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the coefficients of this master equation satisfy a complicated auxiliary
integro-differential equation. For small values of the Kubo number, the
master equation reduces to an approximate generalized Fokker-Planck
equation. The diffusion coefficient is explicitly written in terms of
correlation functions. Finally, a straightforward and elementary second-
order perturbative treatment is proposed to derive the same approximate
Fokker-Planck equation.

RESUMEN

Con la ayuda del teorema de Novikov es posible obtener una ecua-
cifn maestra para un proceso Gaussiano al azar, multiplicativo, coloreado;
los coeficientes de esta ecuacifn maestra satisfacen una ecuacidn integro-
diferencial auxiliar complicada. Para valores pequeios del nfimero de Kubo,
la ecuacidn maestra se reduce a una ecuacidn generalizada de Fokker-Planck
aproximada. El coeficiente de difusidn se presenta explicitamente en tér
minos de funciones de correlacidn. - Finalmente se propone un método direc-
to y elemental de perturbaciones de segundo orden para obtener la misma
ecuacidn Fokker-Planck aproximada.

1. INTRODUCTION

There has been in recent times a growth of interest in the
derivation of master equations for stochastic processes with arbitrary
spectra and correlation times. In the process of development of new
methods to study this problem, a theorem established first by Furutsu,
Donsker and Novikov(l) for Gaussian noises and afterwards generalized to
arbitrary Gaussian and non-Gaussian fmlctionals(z’s) has been of
considerable value. Interesting examples of the use of these powerful
theorems in the derivation of genmeralized Fokker-Planck equations for
different physical systems may be found in the papers cited above, as well
as in Refs. 4 and 5.

In this paper we approach the same general problem and use the
method based on Novikov's theorem to perform an efficient derivation of
the master equation for a coloured, multiplicative, Gaussian noise.
Similar results are presented in Ref. 4, the fundamental difference being
that here we are able to go a step further in obtaining a closed formula
for the response function, (see Eq. (21) below without resorting to the
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operator method of Martin, Siggia and Rose, or to any other perturbative
method (see Sections 2 and 3)).

As is well known, despite the fact that one is able to construct
generalized Fokker-Planck equations for arbitrary noises, they often are
of little value as closed expressions due to their formal nature. They
become useful in practice only when they can be reduced to second-order
equations, either due to particular properties of the system, or by means
of approximations. Since the latter seems to be the most frequent case,
we include in Section 5 a separate derivation of the generalized Fokker-
Planck equation for coloured, multiplicative noise with a small Kubo
nunmer.(ﬁ} This derivation, which is based on a perturbative method, is
unusually simple and unsophisticated, and perhaps more appropriate for
pedagogical use than are most of the known derivations.

With the exception of Section 5, we limit our study to Gaussicn
noises, just for simplicity purposes, since most of the results take on
a much more elaborate form in the general case. There exists no problem
of principle, however, in extending the treatment to arbitrary
distributions for the stochastic force, using, e.g., the method developed
by Bochkov, Dubkov, Malakhov and others, to which we refer the interested

readertz’s].
2. DERIVATION OF A MASTER EQUATTON
Consider a dynamical system represented by the equation*
X, = f,&D) +g Kg @) €]

*
Instead of Eg. (1), we should consider in principle the more general
equation of motion

x =f (x,£) + K (x,t; E(t))
fa e et &

In many of the results that follow, the substitution 9qrbg > Ky can be
directly performed. In some equations, however (see, e.g., Eq. (23)), the
factor g occurs alone; in these instances the stochastic function
Bxa(t)lagi(t) would appear instead of the sure function ggg. This
complicates the expressions, but does not substantially modify the physics;
hence for simplicity we have chosen the (linear) multiplicative noise
problem defined by Eq. (1).
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where EK(t) are arbitrary Gaussian, not necessarily stationary, random
functions with zero mean value and with a correlation tensor

€, (O, (5)> = 9, (65) )

X is a vector in (n-dimensional) phase-space, and a summation is implied
over repeated indices, both Greek and Latin.

