[vt1 4>(1/2,3/2; - r'/4vt) = _1_ erf [_"_1
r' J (4nvt) ,/, Bnr' l2U¡

$(a,b; x) 15 the confluent hypergeometric function(lO). 111efinal step
is to integrate by parts the last tenn in the second integral in arder to
eliminate the differential operator. 111ebouodary conditions are then
again implicitly incorporated into the equatiolls. The expressions given
by Eqs. (13)-(15) are valid for an unboundendfluid. Should this not be
the case, the kemels would showan explicit bouodary dependence (their

geanetry) .
111eresulting integral equation for the velocity field is

U(r,t) '"'i:rtex>Io(r - r' ,t)U(r' ,0)
'J~t'Ldr' (¡(r-r', t-t') .t(r',t')
(~ (00 -+-+,-J <lt'rdr' ~i_hiJ(r',t'). p (r- t', t- t'). D(r',t')
o t
( -Jo-+--+ -Jo"'-+ ;t-+

- ldt' drl U(r',t') Q(r-r', t-tl).u(rl,t') t

o

(16)
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v,rhere

x.x.
+.2-1.

r'

and

~ r6 1 (6vtJ lPij(r,t) = 6ijLr I,(r,t) - r [1 + -;;- Io(r,t)J

l-Sr r' 6vtl 30 J
-[-- + 1 + -j Io(r,t) - - I,(r,t)r lOvt r' r

(17)

ll2 2 r r' 6vt]-l,(r,t) --[-+1'-
r r 4vt r2

1
Io(r,t) J . (18)

for i,j ""1,2,3; the remaln1I1g tcnns have becn previously defined. Again,
these last two expressions hold for an unbounded fluid.

The physical basis for Eq. (16) is clearly the same as for the
Navier-Stokes equations with the prescribed boundary and initial condi-
tions. Ho~~ver, fram the mathematical point oí view the equivalence is
not al togethcr simple. There is a single integral ayer each independent
variable left to be done. This means that the class of fields U(-::,t)that
ero,be solutions of Eq. (16) is larger than those satisfying Eqs. (1) and
(2). The latter being of second order in the spatial derivatives require
additional regularity conditions. The former is therefore what is called
a ""ak fornulation of the problem.

3. DlSUlSSION

The aboye formulation is general and should be adequate to
describe a stationary flow. The corrcsponding integral equation in this
case is obtained as follows.

The first term in the right hand side of Eq. (16) is the one
that involves the initial condition. The kernel lo, given by Eq. (13),
eyJ1ibits the well known t-'!' (t-d!2, in d dimensions) persistence of the
initial condition for a diffusion process. Thesttucture oí tite kernel
fo11ows directly from the difussion operator (a

t
- vV'). In the opposite

lirnit of \'cry 500rt times the keI11el is exactly a delta function, as it
should. The remaining three integrals vanish identically and the flow



64

is that given at time t = O. In order to get rid of the initial state
consider the limit of very long times. Assumethat the velocity field and
the external force density do not depend on time. Then, froln Eq. (16).

~ ~ j ~ [J ~ ~ ,~ ~U(r) dr' dt ~(r - r' ,t) J • F(r')
_00 o

00

~ ~ [J ]_I~ .•••. +-+-+
:::: U(r')' dt f(r- r',t) 'U(r')

1r - r'l o
00 00

( ~ U(;') [J 0(; - ;, ,t)dt] •U(h-J dr'
-00 o

Hence
00

~~ J d;'
..,.. -+ -+-+

U(r) !(r - r') • F(r')
_00

00

( ~ ~ ~ U(h . ..• -+ •••••

+ J dr' (r-r') • º(r - r') • U(r')
_00

where
~ 1 ( ~~ 1

!(r) = 8nvr [1 + E.!...
- r' J

is the Oseen tensor and

is the dipole tensor. The proof that

(19)

~ J G(;,t) dt (20)!(r) =
000

~ ( ~
p(r) . - J .!.'(r,t) dt (21)

o
and

00

( ~~ (22)J Q(r,t) dt • O
o
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is sketched in the Appendix. Equation (19) is satisfied by 'any steady
state flow with the prescribed ncn-slip boundary condition. It can also
be derived by carrying out the sane procedure followed in too previous
section by dropping out the time derivative at the outset.

It is clear that the Oseen tensor appearing in Eq. (19) is the
Green's function for the linearized steady-state Navier-Stokes
equations(ll,12). The tensor ~ plays the sane role for the time dependent

case. The long range effeet oí an externa! force can clearly be seen from
the spatial structure oí the corresponding kernels.

The last two terms in Eq. (16) are the contribution of the
convective terrn, hence their bilinear fonn. Thevector structure is
different on each term as expected on general grounds. The original
nonlinear tenn, being quadratic in n, nnlSt lead to tenns, in view of the
transfonnations that "''ereused, oí bil inear character. Integrands of the
form U,U,S, 'k' with the sumnation convention, are to be expected. Synunetry

1. J 1.)

arguments lead to a spherically synunetric third rank tensor:

which, upon contraetían with a bilinear form, gives rise to terms whose
tensor nature is precisely that found in Eq. (16).

The time and spatial structure of the kernel s , defined by Eqs.
(17) and (18), stems essentially from the overall structure of the
differential equatían; the linear part defines the basic features oE the
kernels.

In surnmary,the integral equation for the velocity field, Eq.
(16), is an alternative formulation of the Navier-Stokes equations. As

such, it has a richer structure in view of the explicit details amenable
to analysis; it might be usefull to tack1e certain formal problems
connected with the global existence oí solutions and it seems to be
special1y suited to obtain nurnerical solutions. The use of an integral
equation, such as the one presented here, to study certain aspects oí
turbulent flow, could prove to be more than an academic exercise.
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APPENDIX

In oTdeT to pTove Telations (20)-(21) one can proceed as
follows(14,13) .

Let

K(T,t) • 1,(T,t) - vt l,(T,t)
T'

with 1, and 1, given by Eqs. (13) and (15), then

00 ~l r'f dt - eTf --'::_J
, 8n T' l2IVf
(vt] _r'/4"'l

- tT' (4:vt) '/' J (Al)

a150

1

12nliTvr
f $(3/2,5/2;
,

- s') ds
-,

(16n"T)

J 1,(T,t)
e

-,
dt = (4nvT) (AZ)

From Eqs. (14), (li) and (18) one can see that

~(r,t) :! [I'(T,t) 2K(T, t)]
~~TT
+-

T'
[6K(T,t) - 1,(T,t)]

P(T,t) = 1 [%K(T,t)
1 1,(T,t)]T

~~[~[5
T' , 30 1TT

+- +_1 l,(T,t) - -; K(r,t)J
r' 2vtJ



Q(r,t) = f [ ~2 K(r,t) 2
r

67

Using relations (Al) and (AZ) to evaluate the integrals in Q, r and Q one
gets Eqs. (20), (21) and (22).
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