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the coefficients oi this master equation satisfy a complicated auxiliary
integro-differential equation. For small values oi the Kubo number, the
master equation reduces to ao approximate generalized Fokker-planck
equation. Tbe diffusion coefficient 15 explicitly written in terms of
correlation functions. Finally, a straightforward and elementary second-
arder perturbative treatment i5 proposed to derive the same approximate
Fokker-Planck equation.

RESlMEN

Con la ayuda del teorema de Novikov es posible obtener una ecua-
C1cn maestra para un proceso Gaussiano al azar, multiplicativo, coloreado;
los coeficientes de esta ecuación maestra satisfacen una ecuaci6n integro-
diferencial auxiliar complicada. Para valores pequeños del número de Kubo,
la ecuación maestra se reduce a una ecuación generalizada de Fokker-Planck
aproximada. El coeficiente de difusión se presenta explícitamente en tér
minos de funciones de correlación. Finalmente se propone un método direc-
to y elemental de perturbaciones de segundo orden para obtener la misma
ecuación Fokker-Planck aproximada.

1. INm)IJl!CTION

There has been in recent times a growth oí interest in the
derivation of master equations for stochastic processes with arbitrary
spectra and correlation times. In the process of development oí new
methods to study this problem, a theorem established first by Furutsu,
Ilonsker and Novikov(l) for Gaussian noises and aften;ards generalized to
arbitrary Gaussian and non-Gaussian functiona1s(2,3) has been of
considerable va1ue. Interesting exanp1es of the use of these powerful
theorems in the derivation of generalized Fokker-Planck equations for
different physical systems maybe found in the papers cited aboye, as well

as in Refs. 4 and 5.
In this paper we approach the same general preblem and use the

method based en Novikev's theorem to períonn an efficient derivation oí
the master equation fer a coloured, IYI..l1tiplicative,Gaussian noise.
Similar resul ts are presented in Ref. 4, the fundamental difference being
that here we are ab1e to go a step further in obtaining a c10sed f0I1lP.11a
for the response function, (see Eq. (21) below without resorting to the
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operator method of Martin, Siggia and Rose, or to any other perturbative
method (see Sections Z and 3)).

As is well kn",,'ll,despite the fact that one is able to construct
generalized Fokker-Planck equations far arbitrary noises, they often are
of little value as closed expressions due to their formal nature. They
become useful in practice only when they can be reduced to second-order
equations, either due to particular properties oí the systcm, ar by means
oí approximations. Since the latter seems to be the 1OO5t frequent case,
we inelude in 5ection 5 a separate derivation oí the generalized Fokker-
Planck equation for cOloured, multiplicative noise with a srnall Kubo
nllllber. (6) This derivation, which is based on a perturbative method, is
unusually simple and unsophisticated, and perhaps mare appropriate for
pedagogical use than are mast of the known derivations.

With the exception of Section S, we limit OUT study to Gaussirn
noises, just fer stmplicity purposes, since mos! oí the results take on
a rnuch more elaborate forro in the general casc. There exists no problem
oí principIe, howevcr, in extending the treatrrent to arbitral)'
distributions for the stochastic force, using, e.g., the method developed
by Bochkov, Dubkov, ~lalakhov and others, to which we refer the interested
reader(Z,3).

Z. DERIVATION OF A ~IASTEREQUI.nON

•Consider a dynamical system represented by the equation

x
n

f (x,t) + g (x,t), (t)
" cxK K

(1)

•Instead af Eq. (1), we should consider in principIe the more general
equation o£ motion

~ ~
xa""' £a(x,t) + KQ(x,t; t(t» .