Let R(Sf,t) represent the density of systems at point X and time
t, and let X(t) represent the solution of Eq. (1) such that X(t=0) = X,.
We then know that the function

R(X,t) = (X - X(t)) (3)

satisfies the stochastic continuity equation(7’8]

aR 8. =y
-;)Tt""aTaxaR"'U (4)

subject to the initial condition
R(X,0) = §(X- Xo) . (5)

We are assuming that each member of the ensemble starts from the same
initial condition X,; otherwise one would have to write
R(i,O) = s(i- ia(ﬂ)) instead of Eq. (5), and average over the distribution
of X 5(0)-

By Eq. (1), Eq. (4) becomes

R . 9 - 6
5 " T)?('; fuR axX gaxEKR : (6)

To obtain an equation of evolution for the average of the phase-

space density over all realizations of E(t), W(X,t) = <R>, we take the
average of Eq. (6):

W, 3 rw=._9. 7
E 3 £ ax_ By 5 ® : Q)
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As is clear from physical considerat -ns, the function W is just the phase-
space probability density; a proof of this may be found in Refs. 8 and 9
In order to find a more suitable expression for the r.h.s. term

of Eq. (7), we use Novikov's theorem{l), which in our notation reads
= SR(t)
<EK(t)R(t)> = Jdtlp (t,ty)< GE (tT i (8)

This formula is valid for any Gaussian random function £(t) with zero
average. The integral extends over the region in which the functions are
defined. In the present case we realize from causality considerations
that R(t) depends on £ (t;) for t; st only (see Eq. (1)); hence since our
initial time is t=0, the integral runs from 0 to t.

Taking into account that R is a functional of E‘,n through i(t],

we write Eq. (8) as

t IR(t) Sxp(t)
<E (DIR(E)> = J e ‘W&‘J
) 5 td . xB(t) 9
__QTBth(tt)<(t)55:(t_J> : )

In writing the second equality, use was made of Eq. (1) and of the fact
that the remaining terms of the integrand do not depend on ;8

By intreducing the function g(s,t), which may be interpreted as
a short of weighted, non-averaged response function:

t

6x (t)

c’;KB(S,t] J dt,p, (s,t1) 5""&*1'5" ’ (10)

we can write Eq. (9) as
. 4

<5K(t)R(t)> = axB<;KB(t,t)R(t)> (11)
and Eq. (7) transforms into

oW 9 - _0d _a

3t faw = o Bax 3, C BR d ’ LY

o o B
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with Teg = zKB(t,t). To calculate ¢ we perform a formal time integration
of Eq. (1) (X' stands for X(t')):

t t
xB(t) = Jodt‘fs(i',t') + Jodt'gsx(;',t')gxft') * X g (13)
and take the functional derivative with respect to En(tl):

€ t
6x,(t) ; sE,(X",t") j 885, (X',t")

B -
SE‘n f - -Tﬁnrﬁj—“ ' ng ty EK(t') * an(x(tl)'tl)'

£ ty (14)

The lower integration limit is once more due to causality. Since by Eq.
(1) we have for t; st

of, (X',t")  [6g, (x',t") ax, (X',t") 6x_(t")
B "Bk T B
GV NGV }Ex(t s VG vl

Eq. (14) can be written as

8x () ’ akg(X,t") 6x (¢") .
w e T | TEEy w e 2an(K(£1),t2)
t

1
By multiplying this result by wKn(s,tl) and integrating over t: we obtain,
after changing the order of integration in the first r.h.s. temm,

(& R, £ &
() = |t —Brrr it (5,60 + [ ey, (.88 G150
0 i i 0 (16)

We write the solution of Eq. (16) as
t

£ g(sot) = [ﬂdt' Gy (688, B0 (528 an

where the Green function satisfies the differential equation

) NG ‘
Go;ﬂ(t’t ) = _ﬁ;\m G)\B(t’t ) ’ [18)
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and is subject to the condition
Gya(tst) = 8g ; (19)
The solution of Eq. (18) is

Gusct,t') = m (20)

and Eq. (17) gives therefore

" 1 ] axs(t) +| '
CKB(S,T—) - Judt Ven (55t") m gy, (Xx',t") (21)

