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A review i5 given oi the basie concepts oi the reaction-rate
approach to nonradiative transitions in polar solids. The purpose oi this
paper i5 to call fer the attention oi the physicist through presenting a
method that has first been introduced and applied to chemical problems.
The reaction-rate theory i$ firrnly based, simply formulated, and leads to
immediate conclusions helping to easily reveal physics. It applies to a
variety ai nonradiative processes, involving the transfer of electrons or
ions, between and including the extrema of adiabatic and nonadiabatic
transitions. The paper is campo sed of three parts: Following a concise
description of the method in Sections 2 and 3, applications to sorne specific
experimental situations in ionic crystals are shown to demonstrate how it
works. Among these are the vibrational properties of F centers in alkali
halides, the relaxation of dipolar defects, and the hopping of self-trapped
excitons. Practical ways to apply the method to deal with experimental
rate data are advised .

•On leave of absence fraro the Institute af Salid State Physics, Bulgarian
Academy of Sciences, Sofia, Bulgaria.
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RESlt1EN

Se presenta una revisión sobre los conceptos teóricos básicos de la
razón-de-reacción aplicada a las transiciones no-radia tivas en sólidos pola-
res. El propósito del siguiente trabajo es llamar la atención de los físicos,
al presentar un método que fue primero introducido y aplicado a problemas de
la química. Esta teoría de la razón-de-reacción está fundamentada sobre ha
ses sólidas, formulada de manera simple y conduce a conclusiones que revela;
las bases físicas de los problemas. Esta teoría se puede aplicar a una gran
variedad de procesos no-radiativas, incluyendo la transferencia de electro-
nes o iones entre los valores extremos de transiciones adiabáticas o no-adia
báticas. El artículo se compone de tres partes: En las secciones 2 y 3 se-
presenta una descripción concisa del método. posteriormente se presentan apli
caeiones del método a algunos resultados experimentales, específicamente a -
cristales iónicos. Entre ellas se encuentran las propiedades vibracionales
del centro F en halogenuros alcalinos. la relajación de defectos dipolares
y el salto de excitones auto-atrapados. Se explica la manera práctica de
aplicar el método a resultados experimentales.

1. nITROOOCTION

The role oí nonradiative transitions (NRT) in cnergy and matter
transfer in solids has been appreciated for a long time. Phenomenologically
a NRT is the process by whieh a system, initially under an external pertur-
bation, relaxes to thermal equilibrium with the exeess energy degrading in
the forro of heat. Among thc 1arge variety of NRT in solid state physics
one can extraet a few more typical examples:

luminescence quenching (intra-or inter-center)
free-carrier capture
thcrmal ionization oí excited electronic states
spin-lattice relaxation
production of 1atticc defects
encrgy transfer
diffusion
dipolar reorientation. etc.

Evcn a first-sight inspection reveals the common fcatures leading to two
main groups of NRT in the aboye list involving: (i) an electron transfer
from one state to another. such as free-carrier capture or intracenter
luminesccncc quenching; and (ii) the net displacement oí an electron or an
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ionic dcfect írom ene site to another, such as diffusion and dipolar recrien
tation. In either case the NRT-undergoing entity interacts with the surround
ing medium, which rearranges so as to make the transition possible. Later,
a quantitative cTlterion will be introduced to distinguish bctween weakly
(i) and strongly (ii) relaxed defect types. The increasing interest in
studying ~RT in solids is duo to both their basic physical slgnificance and
practica! importance.

It is by no means the purpose of this paper to present any
comprchensive survey oí NRT in solids; such reviews are already available in
the literature. (1-3) We shall focus instoad on a few cases that are both
typical and instructive. A quantitative method will be presented for their
description, and, hopefuI ly, proper physical interpretation based on the
roaction-rate approach. (4) Although somewhat less familiar to the sol id-
state physicist, this method has widely been used in chemistry forming the
basis oí prcsent-day understanding oí chemical reactions. In addition to
being both statistically justified and simply formulated, applying the
reaction-rate mcthod to deal with particular experimental situations would
no! require using sophisticated mathematical tedmiques. Having recently
attended two major international conferences in the U1ited States, on l.t.Dnine~
cence and Defects in InsulatinR Crystals, the author is now well aware of
the pressing need for a simpler theoretical approach that ",ould enable the
experimentalist to clearly interpret his data. Without pretending to be
the magic torch, this 'Paper is mainly aimed at demonstrating the virtues of
a way alternative to too traditional multiphonon techniques.

The paper is further composed of three main parts. FOllowing a
general formulation of the eingenvalue problem, where an approximate solution
of the Schrodinger equation for the electron~lattice systern will be found
within the adiabatic approximation, in Section 2, Section 3 will define the
transition rate by means of the reaction - rate rrcthod, and will present
relevant formulae for calculating the transition probabilities for a strongly.
quantized system. Several examples will then be shown in Section 4 in .hich
the theory has so far been found to compare favorably with experiments.
Finally, the limitations of the theory at its present stage will be touched
briefly and sorne practica! prescriptions adviced in the concluding parto
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2. GENERAL FOR-1ULATIONOF 1HE EIGENVAWE PROBLFM

2.1.H~o~

The excess energy in a nonradiative transition is given away to
the (erystalline) mediumthrough the interaetions oí eleetrons and lattiee
vibrations. lbis ean be deseribed properly only by means oí quantum
mechanics. Weassume the mediumto be polarizable and to be eomposed oí
a system oí lattice oscillators performing vibrations around certain
equilibrium positians. Due to the polarizability, the presence oí any extra
electron localized at sorne site in the crystal would displace the equilibrium
positions oí the oseillators. the magnitude oí the displaeement depending
essentially on the spatial extension oí the electron cloud, that is, on the
electronic state. This displacement is the simplest manifestatían oí the
existence oí an electron-lattice intcraction, arizing from the polarizabil!
ty, the interaction leading to a number oí observable effects.

lbe Hamiltonian oí a polarizable mediumcomposedoí electrons and

oscillators wil1 then read

11 = 11 + H + H (2.1)
e L eL

H is the static electronic Hamiltonian at fixed 1attice, when a11 too
eosci11ators are frozen-in at their equi1ibrium positions q~:

H = ¿ ((p'/2 m ) + V (r ; qO)) (2.2)
e e e ee

e

the sumbeing over too eoordinates r and manenta p oí aH too eleetrons.e _ e
ID are thc electron effective masses, V (1 ; qO) is thc static potentia1
e e ewhich thc electrons "see" when too nuclei are at resto Whcn they are not,

the elcctronic potential varies following pararnetrically the metion of
the nuclei (addiabatie proposition). This modulated potential V (t ; q )e e_

can be expanded into a power series in ql' the nuclear coordinates (q is
the maniíold oí all q,). to give

V lr ; q) = V lr ; ;jO) + ¿ (b (; ; qU)(q - qO) + ••••
ee ee le}}}

1

(2.3)
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The mixed electron-Iattiee terms in (2.3) effeet the eoupling of the
electrons to the lattice oscillators. Consequently,

H = "(h (r' q')(q - q') • e (r' q' q' )(q -q')(q _q') •••• )
eL ¿ ; e' 1 1 1 11' e' l' l' 1 1 11 l' .

e.l.l (2.4)

In the absence oí an electron-Iattice interaction the 1attice Hamiltonian
is

H =
L

" ((P'/2/01) • IH w'(q - q')' • 1~1w' (q _ q')(q _ q' ) •• oo)l. 1 1 1 1 1 1 1 11' 1 1 l' l' ,
1#1'

(2.5)

(2.6)

where t-11J ~lt and w¡ stand for the masses, momenta, and angular frequencies
of tOo oseillators. The third term in (2.5) effects coupling between the
oscil1ators which secures vibrational relaxation, and thereby thermal
equilibrium, through the transfer oí excitatían energy to the heat reservoir
oí the lattice. This term introduces additional frequency dispersion oí
the oscillators. The intralattice coupling constants W1l, are sometimes
assumed small and the corresponding terms in Eq. (2.S) discarded from actual
consideratían when dealing with certain NRT types. lbwever, being essential
physically, these tcnms have always to be implied, if not taken into aeeount
explicitly. The Eq. (2.5) can be diagonalized in q;:

H = ¿ ((P'/2H) • l~l w"(q' _ q')' • oo.)
L 1 1 11 1 1

1

to inelude the intralattiee frequeney dispersion. The equilibrium positions
of the oscillators will further on be assumed to be at q: = O, the origin
of the lattiee-eonfigurational spaee. Jrowever, displaeements from the
origin of q~ are indueed by the eleetron-lattiee eoupling operators
b (r , qO) and e ,(r, qO, qO,). Of these, b induce ehanges in the
1 e 1 11 e 1 1 1

equilibritml positions. while el¡. effeet "eleetron-dressing" of the "bare"
oseillators through changing thc force constants.

To nnravel thc t irne-devcloprnoot of thc system dcscribcd by Eq.
(2.1) solving SchrBdingcr', equation,
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;;
E 1jJ (r • q)e

(2.7)

is required. However, the problem is largely complicated by the inclusion
of electron-lattice coupling tenns (2.4). 'lhis invokes the use of certain

approximations.

2.2. Acii.abatic appltox.<1nation

kcording to the adiabatie theorem, an approximate solution to

Eq. [2.7) may be sought in the fonn of the product

(2.8)

of an electronic part ljIt' which only depends parametrically on the nuclear
coordinates q, t~es a vibrational part xnt,which depends en the electronic
quantum numbers t as well. The parametric 'assumption i5 justified in cases
where the electronic metian can be considered fast compared with the
nuclear counterpart, to allow neglecting the dependence oí ~t on the
nuclear kinetic energy TL• Such are the cases oí localized electrons in
solids whose orbital motion involves rotational frequencies much higher
than the vibrational frequencies oí the ioos oí too surrolll1ding latticc,
due to the large difference in the respective masses. Insofar as

TL ljIt(~e; ~) " [I (P;/21\)ljIt(re; ~) = O
1

we define an "adiabatic Hamiltonian" by rreans of

HAO= H - TL

Inserting (2.8) into (2.7) we get

H(ljIx) = HAO(ljIx) + \ (ljIx)

= ~D(ljI)X + (TLX)ljI+ TL(ljIx) - (TLX)~

(2.9)

(2.10)

Putting now the parametric assumption (2.9) into force Eq. (2.7) splits
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into two eigenvalue equations:

(2.11)

and

(2.12)

where Ent are the eigenva1ues of Eq. (2.7) in the adiabatie approxunation.
The eomp1exity of the prob1em is. however. on1y partia11y redueed. sinee
the e1eetron-eoup1ing terms remain in the operator part of Eq. (2.11).
The residual expression

vanishing under the parametric condition, is used as the NRT.driving
operator in mes! multiphonon theories.

:;Given a static electronic state ~ (r ; O)
t •

-It;O> • defined by

(2.14)

we find next the average value oí' HAOto approximate for the eigenvalues
ofEq. (2.11):

- - (= <t'OIH ¡t.O> = ~llM W'2q'2 + E' + b q'• AD' ¿ 1 lit ttl 1
1

~[!Mw" '(q" - q"')' + "'J' + QL 1 ti 1 ti t
1

(2.15)

the second-order electron-lattice coupling tensor ell, being assumed
diagona1ized prior to averaging. Here

bttl =<lt;OI í b, (1'.;0) It;O> (2.16)
.,1

and
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ettll = < t;OIl: e

"
(re; O) It;O > (2.17)

e,l

are the average values oí the first- and second~ arder electron-lattice
coupling operators, respectively,

q'" = -b 1M w'" (2.18)
t¡ ttl 1 tl

are the new equilibrium positions oí the lattice oscillators, displaced
because oí the electron-lattice polarizatían interaction,

W112

tl
W'2 + 2e ~f

1 tll 1
(2.19)

are the new Ilelectron-rlressed" vibrational frequencics,

Q
t

= E' - l: !~Iw"'(q'" )'
t 1 1 ti tI

(2.20)

is the "electron-binding energy" in the adiabatic approximation. Remember
that the frequency spectrum in (2.15) ineludes the indueed intralattiee
coupling dispersion as well.