In many of the results that follow, the substitution 9aKtK-+ Ka can be
rlirectly performed. In sorne equations, however (see, e.g'I Eq. (23». the
factor 9QK occurs alone; in these instances the stochastic function
aKa(t)/a~K(t) would appear instead of the sure function 9ax. This
complicates the expressions, but does net substantially rnodify the physicsl
hence fer simplicity we have chosen the (linear) multiplicative noise
problem defined ~y Eq. (1).
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wnere ~K(t) are arbitrary Gaussian, not necessarily stationary, random
functions with zeTa mean value and with a correlatian tensor

<C.(t)C.(s» =~ .. (t,s) (2)
1. ) J.)

systems at point x and ttme
(1) such that x(t = O) = xo'

~x is a vector in (n-dimensional) phase-space,
over repcated indices, both Greek and Latin.

Let R(x, t) represent the density of
t, and let x(t) 'represent the solution of Eq.

We then know that the funct ion

R(x,t) = o(x - x(t))

and a slllllTlation is implied

(3)

satisfies the stochastic continuity equation(7,8)

dR + _d_ x R = O
¡¡t dXa a

subject to the initial condition
~ ~ ~

R(x,O) = o(x- xo)

(4 )

(5)

We are assuning that each rrember of the ensemble starts from too sane

initial condition xo; otherwise one would have to write
R(x,O) = o(x- x (O)) instead of Eq. (5), and average over the distribution

~ o
of xo(O).

By Eq. (1), Eq. (4) becomes

dR + _d_ f R = - _d_ C R
dt dX ~ dX gaK Ka a

(6)

To obtain an equation of evolution for the r.verage oí the phase.
space density ayer all realizations oí ~(t), W(x,t) = <R>, we take the
average of Eq. (6):

(7)
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As is clear frcm phl'sical cansiderat'ons, the function Wis just the phase-
space prcbabilitl' densit)'; a proof of this mal' be found in Refs. 8 and 9.

In order to find a more suitable expression for the r.h.s. term
of Eq. (7), we use Novikov's theorem(1), which in OUT notatían reads

(8)

This formula is valid for anl' Gaussian randoo fUl1ction ~(t) with zero
average. The integral extends over the regian in which the functions are
defined. In thc present case we realize from causality considerations
that R(t) depends on ~n(t,) for t., S t onll' (see Eq. (1)); hence since our
initial time is t = O, the integral nms from O to t.

Taking into account that R is a functional of ~ through x(t),
n

we .Tite Eq. (8) as

<~ (t)R(t»
K

(9)

In writing the second equa1itl', use was madeof Eq. (1) and of the fact
that the remaining teIlIlS oí thc integrand do no! depend on X.

By introducing the function ~(s,t), which may be interpreted as
a short oí weighted, non-averaged reSlxmse ftmction:

(10)

we can write Eq. (9) as

(11)

and Eq. (7) transforms into

(12)
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with 'KS = 'KS(t,t). To calculate C we perform a formal time integration
of Eq. (1) (x' stands for x(t')):

t t

xS(t) = f dt'fS(x' ,t') + f dt'gSK(;o, ,t')CK(t') + xoS
o o

and take the functional derivative with respect to C (t,):
n

t -+ t -+
( M (x', t') J 6g (x', t') ~

J
dt' ~C (t,J + dt' SSC (t,) CK(t') + gSn(x(t¡),t,),

t, n t, n (14)

The lower integration limit is once more due to causality. Since by Eq.
(1) we have for t, S t'

MS(X' ,t')
6C (t-;) +

n

aXa(~1 ,tI)
aXy(t ')

6x (t')
y<lt (t,)
n

(15)

Eq. (14) can be .Titten as

6x (t')
y

<1[, (t,)
n

By multiplying this result by ~ (S,t,) and integrating over t, we obtain,
Knafter changing the arder oí integration in the first r.h.s. term,

/
CK8(s,t) = J dt'

o

t

+ f dt'~Kn(s,t')gSn(X',t') .
o (16)

We write the solution of Eq. (16) as
t

CK8(s,t) = J dt' GSy(t,t')gYn(X',t')~Kn(S,t')
o

where the Green function satisfies the differential equation
dX (x,t)

GaS(t,t') = ~x),(t) G),S(t,t')

(17)

(18)
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and is subject to the condition

(19)

The solution of Eq. (18) is

(20)

and Eq. (17) gives therefore

(21)

Notice that this is an exact solution for the response function and it
can be calculated in same particular cases. \'le give explicit results for
the linear general case and fer the white noise prob1em (see section 3).