Notice that this is an exact solution for the response function and it

can be calculated in some particular cases. We give explicit results for

the linear general case and for the white noise problem (See section 3).
A comparison with Eq. (10) shows now that

Bxg(t)  axg(t) R
T T e BT 22)

With this result, Eq. (12) transforms into

3 5 - B (1)

ax}\(t')

W ;
b f N % o 4R Y

at BXOL axa QXB 0

8y (X"t My, (£,81)>
(23)

This is an exact result, but also a formal one, since it still contains
the non-averaged distribution function R(?,t); in fact, it is an equation
of infinite order for W, as we shall see below. Since our formal
procedure has implied everywhere the usual rules of calculus, it must lead
in the white-noise limit to the results of the Stratonovich treatment(lo’ll);
we will show that this is indeed the case (see Eq. (34a) below).
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3. GENERALIZED FOKKER-PLANCK EQUATION
To obtain a master equation for W(;,t) it is necessary to perform

explicitly the average expressed in the r.h.s. term of Eq. (12) or (23).
This step is straighforward when g is a sure function, since then

<TyaR> = LW (24)

and Eq. (12) reduces to

W 3 _ 9 9
3t W T 7w faxmc ke W -
This result can be cast into the usual form of a Fokker-Planck
equation:
W9 _ 3
7 * 3 B = xax; ag" =
o o B
with
g
X,t) = ak 26b
Ba(x’t) fa " BxB ';KB b
and
5 = 26¢C
DaB (x,¢) Sax®k8 : (28¢)

Owing to the symmetry of the second derivative in Eq. (26a) we may use

instead of Da the symmetrized diffusion coefficient:

B
% gy mik 26d
D;B(x’t) Z (gachB * gBKCm) E {ehdg

Eq. (24) is exactly true only in particular instances. One is
the linear (sc-called Langevin) case, when Eq. (1) reduces to

%, = a,a0)% + b (0) * g (DE® . @7
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Assuming the matrix M(t) to exist, such that
M'M=-a ; (28)
the solution of Eq. (27) is

t

Xy = 07, | dtady (€)1, (2) + By (EE (D] + D OMED], X, ()
tl

whence
ax[!t(t) = -1 M(t"!
—B-Y\-IET)—' M " (EIM(t )]av
Introducing this result into Eq. (21) we obtain a sure value for f:
|r1;
= 1 1 2 '
tglEr) = | AU (661D M) (M, (80, (£ (29)

Hence Eq. (26a) applies, with

B, (X,t) = a,Xg * b, , (30a)
t

Da(®) = g, (M2 () Ldt'wmft"')va(*-“%n“') . G

It is worth mentioning that these results apply as well to the
generalized Langevin equation (with memory):
t

. (
= Jodt' baﬁ(t- t')xB(t|) * gax(t)sx(t) (at)

since this equation can be cast into the form (27) by means of a Laplace
transformation. (4,5,12) Note that the only condition on Eq. (27) was that
the distribution of £ is Gaussian with <&> = 0.

Let us now consider another particular instance in which Eq.
(24) holds, namely, the white-noise problem, characterized by a
correlation function of the form

ha(ts8) =2, (@8CE-8) . (32)
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In this case Eq. (21) reduces to
7 e S -
CKBtt’t) - YKn(t)gﬁn(x't) (33J

and hence, according to Egs. (26b,c),

g aD ag
> i oK - af _ Bn -
Bt = £ * Y 3 Bon " K YR, T BaxEy 0 (%)
Do (%st) = YieoBux 8pn * (34b)

Notice that the drift coefficient contains the additional contribution
that arises from the multiplicative nature of the stochastic force. This
is the well-known extra term appearing in the Stratonovich treatment and
absent in It8's treatment of stochastic differential equations.(lo'u)
These particular results have been obtained through various procedures;
see, ¢.4., Ref. 6.