In the harmonie approximation (dots in (2.15) omitted), to be
adopted throughout, Eq.- (2.15) is that of a hyperparaboloid in the lattiee-
configurational space q ~hose mínimum is at qO. For t"u static electronic_ _ t

states lijO> and jj;O>, the respective paraboloids, at q~and qj, intersect
along sorne linc L in a hyperplane S. There is a mínimum oí potential
energy at qij along this lineo Insofar as Vtt(q) represent approximate
pctential energy surfaces for the vibronie problem, Eq. (2.12) should give
the approximate eigenvalues Etn"

Considering energy-conserving "horizontal" transitions írem
wel1 i to well j, it is intuitively clear that they should proceed along
an appropriate line 1_ connecting q~,q .. , and qO which is the path oí

'"1' 1. 1.) J
minimal potential energy. We shall assUJOO:for sJJ11Pliclty that "transitlon
path" ~ to be a straight hyperline J too one along the coordinate \. of a
certain node. This p-rr~e will actually promete the transition from i to
j and will be called 'aprOTooting". The single promoting-mode asstm1ption
is not an essential limitation and can be gcneralized when the motion
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along Lp is analyzed in tenms oí more than ane promoting mode, that is,
when Lp is a curved line.

The degeneracy in electron energy along the crossover line L
violates the adiabat~c approx~tion. Onecan expect, thercfore, the dif-
ference between Vtt(q) and Et(q). the precise eigenva1ue of Eq. (2.11), to
be mast significant 3TOlmd L. That degencracy is really removedwhen the
electron-transfer interaction between i and j is taken iTIto account.

2.4. Two-6to-te lu:un<fto.uo.n

In arder to lift the degeneracy along L, we construct a two-
state Hamiltonian Hij by mcans oí the static electronic statcs li;O> and
Ij:O>. assumed to be orthonorma1:

- -
Hij = HAO + Kij(q)(ii:O><j:O¡ + Ii:O><Í:OI)

where Kij(q) is a mixing parameter,

HAO = He + H + '} 1M w' 2q 12
eL r 1 1 1

(2.21)

(2.22)

and will seek the eigenvalues oí Hij in tcnns oí the linear combination

It:q> Ali:O> + Blj:O>

So1ving for

the eigenvalues are

(2.23)

(2.24)

(2.25)

flere

l(Vii(q) + Vjj(q)! ((Vii(q) Vjj(q))' + 41 (Vij(q) +

+ Kij(q))I,)l)
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v (q)
st

- -<s:O!HADlt:O>
(2.26)

[E
O + l 1M W"q"'JÓ + l (b q' + e q" + ••• )
t 1 1 1 1 st 1 stl 1 stll 1

are tOo matrix elements of ~AD between states Is:O> and ItóO>. In the
hamonie approxirnation Vtt (q) obtain from (2.15) as well. The matrix
elements oí the electron-lattice coupling operators are

and
b = <s:Ollb (1' :0) I t:O>
stl e,1l e

(2.27)

e
5tll

<s:OI le (1' :0) I t:O>
11 ee,l

etc. (2.28)

Retaining the higher-order terms in the expansion of <slH.Llt> in q' is
1

made for the sake of eanpleteness here: usually a linear eoupling seheme
is adopted negleeting all e ,etc. The eigen-states of Eq. (2.24)

- 5tl1
eorresponding to EU/L(q) have been found to be

with

- -It:q> eos(ljl/2)li:O> + sin(ljl/2)1 i :0>
u

lt:q> -sin(ljl/2)lióO> + eos(ljl/2)li:0>
L

(2.29)

tan(ljl(q)) (2.30)

Eq. (2.25) defines two ad~abatie h[persurfaees! upper Eu~9)' and lower
EL(q). They split by EU(qL) - EL(qL) = 2IVij(qL) + Kij(qL)I along the
crossover line L. Very little is known. about the dependence of Kij on the
configurational coordinates. Although often asswncd constant, a more
rigoTous treatment would show Kij to be significant along L only and to
eventually drop rapidly away from it. Unless the crossover splitting is- -too large, Eu(q) and ~(q) would praetically coincide with the correspon~
ing diabatic branches sufficiently far írem 1. Underthe condition oí

- -small IVij(q) + Kij(q)1 away from crossover. tOore will be, therefore. two
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minima at q' and q' on the 10""r surface. F (q). However. independent of

1. ) L -
the magnitude of the sp1iEting there is a valley bottomed a10ng_ L on Fu (q)
with its 10west point at q ..• and a corresponding sierra on F (q) with a bottem

_ J.) L
bottom at q .. as well. 1t is now clear why the IDOst favorable transition

1.J.. - ..
path connecting q' and q' wou1d inevitab1y pass through q ..

1. J 1.JCross-sectioned in aplane containing ~, the potential-energy
profi1e a10ng the promoting-mode coordinate exhibits a barrier peaked at
(~)ij whose height is

:::í 1M 00',' 2 (q','. _ q'.' 0)2
1 1 1.1 1Jl U

(2.31)

re1ative to the minimum of V ..(q)_ 11

minima on E (q) amounting to
L

The difference between the energy

Q = Q. _ Q. = E~ - E~ - I!M (00',,2 (q'.' 0)2 . 00',,2 (q',' 0)2),
J 1. J 1. 1 1 J1 JI 11 11

(2.32)

according to (2.15) and (2.20). is the "reaction heat" at O'K. Another
important quantity is the "1attice reorganization energy" Er defined by

Er = V ..(q~) - VJ'J.(qJ~)= ¡: !Mw'." (q.' - q.')'
)J 1. 1 l)1 1.1 )1

(2.33)

This is the ave~age en:rgy gained by the lattice, as t,~ separate wells
are created at qi and qj through corresponding displacements by virtue oí
the elect~on-phonon ~nteraction oí a well centered at the origino Further,
frem Vii(qij) : Vjj(qij) we get the equation for determining the crossover
configuration qij:

í!~l(w" , (q"
1 1 il ijl

_ q" 0)2 _ 00" 2 (q"
il ji ijl

_ q"')') = Q
jI

(2.34)

The crossover energy at qij relative to the minimum of Vii(q) is

(2.35)
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It shouId be stressed that the crossever spIitting Eu(qL) - EL(qL)

1s composed of dynamic Vi]' and static K .. parts. Sorne allthors have preferr>] -
ed considering orre of these only, while neglecting completely the contribu
tion of the other. (5,6)

substituting Eu/L(q) from (2.25) for Et(q) in Eq. (2.12) and
solving it, we obtain the eigenvalues E . These represent the totalot _
energy of thc system in the adiabatic approximation. EU/L(q) is the pote~
tial-energy surface governing the motion oí the lattice oscillators.
Insofar as Eu/L(q) differs from the diabatlc hyper-paraboloids in the
vicinity of the crossover line L only, Ent and Xnt(q) can be approximated
by the energies and eigenstates of harmonic oscillators, respectively
(~tl = (M,wt, /h)! g,):

Eot = ¡: hWtl (n, + !) + Qt (2.36)
1
_ ! 0, !