A comparison with Eq. (10) shows now that

axs(t)
a~n(ti)

dXS(t)

ax~(t') (22)

With this resu1t, Eq. (12) transforms into

~g~n(x' ,t')ljIKn(t,t'»
(23)

This is an exact result, but a150 a formal ane, since it still contains
~the non-averagcd distribution function R(x,t); in faet, it is an equatían

of infinite arder for W, as we shal1 see below. Since OUT fomal
procedure has irrq>lied everywhere the usual rules of calculus, it must lead
in the white-noise 1imit to the results of the Stratonovich treatment(10,11);
we wi11 show that this is indeed the case (see Eq. (34a) be1ow).
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3. GENERALI281 R)KKER-PlA~CK B:)UATICI'I

4To obtain a master equation for W(x,t) it is necessary to perform
explicitly the average expressed in the r.h.s. tenm of Eq. (12) 01' (23).
This step is straighforward when ~ is a SUTe function, since then

and Eq. (12) reduces to

(24 )

_IV
"dt+ (25)

This result can be cast into the usual fonn oí a Fokker-Planck

equation:

with

(26a)

and

B (x,t)
"

(26b)

CMing to the synmetry of the second derivative in Eq. (26a) we may use
instead of D"8 the symmetrized diffusioll coefficient:

Eq. (24) is cxactly true only in particular instances. One is
the linear (se-called Langevin) case, when Eq. (1) reduces te

(27)
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Assumingthe rnatrix ~I(t) to exist, such that

-1
M M = -a (28)

the solutien of Eq. (27) is

t

xa = ~(1)U).J dt1~V(t1)[b)t¡) + ~K(t')~K(t,)l + [M-'(t)~I(t')lavx)t')
t'

whence

Introducing this result into Eq. (21) we obtain asure value for ,:

t
r _1

'KB(t,t) = J dt'~kn(t,t') MBv(t)~~).(t')g).n(t')
o

Hence Eq. (26a) applies, with

B (x, t) = a BXB + ba a a
t

DaB(t) • gaK(t)M~~(t) J dt'~Kn(t,t')Mv).(t')~n(t')
o

(29)

(30a)

(30b)

It is worth mentioning that these resul ts apply as well to the
generalized Langevin equation (with memory):

t
• r
x = J dt' b B(t - t')xB(t') + g (tn (t) (31)a a OK K

o

since this equation can be cast into too form (27) by means of a Laplace
transforrnation. (4,5,12) Note that the on1y conditien en Eq. (27) was that
the distribution of ~ is Gaussian with <~> = O.

Let us now consider another particular instance in which Eq.

(24) bolds, namely, the .hite-noise problem, characterized by a
correlation function of the form

~kn(t,s) • 2 (t)ó(t - s)Ykn
(32)
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In this case Eq. (21) reduces to

(33)

and hence, according to Eqs. (26b,c),

(34a)

(34b)

Notice that the drift coefficient contains the additional contribution
that ariscs from the multiplicative nature oí the stochastic force. TIlis
is the wel1-kno"mextra tcrm appearing in the Stratonovich treatment and
absent in ItO's treatment of stochastic differential equations. (10,11)
These particular results have been obtained through various procedures;
see, e.g., Reí. 6.

In the more general case, in which the external force is not
linear and the noise spectnlm is coloured, Eq. (24) does not hold exaclty.
In arder to find in this case an expression fer <~ SR> in terms of W, we
appl y the IJochkov, Dubkov and ~lalakhov (B!A'1)forrnJ' a (2)

1<PQ> = <P><Q> • ¿ mr
m=l

m
TI ~(t i' T i)dt id'!:i

i=l

2m

valid {ar any pair oí ftmctionals P,Q oí the GaussiaTl random variable ~.

