Revista Mexicana de Fisica 31 No. 2 (1985) 221-257 221

REACTION-RATE APPROACH TO
NONRADIATIVE TRANSITIONS
IN POLAR SOLIDS

*
M. Georgiev

Instituto de Ffsica, U.N.A.M., Apartado Postal 20-364,
Delegaci6én Alvaro Obreg6n, 01000 México, D.F.

(recibido noviembre 8, 1984; aceptado noviembre 14, 1984)

ABSTRACT

A review is given of the basic concepts of the reaction-rate
approach to nonradiative transitions in polar solids. The purpose of this
paper is to call for the attention of the physicist through presenting a
method that has first been introduced and applied to chemical problems.

The reaction-rate theory is firmly based, simply formulated, and leads to
imnmediate conclusions helping to easily reveal physics. It applies to a
variety of nonradiative processes, involving the transfer of electrons or
ions, between and including the extrema of adiabatic and nonadiabatic
transitions. The paper is composed of three parts: Following a concise
description of the method in Sections 2 and 3, applications to some specific
experimental situations in ionic crystals are shown to demonstrate how it
works. Among these are the vibrational properties of F centers in alkali
halides, the relaxation of dipolar defects, and the hopping of self-trapped
excitons. Practical ways to apply the method to deal with experimental
rate data are advised.

*
On leave of absence from the Institute of Solid State Physics, Bulgarian
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RESUMEN

Se presenta una revisidn sobre los conceptos tedricos bdsicos de la
razbén-de-reaccidn aplicada a las transiciones no-radiativas en sélidos pola-
res. El propdsito del siguiente trabajo es llamar la atencidn de los fisicos,
al presentar un método que fue primero introducido y aplicado a problemas de
la quimica. Esta teoria de la razdn-de-reaccidn estd fundamentada sobre ba
ses sblidas, formulada de manera simple y conduce a conclusicnes que revelan
las bases fisicas de los problemas. Esta teoria se puede aplicar a una gran
variedad de procesos no-radiativos, incluyendo la transferencia de electro-
nes o iones entre los valores extremos de transiciones adiabdticas o no-adia
baticas. El articulo se compone de tres partes: En las secciones 2 y 3 se
presenta una descripcidn concisa del método, posteriormente se presentan apli
caciones del método a algunos resultados experimentales, especificamente a
cristales idnicos. Entre ellas se encuentran las propiedades vibracionales
del centro F en halogenuros alcalinos, la relajacidn de defectos dipolares
y el salto de excitones auto-atrapados. Se explica la manera practica de
aplicar el método a resultados experimentales.

1. INTRODUCTION

The role of nonradiative transitions (NRT) in energy and matter
transfer in solids has been appreciated for a long time. Phenomenologically
a NRT is the process by which a system, initially under an external pertur-
bation, relaxes to thermal equilibrium with the excess energy degrading in
the form of heat. Among the large variety of NRT in solid state physics
one can extract a few more typical examples:

- luminescence quenching (intra-or inter-center)
- free-carrier capture

- thermal ionization of excited electronic states
- spin-lattice relaxation

- production of lattice defects

- energy transfer

- diffusion

- dipolar reorientation, etc.

Fven a first-sight inspection reveals the common features leading to two
main groups of NRT in the above list involving: (i) an electron transfer
from one state to another, such as free-carrier capture or intracenter
luminescence quenching; and (ii) the net displacement of an electron or an
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ionic defect from one site to another, such as diffusion and dipolar reorien
tation. In either case the NRT-undergoing entity interacts with the surround
ing medium, which rearranges so as to make the transition possible. Later,

a quantitative criterion will be introduced to distinguish between weakly

(i) and strongly (ii) relaxed defect types. The increasing interest in
studying NRT in solids is due to both their basic physical significance and
practical importance.

It is by no means the purpose of this paper to present any
comprehensive survey of NRT in solids; such reviews are already available in
the literature.(l's) We shall focus instead on a few cases that are both
typical and instructive. A quantitative method will be presented for their
description, and, hopefully, proper physical interpretation based on the
reaction-rate approach.( Although somewhat less familiar to the solid-
state physicist, this method has widely been used in chemistry forming the
basis of present-day uﬁ&erstanding of chemical reactions. In addition to
being both statistically justified and simply formulated, applying the
reaction-rate method to deal with particular experimental situations would
not require using sophisticated mathematical techniques. Having recently
attended two major international conferences in the United States, on Lumines
cence and Defects in Insulating Crystals, the author is now well aware of
the pressing need for a simpler theoretical approach that would enable the
experimentalist to clearly interpret his data. Without pretending to be
the magic torch, this paper is mainly aimed at demonstrating the virtues of
a way alternative to the traditional multiphonon techniques.