X (q) = n(n 2 n,!)- Ho (~ ~o )exp - C!(~ - ~o )'). (2.37)
nt 1 1 tl tI tl tl

In faet, (2.36-7) describe vibrational-like states which contain a nearly
complete information on the whole system. Actually, Ent comprise not only
purely vibrational terms but electronic and lattice-displaccment energies
as "ell. On the othcr hand, the eigenstates Xnt(q) contain information on
the displacement, that is, on the magnitude of the electron-phonon
interaction. These electran-coupled vibrational states are called
"vibronic"j the corresponding entity will hercafter be named "vibron" for
short.

A vibron can perform vertical transitions within a well leading
to local lattice relaxation through giving away excess energy to the latt~
ce hcat reservoir. This relaxation is made possib1e thanks to the intra-
vibrenic coupling terms, accounted fer in (2.36) and (2.37) by way of the
corresponding frequency dispersion in w (the "superscripts omitted).

tl
What is more important for our purpose, the vibron can a150 pcrform hori-
zontal energy-conserving transitions from one well to the othcr. Such
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transitions, leading to the net population of the latter well at the
expense of the former, are described in terms of (2.8), which are in faet
quasistationary states, being just approximate solutions to SchrBdinger's
equation (2.7).

A configurational-coordinate diagram is the one which depicts
the potential encrgy of a vibran in ane ar more electronic states versus
the coordinate q of the promoting mode (subscript p hereafter dropped).
This is the profile of the vibronic potential energy hypersurface EU/L(q)
along the transition path ~, assur.ed rectilinear. For the first time now
the single-promoting-mode proposition, mentioned earlier, is being put into
effect. AA example is shm..n in Fig. 1 with the quantities introduced in
5ection 2.4 denoted therein. ~~thematical1y, the potential-energy profile
in a CC-diagram obtains froo (2.25) and (2.26) setting a11 q' = O for l;ip.

1Depending on the relative strength of the electron-lattice coupling (to
~hich the displacement of the minima are proportional), there are three
different types of diagrams distinguished by the relationship between the
lattice reorganization energy Er and the reaction heat Q. From (2.33) and
(2.34) .~ obtain

E - Q = M w '(q' _ q ') (q , - q )
r p tp jp ip jp ijp (2.38)

(subscript p revoked to avoid confusion), account being taken of the fact
that under the rectilinearity assumption q~,q~, and q..all lie on the

1. J 1.J
tranSltlon line L, ~hichnow is one of the coordinate axes, the qp-axis.
For q. o - q. o > O, the three cases are:

JP 1.p

i) Weak coupling (Er< q, qj; < qijp);
ii) intermediate coupling (E "Q, q.'>q .. );

r Jp 1.Jp
iii) strong coupling (E > Q, q. > q .. ).

r JP 1.Jp

Also, froo (2.33), (2.34), and (2.35) we obtain the relation

E = (E + Q)'/4Ee r r (2.39)
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Fiq. l. Potential-energy profile a1oo9 the promoting-mode coordinate in a
strong-coupling situation. The adiabatic energy surfaces are
represented by salid 11nes. The diahatic surfaces are depicted by
dashed lloes in the vicinity of the crossover (transition) coordi-
nate. Far from crossover these coincide with the corresponding
adiabatic branches. See the text for ao explanation of the
notations. The reaction from 1eft to ri~ht i8 endothermic.
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between the crossover and reorganizatían energies. Ec = Er far intermediate
coupling. The above typcs of CC-diagram will appear in the experimental
examples to be considered below.

3. TRANSITlON RATE

The reaction-rate theory provides a rnethod fer calculating the
rate oí horizontal energy~conserving transitions in the two-state model oí
Section 2. The method is based on an occurrence-probability approach used
in Eyring's chemical-ratc theory but extended so as to al10w far a quantum-
mechanical description oí the vibrational motian. (4) The reaction-rate is
given by

(3.1)

where

(3.2)
n

is a quantum correetían to the rate eguatían presented 0therwise in a
convcntional classical formo Here E = E - F , E is the energy oí motían

n non
along the reaction (promoting mode) coordinate q, "E"nis the excess oí
energy relative to the barrier height E¡,along q. W(En) is the total
transition probability

W(!:n) = I Wn'n"(!:n) F(En" T)
nl,n"

weighed t}~rrnally Qver the initial state n', assumed to be in thermal
equilibrium, F(E ,T) being the occupation probability at level E "

n' n
More specifically, n' and n" quantize the motions along the coardinates q¡
of the modes orthogonal to q in the initial (n') and final (n") states,
respectively. As stated in Section 2, the latter modes accept and distri-
bute the excess energy following a horizontal transition through the intr~
lattice coupling. These shall be called "accepting modes"hcreafter. Zi
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is the complete partitían funetían oí the initia! state,

z# = ¿ exp-(E Ik T)
i n' Bn'

(3.3)

is the partitían funetían oí the accepting moJes in that statc. Finally,
ti E = E - E is the spacing between thc subscquent energy lcvels along

n 0+1 nthe reaction coordinate. ka' h, and T have their usual meaning. Calculat
ing W(E ) simplifies when q is a nClmal coordinate oí the system; it is

nthen dynamically separable from the domain of all the mode coordinates.
In that case W . " is independent oí the initial-state quantum numbers n',

n n
and stm1Jl\ingup oyer n' "ould giye W , ,,(E) so that no thermal ayeraging

n n n

is required any more. Now

k'f Z;' , W, (E) exp-(E Ik T) exp-(E Ik T) (6E Ih)
~ ~ L n n" n n' B n B n

n,n',o" (3.4)