FOr P = 'K6 and Q = R, we obtain

(r 6'K6 6R
<t:K¡f> - <l;K~>lo; = Ldt'd-r'1Pij (t' ;r') < 6~ilt') ><ó.;/ri» + •••

(J 3'K6 6x) (t) 3R 6x (t)
J dt'dl'~ij(t' ,1') < dX,(t) OI;¡(t'f < <lXv(t) 6i;~rT'T>•..•

t 3,3; J dt' <;¡x (~~) gVi(X',t'»< 'iV(t',t) R>. (36)
V o v
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In writing the last equality we have used Eqs. (3), (21) and (22), and the
fact that R is the only function within the integral that depends on ~.

It is clear that each time ID increases by ane, an additional
noise factor g and an additional correlation .¡, (through the function ,)
appear. This means that if 1J1has a finite cOrTelatian time Te' every new
tenn in Eq. (36) is of relative order Ig[Te• This factor is equivalent to
the Kubo number encounttered in the literature(13) ~henever IgITe« 1,
it is legitimate to negleet these tcnms and to use the approxUnate result

(37)

Under these circumstances, Eq. (12) (or (23)) reduces to the approximate
Fokker-Planck equation

with

aw + a B W = a' D W
3f ~ a axa:lxS aS (38)

and

(39a)

(39b)

The diffusion coefficient may be WTitten once more in its symmetrized form:

(39c)

The averagcd fmetían <'KS> appearing in Eqs. (39) i5, according

to Eq. (21)•
t axg(t)

<l;KS> J dt'~JKn(t,t')< g).n(xl,tl» (40)ax,(t')
o

hence, its explicit calculatían requires further approximations. If the
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effects of the stochastic force on ~(t') are assumed to be sma11 during
the time interval Te, the variable xCt') in the integrand may be replaced
by ~(t'), which is the va1ue of ~ at time t' S t such that it evo1ves
deterministically to~ards xCt) = x. This is truc, in particular, within
our apprcximation (Iglre « 1) and if the system has had a long time to
interact with the stochastic fielt:l (t» Te). Under these circunstances

Eq. (40) reduces to
t

q;KS> = f dt'41Kn(t,t')
o

(41)

(42a)
ag (~, t)eLK
ai'A(t')

f •
eL

S (~,t)
eL

and Eqs. (39a, b) transform into
t

(

J dt'ljJ (t,t')
o Kn

and
t

DeLS(X,t) = J dt'IjJKn(t,t')
u

'"gUK(X,t) gAn(x',t') (42b)

These approximate results have been obtained following other
procedures, by various authors. (4,6-8,10,14,15) One must recal1 that they
ho1d for t» T , "ilich means that Eq. (38) with the drift and diffusion

ecoefficients given by (42) is not a true Fokker-P1anck eqtation, since it
does not apply at short times; in faet, for t~! the solution W(x,t) is
not necessarily positive definite. (14) e

4. RELATIONSfIlP SE'Th'EENCORRELATION ANO DIFI'USION COEFFICIEm'S

Let us derive an alternative express ion for the diffusion
cocfficient appearing in the approximate Fokker-P1anck equation (38).
For this purpose we intrcxluce the correlation functions, given as usual by

r = <A(t)B(t'» <A(t» <8(t'»
A(t)B(t')

(43)

for arbitrary functions A(x,t), S(x' ,t'). By Eqs. (10) and (39b) we have



f
t ex (t)

D =g dt'iP (t,t')< a >
aa aK, Kn 6i;n (t') (44)
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By Novikov's theorem, Eq. (8), \iC realize that this express ion can be
"'Ti tten in the fonn

The last term is actually zero, since <~K> = O. Wc now. rewrite this
equation by adding and subtracting the same terms with the factor g

aKwithin the angle brackets, and using Eq. (1); the result is

D"a = < (x - f )x >. < x - f > < x > +~ aaa aa a [«t.g ) ~ xa>- < (t.g )~ ><xa> J •
OK K OK K

(45)