The paper is further composed of three main parts. Following a
general formulation of the eingenvalue problem, where an approximate solution
of the Schrodinger equation for the electron-lattice system will be found
within the adiabatic approximation, in Section 2, Section 3 will define the
transition rate by means of the reaction-rate method, and will present
relevant formulae for calculating the transition probabilities for a strongly-
quantized system. Several examples will then be shown in Section 4 in which
the theory has so far been found to compare favorably with experiments.
Finally, the limitations of the theory at its present stage will be touched
briefly and some practical prescriptions adviced in the concluding part.
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2. GENERAL FORMULATION OF THE EIGENVALUE PROBLEM

2.1, Hamiltonian

The excess energy in a nonradiative transition is given away to
the (crystalline) medium through the interactions of electrons and lattice
vibrations. This can be described properly only by means of quantum
mechanics. We assume the medium to be polarizable and to be composed of
a system of lattice oscillators performing vibrations around certain
equilibrium positions. Due to the polarizability, the presence of any extra
electron localized at some site in the crystal would displace the equilibrium
positions of the oscillators, the magnitude of the displacement depending
essentially on the spatial extension of the electron cloud, that is, on the
electronic state. This displacement is the simplest manifestation of the
existence of an electron-lattice interaction, arizing from the polarizabili
ty, the interaction leading to a number of observable effects.

The Hamiltonian of a polarizable medium composed of electrons and

oscillators will then read
=H +H +H ‘ (2.1)
e L el

H, is the static electronic Hamiltonian at fixed lattice, when all the
oscillators are frozen-in at their equilibrium positions q%:

- 5 (@2m) +V G d) ; (2.2)
e
the sum being over the coordinates ¥ and momenta 5 of all the electrons,
m, are the electron effective masses, V (? q 9 s the static potential
which the electrons "'see' when the nuc1e1 are at rest. When they are not,
the electronic potential varies following parametrically the motion of
the nuclei (addiabatic proposition). This modulated potential V (? s q )

can be expanded into a power series in q,, the nuclear coordlnates (q is
the manifold of all q,), to give

VEQ =V Ea) +] (b (i ) -a0) + oo (2.3)
1
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The mixed electron-lattice terms in (2.3) effect the coupling of the
electrons to the lattice oscillators. Consequently,

> "
Hy = 1G5 ad(@, -a) + e, (i a),q),)(a, - a))(q,,-af,) +e--).
el,1 (2.4)
In the absence of an electron-lattice interaction the lattice Hamiltonian

is

H = 151'((§§/2541) + Mwi(a,-a))? + Ml (- ad)(q,,-q0,) +eee),
(2.5)

where M,, PB,, and w, stand for the masses, momenta, and angular frequencies
of the oscillators. The third term in (2.5) effects coupling between the
oscillators which secures vibrational relaxation, and thereby thermal
equilibrium, through the transfer of excitation enmergy to the heat reservoir
of the lattice. This term introduces additional frequency dispersion of
the oscillators. The intralattice coupling constants w,,s are sometimes
assumed small and the corresponding terms in Eq. (2.5) discarded from actual
consideration when dealing with certain NRT types. However, being essential
physically, these terms have always to be implied, if not taken into account
explicitly. The Eq. (2.5) can be diagonalized in q:

H =1 ((PY/2M) + Mwl?(ql-q2)2 + «-2) (2.6)
1

to include the intralattice frequency dispersion. The equilibrium positions
of the oscillators will further on be assumed to be at q: = 0, the origin
of the lattice-configurational space. However, displacements from the
origin of qg are induced by the electron-lattice coupling operators
bl(?e, qf) and cll,(?e, qg, qg,). Of these, b1 induce changes in the
equilibrium positions, while c,,: effect "electron-dressing" of the 'bare"
oscillators through changing the force constants.