Equation (3.4) for kif has a simple physical meaning:(7) .hile
W (E ) is the transition probability at energy E along the reactionn'n" n ncoordinate, (hZ.f'exp-(E Ik T) A E can be interpretcd as thc probability

~ n B nper unir time for an approach to the barrier between the initial and final
states along that samc coordinate, with energy within the interval óE .n
As a matter oí faet, the normalized probability that a system would occupy
a yolume dqdp in phase space is (Z.h)-' exp-(E/k T) dqdp. In time dtq 1 B q
all the phase points within a distance dq = y dt from the barrier will
strike it; now the desircd expression follo"s\ince dp = v -'dE. Although

q q
using classical arguments for interpreting a quantal formula, the aboye
considerations rrerelytmderlinc the basic result that a "quantum-mechanical
rate is given as a sum of probability products in the manncr of classical
probabilistics. ,,(7)

For a purely classical description one may set simply

where 1l\, Vhv - '2 • (3.5)

FroID (3.2) converting the sum into an integral ane finds X 1, and
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(3.1) aSSl~S its classical formo For a quantum-mechanical calculation oí
too relaxation rate, however, knowledge of the transition probability W(E )

n
is rcquired. The latter can be found given the potential-energy surface
governing the process.

3.2.T~ition p'obab~y

Gcnerally, the transition probability W(E ) is dcfined in terms
n

oí the flux oí vibrons in the initial electronic state i along the reaction
coordinate q towards the transition configuration at q. . This flux is>f
partially rcflcctcd back from the barrier and partially transmitted to thc
final electronic statc f. ,The reverse current back íTem the final state
is neglectcd, for it is assumed that once in that state the vibran relaxes
rapidly to lmvcr levels, giving away the eXCCS5 energy through its coupling
to the accepting rnodes, so that the chances oí return are rather srnal1.
Under these condi t ions,

(3.6)

with
. l[d+ dJj( q) = .z (hv!!'!) x~ - / ~

Clcarly, li(E ) can be found by solving the vibronic problem, as formulated
n

by (2.12) anu (2.25), in the vicinity of the crossover configuration qif'
To gct an idea of the complexity of the problem, wc shall seek

a solution of SchrBdingcr's equation (2.7) with Il = T + f1. f in terms of
L >

the linear combination X .(q) li;q> + X f(q) If;q> = X .(q) li;O> +X f(q) If;o>
n~ n n1. n

of corrcsponding adiabatic-approximation wavefunctions pcrtaining to the
initial and final elcctronic states. Retaining adiabaticity (2.9) and
making use oí thc definitions oí 5ection 2.4 wc obtain a system oí couplcd
vibronic equations far X . and X f:n> n

(3.7)
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These have beco solved far Vi! = O and Kif = const.assuming linear diabatic
potentials in the vicinity oí crossoveT. Clcarly, the solutions would tend
to the anes pertinent to the diabatic wells J as one moves away írem too
crossover.

It has been shown that the transition probabi1ity can often be
represented as a product,

(3.8)

of the probabi1ity WL for rearrangement of the 1attice configuration
(disp1acement of the equi1ibrium position frcm q1 to q;) times the probabi-
lity W far a change oí the electronic state íTem i to f. Transitions with

e
""e= 1 are called l'adiabatic", while those with We« 1 are "nonadiabatic"j
otherwise, intennediatc transitions are tenned "notadiabatic". ClearIy,
the electron-transfcr factor will depend essentially on the mixing parameter
Kif ar in other words en the magnitude oí the adiabatic-energy splitting at
crossover: the larger the splitting, the highcr We and viceversa.

Various expressions have been derived for the transition probabl
lity depending on the magnitude of thc excess energy ~ = E - E re1ativen :'l o
to the barrier peak, as well as on whether the energy-surfaces fono CC-
diagrams of the weak1y- or strong1y- coupling type. We shall next sUllm'lrize
the fonnu1ae obtained so far.

At 1arge positive rn (overbarrier transitions) the 1attice
rearranges classically, WL = 1. In this case the derived expressions for
W(En) = We(En) rest 1argely on the semic1assica1 Landau-Zener approach:

We 1 - exp-(2ny)
where

y = (K'f'/2hv) (E lE - E I)-l
1. r n e

(3.9)

(3.10)

This is the probability for a single passagc of the crossing point qif'
Equation (3.9) rcasonably predicts We+l for Kit large and We+O at
vanishing Kit .
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3.2.1. Strong COupling(S)

Landau-2ener's equation (3.9) has been generalized to account for
the possibility of multiple transitions back and forth through the crossover
point at 1':n» O:

We = 2(1 - exp-(2ny))/(2 - cxp-(2ny)) (3.11)

At ro« o the transition along the reaction coordinate q occurs
by nuclear tunneling (WL < 1). A one-way transition probability has been
obtained reading (3.8), where

(3.12)

(3.13)

far below thc crossover energy thc motian along q being quantized by

(2.36). fere ni and nf are the vibronic quantum numbers in the initial
and final electronic states. respectively, which numbers are chosen so as
to satisfy the energy-conservation conclítion

Furthcr.

(3.14)

where
,

1; (l-iu'/hv)' (q - q:)

is the dbnensionless phonon coordinatc. Eq. (3.13) holds good for
IKif 1« E¡,. Hn(l;) are thc Ilcnnitc polynomials of oroer n.
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3.2.2. Weak COup1ing(10)

At large positive En (ovcrbarrier transitions) Landau-Zener's
formalism yields far thc two-way transition probability

We = 2(1 - exp-(2ny)) exp-(2ny) (3.15)

It vanishes for both 1arge and sma11 Kif.
Well under the barrier (En« O)

given by

The maximum value oí We is 0.5.
the electron-transfcr term i5

We = 2ny exp+(2y)/r(1- y)y'y (3.16)

t~h~ver. its maximum value being 2 at large y, We now dces not have the
meaning of a probabi1ity, as does the product (3.8). For a strong1y-
quantized system

which has been derived by a two-fo1d app1ication of (3.13). Here

(3.17)

+ 2n,lln. (l;if)"n.-1 (-I;if)
1 1

whi1e FS (1;£',1;.£)is givcn by (3.14).
ninf 1

3.3. PM.ti.tion 6unctio""

(3.18)

When the motion along the Teaction coordinate q is dynamically
separable froro thc domain of thc acccpting modes, thnt coordinate factorizes
out írem the complete partition funetian Zi oí the initial state to give

2
i

= Z~ exp-(hv/2kBT)/(1 - cxp-(hv/~T))

\ihcrc Z# is the partition function of the nonreactive (accepting) modes.
i
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One obtains

2#/2 = 2 sinh(hv/2k T)
i i B

(3.19)

to be inserted in the general rate equation (3.1). Eq. (3.19) ho1ds good
far harmonic vibratían along the promoting-mode coordinate.