The tcnn within square bl'ackets vanishes whenevcr

(46)

is equal to zero. This is true, in particular, £O.T additive noise, i... e. ,
when gOK is a function oí time only. When this is not the case, the
contribution of this term to DOK is oí relative arder JgTel and hence,
can be neglected within the approximation used to derive Eqs. (39). (Sce
Appendix for the demonstration). This allows us to write Eq. (45) in terms
oí correlations as

Daa r. r
xaxB faxS

Since the time derivative of r is
"c.xa

r r. + rxaxs xaxB xoxs
the symmetrized diffusian cocfficient takes on the form

(47)

DS = ~aa • (48)
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This result is a generalization of the formula derived by Stratonovich(lO):

to the case in "hich the detenninistic force r is different from zere.

5. A SI~lPLE, PERTIJRRATlVE DERlVATlON

We have seen that the Fokker-Planck equation (38) is a good
approximation to the master equation ,;!leneverIg'cl «1. From Eqs. (39b)
and (40), it is evident that the coefficient D o is of order Ig', 1, which

"" cmeans that Eq. (38) is valid up to second order in g.
If one knows beforehand that this approx~tion is sufficient,

it is actually unnecessary to go through such a complex procedure to
derive the approximate Fokker-Planck equation; working to second arder in
g from the beginning the derivation can be considerably simplified. Here
we present a s~le and direct method to achieve this task.

Let us rewrite Eq. (1) introducing a constant parameter e to
keep track of the smallness of the stochastic force:

-+ d-+ -+x = F (x,t) + e'f (x,t) + eg (x,t)~K(t)
(la C1 aK

(49)

In the present tenninology the Kubom~er is STe' which we shall assume
to be sma!!. The deterministic force f has been separated into the
external contribution F and the dissipative term S2£d, which is assumed,
as usual, to be oí arder a2

•

\'.'enow construct thc stochastic continuity equation and take its
average, thus obtaining, far W= <R>

(50)

Since R is of the fonn given by Eq. (3), we may write the term in angle
brackets as befare:



<g (x(t),t)~ (t)R(t» = g (x,t)<~ (t)R(t»
aK K a.K K
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(51)

Our task is to calculate this tcrm to first arder in a, since the r.h.s.
tenn in Eq. (SO) already contains one factor B. We therefore perfonn a
pcrturbative trcatment, which consists in developing R(t) as a power series
in B and keeping only the first two tenns of the series. Let Xc(t) be the
solution of Eq. (49) with B = O: x = F (xe,t); then

ca a

<g ~ R> = -
CtKK

R(x,t; B) = R(x,t; O) +B dR(~át;B)1
B=O

where

R(x,t;O) = 6(xe(t) -x)

Since R depends on B through x(t), .e obtain from Eq. (3):

Introducing Eqs. (52) into (51) .~ are left with

a dX),(t) ~
Bg ¡¡:-<~K(t) -.",-> W(x, t ;0)
aK x), ap B-o

(S2a)

(S2b)

(S2c)

(53)

..•. ax).since <~KR(x,t;O» = O. The product <~K ~ > W can be calculated to zera
order in B, since it is already multiplied in Eq. (53) hy an additional

~ ~factor B. This allo.~ us to write W = W(x,t;B) instead of W(x,t;O), and
her..ce

with

(54 )

y =
Ka (SS)

To evaluate the ftmction y we perform a fennal time integration oí Eq.
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(49) :

= x +o'
t

f dt'F). (x' ,t') 't

) o

t

f
d ~

62 ¿tlfA (X' ,tI) -+

o

t
1 ~eJ dt'g (X' t')~ (t')An ' n

o

and take the derivative with respect to a, evaluated at B o:

aX'1 _ ft aF, (x' ,t')
¡ijl - dt' ax (t')

B""o o "

axv(t')\ ,< ~ I
--- + J dt'g (x',t')~ (t')ae e.o o ,n n 6:0

rdt'ljlKn(s,t')g,n (x' ,t') I
o e=o

(56)

Mter 1llU1t1p1yingby ~K(s) and perfonning the average we are 1eft with
t aF (xI,t')

YKA (s,t) = f dt' ;x (ti) I yKV(s,t') +
o v e=o

where thc fLDlct ion

(Si)

is a generalization to different times s,t oí the prcvious function
YKA = yKA(t,t).