In the more general case, in which the external force is not
linear and the noise spectrum is coloured, Eq. (24) does not hold exaclty.
In order to find in this case an expression for <C1<BR> in terms of W, we

apply the Bochkov, Dubkov and Malakhov (BDM) formula(z)

) > 31 §"p o §"Q >
<PQ> = <P><Q> +mE1 = J"'J< SE(t1) -~ 0E(ty)  S&(T1)**3E(Ty)

2m

m

I lp(ti,'[i)dtid'[i >

i=1

valid for any pair of functionals P,Q of the Gaussian random variable E.

For P = Txg and Q = R, we obtain

e Vo <ooxe =
<CKBR> - <;K8>W =] JIdt dt wij iy AR e (Gﬁi(t') >(5§j(T‘)> + ses
( L g () RS ®)
) det A A NG AN O] T L
= g 0o "o KB F ' 3
x dt <3X\)(t') g\)i(x LB ) Qiu(t st) B (36)

U o
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In writing the last equality we have used Eqs. (3), (21) and (22), and the
fact that R is the only function within the integral that depends on X, .
It is clear that each time m increases by one, an additional
noise factor g and an additional correlation | (through the fumction r)
appear. This means that if y has a finite correlation time Tgs EVETY New
term in Eq. (36) is of relative order |g|r_.. This factor is equivalent to

(13)

the Kubo number encounttered in the literature Whenever |g|t.<<1,

it is legitimate to neglect these terms and to use the approximate result

<CygP = Ty W (37)

Under these circumstances, Eq. (12) (or (23)) reduces to the approximate
Fokker-Planck equation

BW 8
3t g B T Tax— (38)
with
g aD 3<g, >
> _ akK _ of KB .
B,(x,t) = £, + “Teg ” 3x =L B B (39a)
B R B
and
L
Dyg(st) = gy <Cyg? (39b)

The diffusion coefficient may be written once more in its symmetrized form:
(x t’) _2' (gaKQZKB) * gBK<CKa = ) (39(:)

The averaged function Ty’ appearing in Eqs. (39) is, according
to Bq. [21).

t ax (t)
T g " Jdthp (t,t")< —-—(—;T gln(x t')> (40)

hence, its explicit calculation requires further approximations. If the
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effects of the stochastic force on §(’c‘) are assumed to be small during
the time interval t., the variable X(t') in the integrand may be replaced
by %(t'), which is the value of X at time t'<t such that it evolves
deterministically towards X(t) = X. This is true, in particular, within
our approximation (|g|t. << 1) and if the system has had a long time to
interact with the stochastic field (t>>1.). Under these circumstances
Eq. (40) reduces to

» axg(t) v
g > = J dty_ (t,t') — g, X',t") (41)
KS 0 Kn B}A(t') )\l'l

and Eqs. (39a, b) transform into

- g (X,t) n

(
B (x,t) =f + | dt'p (t,t') =% X',t! 42
Gt) = £+ [ de (e S 0, 160 (422)

and

£ " 3y (t)

D st) = Judt'wxn(t,t') g, 0ot) g, (K',t") (42b)

B%\ (tx)

These approximate results have been obtained following other
procedures, by various authors, (4:6-8:10,14,15) 510 it recall that they
hold for t>> T which means that Eq. (38) with the drift and diffusion
coefficients given by (42) is not a true Fokker-Planck equation, since it
does not apply at short times; in fact, for t%t the solution W(X,t) is

Le]
not necessarily positive definite. (14)

4. RELATIONSHIP BETWEEN CORRELATION AND DIFFUSION COEFFICIENTS

Let us derive an alternative expression for the diffusion
coefficient appearing in the approximate Fokker-Planck equation (38).
For this purpose we introduce the correlation functions, given as usual by

M eymery = AB(ED)> = A®)> B(e1)> ; (43)

for arbitrary functions A(X,t), B(X',t'). By Eqs. (10) and (39b) we have
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D rtcl'c D= (E551) GXB(tJ (44)
=g : t,t') < ——>
b ok Jo Ko Gin(t')

By Novikov's theorem, Eq. (8), we realize that this expression can be
written in the form

Dup ™ Bk <Ex(8) Xg(0)> - g, <g (1)> <x,(t)>
The last term is actually zero, since <E¢> = 0. We now rewrite this
equation by adding and subtracting the same terms with the factor i
within the angle brackets, and using Eq. (1); the result is

D g R (xa- fa)x8> ~ X~ fa> <xXg> # [<(Agax) ;Kx8>- < (Agm()gkx xB;i).