3.4. React<on 4ate

From (3.1) and (3.19) we obtain the rate constant of the present
tWQ-site harmonic-vibration model,

kif = 2v sinh(hv/2kBT) 1 We(E.;JWL(E.;Jexp-(ErlkBT) '.
n

(3.20)

where v = W/ZTI i5 the vibrational frequency of the prornoting mode, while
TI is the vibronic quantum number oí the quantized motían along the reaction
coordinate. We and WL are the electron-transfer and lattice-rearrangement
factors, respective1y, W(En) = We(En) WL(En) being the transition
probabi1ity at energy En. For a strong1y quantized system (hv ~ Eb) the
relevant formulae far WL are those given in Section 3.2 which perta in to
encrgies ~ sufficiently far íTem the barrier topo Near the top ar far
weakly quantized cases (hv« Eb), quasiclassical techniques have been
used in deriving exprcssions far WL, described in detail elsewhere. (5) The
semiclassical formulae for We obtained so far are reproduced in 3.2. In
the strong-coupling case the electron transfer is adiabatic (We = 1) at
large elcctron-energy splittings Kif, and notadiabatic ("le < 1) otherwise.
It is pcrhaps in tros case alone that a probabilistics interpretation
applies to We. In weak-coupling situations the electron transfer is
predictcJ to a1ways be notadiabatic (max We = 0.5) over the barrier.
Another peculiarity in that cnse is the ultimate value oí We = 2 at large
IKifl.

The transition from i to f is tenned "endothennic" for Q> O,
"isothennic" for Q = O, and "exothennic" for Q< o. The transition rates
in two opposite directions are simply interrelated:
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(3.21)

We shall herein summarize sorne results obtained for weakly-
quantized systems (hv« Eh) which pertain to nonadiabatic and adiabatic
transltlons, respectively. The obtained formulae may be found use fuI in
interpreting experimentally observed relaxation rates.

3.5.1. Nonadiabaticity

In case of a strong nonadiabaticity (1Kif I «Eh) resulting from
a weak electron-transfer interaction in a transition involving a high
barrier the lower-temperature relaxation rates may be too sma!! to be
measured. Moresignificant rates occur at higher temperatures, where
overharrier transitions through classical lattice rearrangement (WL = 1)
predomina te. An Arrhenius temperature behavior results but the ohserved
preexponential factor is much lower than the expected promoting-mode
frequency, sometimes by many orders oí magnitude.

For a strong-coupling situation the nonadiabatic electron-tr~
fer probability from (3.11) is We = 4ny. Inserting into (3.2) by making
use of (3.10). and replacing the SLml by an integral we get

(3.22)

Physically this is an adiabaticity cOTrection to thc classical-rate equation
equation. Substituting for K in

(3.24)

we obtain a precxponential factor that amounts to
!

2v(K. '/hv) (n'/E k T)' (2k T/hv) sinh(hv/2k T)
J.f r B B B

Gomparing with the experimentally measured value can serve the purpose oí
dctermining IKifl.
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3.5.2. Classical, intermediate, and quantal vibrons

At the other extreme of sufficiently large [Kifl the clectron
transfer in a strong-coupling situation will be adiabatic (W = 1). Thee
resulting transition rate can now be expected to be considerably higher at
comparable barrier heights than the one considered in 3.5.1. Even though
the low-temperature rate maystill be too low, the efficiency of the sub-
barrier lattice-tunneling transitions at higher vibronic levels wil1 grow
increasingly higher as the temperature is raised. Under appropriate
conditions the contribution oí these tunneling transitions to the oyera!!
Tate kif may even egual the ane oí the classical overbarrier jumps at sorne
temperature T, wherefrom too classical jumps \'Jil! grow more and more

esuperior. Clearly, Te is called "Qlristov's characteristic tenwerature"
will depend essentially on the shape of the potential-energy profile along
the promoting-rncxle coordinate near the barrier topo Aproximating far that
top by an inverted parabola of frequency ,,*, Te has been shownto be given
by(8)

(3.25)

Further, using quasiclassical techniques, the quantum-correction factor to
Eq. (3.1) has been found to be(8)

K(T) = (n/2) (Te/T)/sin((n/2) (Te/T)) (3.26)

at temperatures T>i Te' Numerically K(T) is large near ~ Te wherefrom it
drops clown as the temperature is increased to atta in vah"es as low as 1 at
T» Te. Based on these arguments, one can therefore, define thc following
three temperature ranges of external appearance of an adiabatic vibran:

i) quantal (T<i Te): lattice tunneling predominating;
ii) íntermediate (i Te<T< 2 Te): lattice tunneling and classical jumps

nearly equally effectivc;
iii) classical (2 T < T): classical jumps predaminating.

e

Nonnally too curvature at the barrier top would exceed that at the well
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*mínima: v > v. Consequently, the second ~l third factors on thc right-

hand side of Eq. (3.24) would nearly cancel out so that the preexponential
factor measured within the intermediate range would exceed the anticipated
promoting rrK>de frequency because K > 1. Othen.rise, the experimental temp~
rature dependence o,: the rate constant in that range ","ouIdvery closely
resemble a straight line in the Arrhenius coordinates. Yet, the magnitude
of its intercepts would not only be due to classical but to quantum
physics as well.