Notice that Eq. (56) has the same structure áS Eq. (16), except
that a11 functions of x are now evaluated at B :::OJ .(.. e., x .•x. Hence,e
by camparison with Eq. (21) we conc1ude that the solution of Eq. (56) is

t

yKA(s,t) = f dt'ljlKn(s,t')
o

(58)

In writing this equation we have taken into account that at time t,
xe,(t) = x,(t). As can be seen frem Eq. (54), it is the combination
BYKA (rathcr than B alone) which must be smal1 in arder to guarantee the
validity of OUT awroximation. For Y:o. not to grow indefinitely fer large
ttme intervals, one must assume a finite correlation time, such that
St «1. The approximate Fokker-Planck equation valid to second arder in

ee (or to first order in eTc) is therefore, according to Eqs. (SO) and
(54 ),



aw + a (F + S'~)W = S' a • __at ax a a ax "t<Ka a
(59)
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"nere YKA(x,t) is the sure function given by Eq. (58) with s = t. This
result can be recas! into the traditional forro oí a Fokkcr-Planck equation:

al\' + _a_ B W = a' D Wat ax a ?x ax, al.a a A

with

and

or eIse, in its syrrunetrized fcnn,

(60a)

(60b)

(60c)

(6Od)

These results coincide within the present approx~tionwith the results
obtained in Section 3, F~s. (38) and (42), since to ,ero order in 8, Xc(t')

~
coincides ,,-ith x (t'). Also herc, we must be careful •.hen applying thern
at short tiJnes, since the smallness oí the parameter S does not guarantee
the srnallness of the dynarnical effects of the stochastic force when the
system has just started to interact, .i... e.., at t.£ Te' Finally, it seems
worth noting that the assumption of Gaussianity of the stochastic
variable ~ was not necessary in this derivation to sccond arder; this
implies that any correction that appears in Eqs. (39) or (42) to account
for non-Gaussian noises rnust be of order higher than S'. (16)
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APPENDIX

Our intention is to demonstrate that the tenn appearing in Eq.
(45) :

(A.I)

6xs
oC (t.") > + •••

)

with M_y given by Eq. (46) represents a negligible contribution to D...•...... aB'
"hen I gT c 1 « 1.

With this purpose, we apply the B[:f.l fonnula, Eq. (35), with
p = !;KÓg"K and Q = xS:

(tft
M>a.8 = J dt'dt"1Pi .(t' ,t") < 6t.~ti) ~Kf¡gOJ(> <

o o J ~ 1.

Omitting tenns of relative order Ig'cl and using Eq. (10), this equation
transfonns into

t

óD = f dt';? .(t t')<óg >aS K]' ctK
o

(A.2)

In arder to evaluate <ógaK> we use once more Eq. (35), with
~ ~P = g",,(x(t),t) and Q = R(x,t):

t t

<g",,(~(t),t)R(t» = <~",,(~(t),t»W + J f dt'dt""'i/t' ,t")<
o o

6R
< =-r+'m- > + •••6!;j,t J

(A.3)

The second r.h.s. term is once more cE relative arder IgTcl and can be
neglected within OUT working approximatioIl; we are then leít with

~ ~<g",,(x(t),t)R(t» = <g",,(x(t),t» W

On the other hand, by using ["l. (3) one obtains

~ ~ )<g",,(X(t),t)R> = g",,(x,t W

(A.4)

(A.5)
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On subtracting Eq. (A.4) from (A.5) we conc1ude that <6gaK> = Owithin
too approximation I gtcl « 1 and hence, the tern~Ó!JaBdoes not contribute

to Eq. (45), according to Eq. (A.2).
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