The term within square brackets vanishes whenever

Br = B ot) = g ), (46)

is equal to zero. This is true, in particular, for additive noise, {.e.
when 8y 15 a function of time only. When this is not the case, the
contnbutmn of this term to Dyk 1s of relative order |gt.| and hence,

can be neglected within the approximation used to derive Egs. (39). (See
Appendix for the demonstration). This allows us to write Eq. (45) in terms
of correlations as

D, = s - T 3 47)
ap xaxﬁ f xB
Since the time derivative of T is
*a¥g
= T + T . %
xaxB xaxB anB

the symmetrized diffusion coefficient takes on the form

1 [ :
ps. =1 |t - (T + T )] : (48)
af 2 *a*g fa¥g  fpXy
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This result is a generalization of the formula derived by Stratonovich[lo):

to the case in which the deterministic force f is different from zero.
5. A SIMPLE, PERTURBATIVE DERIVATION

We have seen that the Fokker-Planck equation (38) is a good
approximation to the master equation whenever Ich| << 1. From Egs. (39b)
and (40), it is evident that the coefficient Dus is of order |g?t_|, which
means that Eq. (38) is valid up to second order in g.

If one knows beforehand that this approximation is sufficient,
it is actually umnecessary to go through such a complex procedure to
derive the approximate Fokker-Planck equation; working to second crder in
g from the beginning the derivation can be considerably simplified. Here
we present a simple and direct method to achieve this task.

Let us rewrite Eq. (1) introducing a constant parameter 8 to
keep track of the smallness of the stochastic force:

L > 204 > >
%= F &) ¢ BELE) + p Kit)E () (49)

In the present terminology the Kubo number is Bt _, which we shall assume
to be small. The deterministic force ¥ has been separated into the
external contribution ¥ and the dissipative term Bzfd, which is assumed,

as usual, to be of order g2.
We now construct the stochastic continuity equation and take its

average, thus obtaining, for W = <R> ,

3
g% + ’Ji_ (Fy * B"fg)w RS Bl (50)
a o

Since R is of the form given by Eq. (3), we may write the term in angle

brackets as before:
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<8 KO, (R(L)> = g K, )< (OR(E)> . (51)

Our task is to calculate this term to first order in B, since the r.h.s.
term in Eq. (50) already contains one factor R. We therefore perform a
perturbative treatment, which consists in developing R(t) as a power series
in g and keeping only the first two terms of the series. Let _)Ec (t) be the
solution of Eq. (49) with 8 = 0: ;(cu = Fa(ic,t); then

Rt §) = RE,t; 0) +p2REL8) : (52a)
8=0
where
RE,t30) = §(c(t) -X) . (52b)

Since R depends on g through X(t), we obtain from Eq. (3):

aRg?cst;B)l . oK G - aRaxA(t) . (52c)
lg @ "B g, B, 9B B=0

Introducing Eqs. (52) into (51) we are left with .
5 MA&) -
B P - Bg,, ‘33-(';<5K(t) ——3—3—1-0 W(x,t;0) ’ (53)
ox

since <£KR(§,t;D)> = 0. The product <&y 7ﬂ§-> W can be calculated to zero
order in B, since it is already multiplied in Eq. (53) by an additional
factor 8. This allows us to write W = W(X,t;8) instead of W(X,t;0), and
hence

_ d

with

SxA
Yew " EW . - (55)

To evaluate the function y we perform a formal time integration of Eq.
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(49):
t (t t
7 - L ( >,
+ [arm e+ g dUG e ¢ B argy, &4,e0E, (4

0 0

Xy (t) = xol

and take the derivative with respect to B, evaluated at g =

t

aFAti',t') ax (t") ¢ y
+ [ avrg, Grieng, @]
0 B=0

= | at’
B=0 JO ax\)(tl) aB

A
B 8=0
After multiplying by Ex (s) and performing the average we are left with

t aF (x BT t: N
Yy (5:8) = J ' ey e | dt'vDKn(s,t')g)m(X',t')IB
: .