To unravel the time-development of the system described by Eq.
(2.1) solving Schrédinger's equation,
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H\P(%e, :1) = Ew(%en :]) (2.7)

is required. However, the problem is largely complicated by the inclusion
of electron-lattice coupling terms (2.4). 'lhis invokes the use of certain
approximations.

2.2, Adiabatic approximation

According to the adiabatic theorem, an approximate solution to
Eq. (2.7) may be sought in the form of the product

VE, @ =00 @ x @ (2.8)

of an electronic part 9, which only depends parametrically on the nuclear
coordinates §, times a vibrational part xnt,which depends on the electronic
quantum numbers t as well. The parametric -assumption is justified in cases
where the electronic motion can be considered fast compared with the
nuclear counterpart, to allow neglecting the dependence of Y, on the
nuclear kinetic energy T, . Such are the cases of localized electrons in
solids whose orbital motion involves rotational frequencies much higher
than the vibrational frequencies of the ions of the surrounding lattice,
due to the large difference in the respective masses. Insofar as

1 0o @ = (1@, E s @ = 0 (2.9)
1
we define an "adiabatic Hamiltonian'' by means of

HAD =H - TL (2.14)

Inserting (2.8) into (2.7) we get

HOpO = H (%) + T, %)
= Hyy 0)x *+ (T + T, (00 - (Tp)v

Putting now the parametric assumption (2.9) into force Eq. (2.7) splits
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into two eigenvalue equations:

HapPe (B3 @) = E (@9, G @) (2.11)

and
(T, * B, @)xe@ = By %o @ (2.12)

where E,, are the eigenvalues of Eq. (Z.7) in the adiabatic approximation.
The complexity of the problem is, however, only partially reduced, since
the electron-coupling terms remain in the operator part of Eq. (2.11).
The residual expression

H' = T (yx) = (Tpov , (2.13)

vanishing under the parametric condition, is used as the NRT-driving
operator in most multiphonon theories.

2.3. Diabatic hypersurfaces

Given a static electronic state mt(?e; 0) = |t;0>, defined by
H,|t;0> = E|t;0 > , (2.14)

we find next the average value of HAD to approximate for the eigenvalues
of EBg. (Z2.11):

~ ~ -~ {
= » . ™ 2 0
V£t(q) <t,0[HAD|t.0> ;[ileizq; + Et - btth; +C

\
E[iMlm't'lz(q'l' S OLETTE B M (2.15)
the second-order electron-lattice coupling tensor c,,: being assumed
diagonalized prior to averaging. Here
by, =<|t:0] ] b, (F:0) |t;0 > (2.16)
e,
and
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Cepqy = < 630] ] cll(?e; 0)|t;0 > (2.17)

e,
are the average values of the first- and second- order electron-lattice
coupling operators, respectively,

nt o M "2
%, / %61 (2a18)
are the new equilibrium positions of the lattice oscillators, displaced
because of the electron-lattice polarization interaction,

w? =w'?2+2c /M (2.19)
t1 1 €1l 1

are the new "electron-dressed" vibrational frequencies,

Q =E - g 3M1m:i(Q":1)2 (2.20)
is the "electron-binding energy" in the adiabatic approximation. Remember
that the frequency spectrum in (2.15) includes the induced intralattice
coupling dispersion as well.

In the harmonic approximation (dots in (2.15) omitted), to be
adopted throughout, Eq . (2.15) is that of a hyperparaboloid in the lattice-
conflgurat1ona1 space q whose minimum is at q For two static electronic
states |1,0> and |j;0>, the respective paraboloxds at q and q , intersect

along some line L in a hyperplane S. There is a minimum of potentlal
energy at aij along this line, Insofar as Vtt(a) represent approximate
potential energy surfaces for the vibronic problem, Eq. (2.12) should give
the approximate eigenvalues E, .

Considering energy-conserving 'horizontal' transitions from
well i to well j, it is intuitively clear that they should proceed along
an appropriate line Lp connecting ql, q , and q which is the path of
minimal potential energy. We shall assume for 51mp11c1ty that "'transition
path" L to be a straight hyperline, the one along the coordinate a, of a
certain mode This p-mode will actually promote the transition from i to
j and will be called "promoting'. The single promoting-mode assumption
is not an essential limitation and can be generalized when the motion
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along L, is analyzed in terms of more than one promoting mode, that is,
when L is a curved line.