Although the aboye profound conclusion of the reaction-rate
theory is often undercstimated or is s~ly no! taken into accaunt by
exper imental ists, i t substantiates the currently expressed opinion
that IItOOquantum-mechanical ttumcling is no! an unique property oí the
low temperatures alone~ (9)

In addition to the intercepts, the magnitude oí the experimental
activatían energy Ea in the intermediate range a1so contains details oí
the barrier shape due to the quantal effects. Using

and

(3.24-6), we obtain assuming v# » V

E = E - k Ta b B e
(3.27)

around the characteristic tcmperature. The activation energy determined
from Arrhenius plots in the intermediate range is, therefore, lower than
the barrier height by an amOlmt proportional to the curvature at the
barrier topo This samc curvature is a150 related to the magnitudc oí ehe

electron-exchange coupling constant IKifl :

(3.28)

as shown recently through differentiating Eq. (2.25) in the vicinity of
the crossover configuration. (11)

The formulae of this Section can be used to analyze experimental
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data for the intennediate range aimed at reproducing the potential-energy
profile controlling an adiabatic nanradiative transition in a strong-coup!
ing situation. Alternatively. the rate equation (3.24) with quanturn-
correction factor (3.26) can be regarded as a three-parameter (\l. Te. Eb!
fomula, which can be fitted to experimental data by means of an appropriate
computer programo

4. APPLlCATlON

Among a number oí puzzling occurrences at the F center, two oId
experimental facts have recently inspired rene,..,'ed theoretical efforts:

i) The apparent ionizability of the relaxed excited F state (F')
at low temperatureó(12)

ii) the optical appearance oí "ghost" polaron sta tes rclated to the F
center. (13)

The point is that you cannot simply explain (i) in terms of the transltlon
to a conduction-band state, for this would require a positive reaction heat
Q making the (endothermic) process physically impossible at low temperature.
Then, what if you regard ionizatían as mcrely the transition to sorne appr£
priate pelaron state, assurrdng that (i) and (ii) are interrelated?
Clearly. (i) would follow immcdiately, provided the latter transition would
require negative or no reactíon heat at a11. This was supported on
constructrng the configurational-coordinate diagram of the KCl F center
by using empírica! data on the optical absorption, emission, and ionizat--,
ion energies oí F and F: Definitely, an exothennic ionization reaction-,
emerged for F , involving the possible transltion to a virtual palaron
state. (14)

The F* ionization rates were next calculated from experImep.tal
data on the P* lifetime and ionization efficiency. "hen plotted versus the
corresponding absolute temperatures, a dependence typical of an exo- or
iso- thermic rcaction clearly emerged. The pertinent reaction-rate formula
was then applied yielding a very satisfactory agreement (Fig. 2.). The
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obtained value of the electron-exchange constant IKifl, regarded as a
fitting parameter, was explained in tenms oí the transition to a virtual
polaron state centered a few lattice spacings away from the vacancy. (14)

A further atternpt was then made to pre-calculate a consistent
configurational - coordinate diagram of the F center and the bound pelaron
for a most material where it was expected to work. (15) Na! was chosen,
since it was lmown to couple the F center to a single (A1g) vibrational
mcxle. The semiconti;nuum model oí the F center potential was used, even
though somewhat archaic, which was coup!ed to a A1g-type vibration through
modulating both the depth Vo and width ro of the spherical well by the
phonon coordinate q, while leaving the Coulomb tail unchanged,

where N(x) stands for Heaviside's stcp £unction, and r is the radial
électron coordinate. The linear electron-phonon coupling operator was
found to be

b(r)=.!.. [V + [L-l]V +xj(l-N(r-r))
T
o

o aH M o [
e')

- V - -J 6(r - r )o E:r o

where Vo = Vo(ro'O), VMand a.Hare Madelungts potential and constant,
respectively, while X is the electron affinity oí the crystal. K is equal
to 6 for a breathing-mode type local vibration, and to a" for the A1g
lattice mode. TI1estatic electronic problemwas solved, and, fol1owing
the prescriptions of Section 2.3., the diabatic potentials calculated.
These are shown in Fig. 3 for the ls- and 2p- like F bound states, as well
as for the 2p- like bound pelaron state. The resulting CC-diagram is
clearly of the type deduced from experimental data for the KCl F center. (14)

The reaction - rate approachwas al50 applied to explaining
experimentally measured relaxation rates oí off-center dipolar defects,
such as Ag+) F-, OJ+, and Li+, in a ntDTlber of host materials. Frema
quantum-IOOchanical point of view what makes the ion go off-center is the
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pseudo - Jahn-Teller interaction. (16) This is properly described by a
transition Hamiltonian of the Eq. l2.21) typej however, now the pramoting
mode, rather than the electron-transfer interaction, mixes the twa static
states li;O> and If;O>, already split-of in energy at crossover (qif = O)
by Eif = Ef- Ei:

Hif =}MW2q2 - }Eif(li;O><l;OI - If;O><f;OI +

+ gif q(li:O ><f;OI + If;O><i;OI) (4.1)

Solving the eigenvalue equation we obtain the following-adiahatic energy in
a linear-combination eigenstate (2.23):

Clearly, these are of the Eq. (2.25) type. A strong-coupling situation
results, with lower-surface minima at

(4.3)

and a barrier peak at
The condi t ion far the

where

qif = O. The upper surface has a minima at ~if .

occurrence oí the minUna on EL(q) is

(4.4)

(4.5)

is the Jahn-Teller energy. Under this condition alone 1s the dipolar off-
centered occurrence possible at a11. On the other hand, it is the electron-
energy splitting at qif = O what controls the reorientational transition
of the dipole froo qi to q~. Similar conditions apply to Eq. (2.25) if

Kif is assumed constant. Clearly then, the reaction-rate formulae of
Section 3 (strong coupling) are inherently applicable to tlle off-center
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~roblern, provided ilEifl substitutes formally for IKifl, and Ibff - biil
for 12gif l.

A best fit of the reaction-rate equation (3.20) to the experimen
tal dipolar relaxation time oí off-center Ag+ in RbCl, as measured by

nuclear magnetic resonance techniques, (17) is shown in Fig. 4. The off-
centered occurrence condition (4.4) is met with abundance.

4.3. InteAmediate Eu'+ - catiO" vaeancy dipole i" KCI

The relaxation time oí <110> synmetry Eu2+ - catian vacancy di-
poles in a number of alkali halides has been measured by ITC techniques. (18)
One of these, the KCl entity, has shown a pre-exponential factor that
exceeds by a factor of 2.5 the LO-phonon frcquency in the material. In
spite of the relatively high temperaturc of the ITC peack (219'K) and the
high activation energy measured (0.66 eV), the data were analyzed in terms
of the intermediate dipolar behavior of Section 3.5.2. (11) The result is
displayed in Fig. 5. The quantal appearance of the entity is predicted to
be felt below lSOoK bu! involving relaxation times in excess oí 1010 s,
too long to be measured. The electron-transfer term was computed to be
0.7 eV, using the formulae of Sec. 3.5.2, which clearly indicates an
adiabatic behavior. The computed characteristic temperature was 276°K.
Believe it or no!, quaIltal effects are sensible in this system at the ice
melting point!