(56)
where the function

ox, (t)
Y (8:t) = <E (8] —3

. .
5 - (57)
is a generalization to different times s,t of the previous function
Ly (.t

Notice that Eq. (56) has the same structure as Eq. (16), except
that all functions of X are now evaluated at g8 = 0, 4.e., §+§C. Hence,
by comparison with Eq. (21) we conclude that the solution of Eq. (56) is

Y =

3x (t)
Y (558) =Jdtw () oy Bt (s8)

In writing this equation we have taken into account that at time t,

(t) =X (t) As can be seen from Eq. (54), it is the combination
ByK (rather than B alone) which must be small in order to guarantee the
validity of our approximation. For y, AA not to grow indefinitely for large
time intervals, one must assume a finite correlation time, such that
BT << 1. The approximate Fokker-Planck equation valid to second order in
B (or to first order in Bt ) is therefore, according to Egqs. (50) and

(54),



99

aw 3 2 _p2 0 3
ﬁ*mg“h*sﬂw'ﬂmg%xﬁghﬂ ; (59
where Yxxfi’t) is the sure function given by Eq. (58) with s=t. This

result can be recast into the traditional form of a Fokker-Planck equation:

W, 3 pya, 2 poy (60a)
at 3X o 3aX_0X, QX
o (s it §

with

P 8 [fa * Y _5\:—)\_ (60b)
and

= 2
Dar = B8 (60c)

or else, in its symmetrized form,

D, =3 B0 * Bdig] - (604)

ax 2 ak” K\ AK” Kot

These results coincide within the present approximation with the results
obtained in Section 3, Egs. (38) and (42), since to zero order in B8, ic(t')
coincides with x (t'). Also here, we must be careful when applying them
at short times, since the smallness of the parameter B does not guarantee
the smallness of the dynamical effects of the stochastic force when the
system has just started to interact, {.e., at t®1_. Finally, it seems
worth noting that the assumption of Gaussianity of the stochastic
variable & was not necessary in this derivation to second order; this
implies that any correction that appears in Eqs. (39) or (42) to account
for non-Gaussian noises must be of order higher than Bz.(lﬁ)
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APPENDIX

Our intention is to demonstrate that the term appearing in Eq.
(45):

AD&E = <(AgaK)£Kx8> - <(AgaK)gK><x8> (A.1)

with Agux given by Eq. (46) represents a negligible contribution to D 8’
Q)
when |gr.|<<1.
With this purpose, we apply the BDM formula, Eq. (35), with
P = EKAgGK and Q = Xgt
£t B

= 1 m " 6 B
AD@B - J Jdt dt !ﬂlj(t',t )< —gg:rt—rj- EKAngK> < m)"‘ see

0’0 j

Omitting terms of relative order |gr.| and using Eq. (10), this equation
transforms into

t
9x
i} : , B ..
ADaB = fodt'ij(t,tt)<ﬁLaK> <mt_,)_> a5 d'\gou() <EKS B (A.2)
J

In order to evaluate (Agou() we use once more Eq. (35), with
% =

P =g (x(t),t) and Q= R(x,t):

! tt

-+ B : g
Bux(X(),LIR(L)> = <g p(x(t),t)>W + Jnjrudt'd’C"anij(t',1:"}< @‘%ﬁ
8 (A.3)

<m S+ eee

The second r.h.s. term is once more of relative order |ch| and can be
neglected within our working approximation; we are then left with

B (X(E),R(E)> = g X(1),0)> W . (A.4)
On the other hand, by using Eq. (3) one obtains

By X(1),0)R> = g K, )W (A.5)
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On subtracting Eq. (A.4) from (A.5) we conclude that <Ag. x> =0 within
the approximation lgrci<< 1 and hence, the tern!AEhxsdoes not contribute
to Eq. (45), according to Eq. (A.2).

(o e 0F =~ w
PRI .

oW~
s e s 0w

12,

13,
14.

15

16.
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