In an ingenious optical experirnent TanÍffiuTa and Itoh have deter-
rnined the hopping rate of a self-trapped excition in Li+ doped NaCl. (19)
The obtained ternperature dependence oí the rate has been analyzed in terms
of Eqs. (3.22) and (3.24), based on an earlier result by Holstein. (7) A
barrier height ~ = 0.15 eV and an electron-transfer matrix element
IKif I = 0.022 eV have been determined. Under these conditions the electron
transfer is clearly nonadiabatic, so that the analysis made applies. It is
to be stressed that the exciton hopping is basically an isothermic process,
as is the dipolar reorientation. Itoh's data and analysis are reproduced
m Fig. 6.
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4.5. F~e p~pective

~lost of the experimental check-ups of the reaction-rate method
have so far beco made for strongly-relaxed defccts, that is, for strong-
coupling situations, in iaoie crystals. This is largely duc to the lack
of formulae for the transition probabilities pertaining to the weak-coupl-
ing case which have not beco available until only rccently. Future work
will, thereforc, have to concentrate on non~Tadiative deexcitation leading
to lumincscence quenching in dilute F centered systeID5, as well as to
electron trapping by isol~ted anion vacancies. In addition, the dynamics
oí tunneled F to FI centcr conversions in denser systems has not, up to
this time, been investigated theoretica11y at a11. Another prob1em which
merits furthcr attention is, undoubtedly, the"hopping matico of self-tra£
ped excitaos and hales, as well as of light interstitials. The reaetion-
rate method can also be applied to nonradiative decays of self-trapped
exeitons leading to the production of lattiee defeets upon irradiation.
It is hoped. thereforc, that the prcsent paper may eontribute to stirnulat-
ing further theoretical researeh in the field.

5. CONCLUDINGDISCUSSlON

The reaetion-rate method deseribed presently has reeently been
applied to a variety of nonradiative transitions in ionic selids
main1y. (5,10,11,14,15,20,21,22) Ear1ier it has been devc10ped to dea1 with
nonradiative transfer of electrons or ions in solution(4.23) and in moleculal
crystals. (5,7) It has also been found useful for explaining observed
relaxation rates in biological systems. (24.25) Evcn its recent attempted
application to dipolar relaxation phenomena dces not seem te be novel,
too. (26) It is, therefore, rather astonishing that thc reaction-rate
method, otherwise so transparcnt physically, (7) has not ret gained its
dcservcd popularity and rccognition among both sol id state theorists and
cxperimentalists.

The general formulation of the eigenvaluc problem in Section 2,
as '....e11 as of thc transition rate in Section 3, even though taking into
account the accepting modes explicitly, was effcctively prcsented under
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thc singlc.promoting-node assumption. At least to sorne extent, this
limitation reflccts the present state oí the theory, as far as its practical
applications are concemed. Clearly, it should by no means be considered a
serious obstacle to further extensions and developmcnts, so as to cever more
realistic situations, particularly in dipolar relaxation phenomena, when
thc maticn along the reaction path is analyzed in tcnms oí more than ene
promoting modes. Another limitation was introduced in Section 3, even
though not underlined specifically. by assuming that the promoting-mode
frequency was essentially the same in both the initial and final electronic
states. Although pertaining to certain experimental situations, it dces
not do so to others. particularly ones of the weak-coupling type. Recently
an extension oí the Section 3 formulae has becn made to two different
frcquencies in i and f, which is soon to be available in the literature. (27)

The reaction rate formula (3.20) pertains. let us say it again.
to energy-conserving transitions pronx>ted by a single mode, ,",'hosefrequency
does not change along thc reaction coordinate, assumed to be one oí the
normal coordina tes of the system. For a strongly-quantized system thc
relevant expressions for the electron-transfer We and lattice-rearrangemcnt
WL factors at energies En sufficiently far frem the barrier top are thosc
given in Sections 3.2.1 and 3.2.2. For weakly-qLk,ntized systems or at
energies nearer to the top the appropriate expressions are to be found
elsewhere. (5.10) The resulting equation (3.20) for the transition rate
depends on four free pararneters: the mede frequency v, [he reaction heat
Q. the lattice-reorganization energy Er = S hv (5- the Huang-Rhys factor).
and the electron-exchange term IKifl (or the total splitting which includes
the dynamic tenrn Vif as well, omittcd from mest oí the aboye considerations).
For a symmetric-well potential-energy surfacc EL(q) the reaction heat
vanishcs, so that the number of par3100ters reduces to three. Syt1'Iretric
situations of this type pcrtain to a variety oí nonradiative transltlons,
such as dipolar relaxation, polaron or exci ton hopping, difussion, etc. In
comparing the theory with experimento the rate equation (3.20) has been
adapted to the observcd rate and the values of the free paramcters obtained
from the best fit. Clearly, this would not put an cnd to the theoretical
effort which would thcn have to concentrate on providing independcnt esti-
mates, based eventually on simple models, to substantiatc the best-fit
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data. In choosing the type oí Tcaction to explain a particular rate vs.
ternperature experimental pIat, the following consideratían may be fO\.Dld

useful: exa- ar iso-thermic Teaction types always lead to nonvanishing low-
temperature rates, given by

(5.1)

while endothermic anes end up with vanishing low-temperature rates, accord
ing to (3.21), since these would require a positive reaction heat. "~t-
ever the Teaction type, ho"ever, the occurrence oí a non-linear dcercase
oí experimental rate in the Arrhenius pIat, as the temperature is lowered,
is al\.~ys indicative oí lattice tunneling in situations where the low-
temperature rate is too smal! to be measured.

Finally, by app1ying re1ative simple eomputationa1 teclmiques to
fitting Eq. (3.20), the reaetion-rate method may be found to be a usefu1
too1 far interpreting experimental rate data.
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