The degeneracy in electron energy along the crossover line L
violates the adiabatic approximation. One can expect, therefore, the dif-
ference between Vtt(a) and Et(a), the precise eigenvalue of Eq. (2.11), to
be most significant around L. That degeneracy is really removed when the
electron-transfer interaction between i and j is taken into account.

2.4, Two-state hamiftonian

In order to lift the degeneracy along L, we construct a two-
state Hamiltonian Hij by means of the static electronic states |i;0> and
|j;0>, assumed to be orthonormal:

Hijj = Hap + Kj5(@)(]150><530] + [§30><30]) (2.21)
where Kij(q) is a mixing parameter,

Hap = He *+ Hep, *+ )E%le'lquz ; (2.22)

and will seek the eigenvalues of H;; in terms of the linear combination

[t;a> = A|i;0> + B|j;0> . (2.23)
Solving for
Hj|tiq> = E(a)|tsq> : (2.24)

the eigenvalues are
Ey/p(@ = 30Vis (@) + Vy3(@) * ((Vig (@) - Vy3(@))2 + 4| (Vy5(a) +
¢ K@) [0h : (2.25)

Here
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v, (@ <s;0[H,|t;0>

(2.26)

b
EO + %M 12,12 (5 o 1 12 fam—
- ; lwl ql J st Xx(bsta q1 & cstllql ¢ )

are the matrix elements of Ho between states |s;6> and |t;6>. In the
harmonic approximation V., (q) obtain from (2.15) as well. The matrix
elements of the electron-lattice coupling operators are

b - ;5 b (T ;~ t;a
st1 = i¥11(re 01 3 (el
and
IR .

. <s Lffal(re,0)| t;0> ; etc (2.28)

Retaining the higher-order temms in the expansion of <s|Hgy [t> in q' is
1

made for the sake of completeness here: usually a linear coupling scheme
is adopted neglecting all c - etc. The eigen-states of Eq. (2.24)

corresponding to E (q) have been found to be

U/L
lt;a)v = cos{w/2)|i;6> + sin(P/2) | j;5> .
. . B (2.29)
|t;q>L = -sin(9/2)|1i30> + cos(P/2)|j;0> 5
with
tan(9(@) = 2054 (@ * Ky3@)/Vyy @ - Vig@) - (2.30)

Eq. (2 25) defines two adlabatlc hypersurfaces upper Eu(g) and lower
EL(Q) They split by E (qL - E (q,) = 2|V (qL (qL)| along the
crossover line L. Very little is known about the dependence of K; j on the
configurational coordinates. Although often assumed constant, a more
rigorous treatment would show K;j to be significant along L only and to
eventually drop rapidly away from it. Unless the crossover splitting is
too large, E (q) and EL(q) would practically coincide with the correspond
ing d1abat1c branches sufficiently far from L. Under the condition of
small |V (q) + K, (q)] away from crossover, there will be, therefore, two
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minima at ag and ;; on the lower surface, EL(q). However, independent of
the magnitude of the splitting there is a valley bottomed along L on E;(q)
with its lowest point at a4 and a corresponding sierra on EL(q) with a bottom
bottom at q 4 as well. It is now clear why the most favorable transition
path connecting q; and q; would inevitably pass through a4
Cross-sectioned in a plane containing q , the potential-energy
profile along the promoting-mode coordinate exhibits a barrier peaked at
(qp)ij whose height is

B = Vii(aij) - Vi(a5) - Ivij(aij) * Kij(qij)l
% "2 qn o 042 = o
giMlmil CHIEL Wl LN k0,00 » (2.31)

relative to the minimum of Vii(q) at qg. The difference between the energy
minima on EL(q) amounting to

=) = =D.-E9-1 12 n 0y2 _ 2 n 0y2 i
Q=0Q-Q =E -E %letwjl Ui el ol L (2.32)
according to (2.15) and (2.20), is the "reaction heat" at 0°K. Another
important quantity is the "lattice reorganization energy' E, defined by

= ._~D_ ..~q= n 2 ' 0y2
E, = Vyy(a3) - V;5(a3) E Mot * (a) - a0 - (2.33)

This is the average energy gained by the lattice, as two separate wells
are created at q; and,qg through corresponding displacements by virtue of
the electron-phonon interaction of a well centered at the origin. Further,
from Vii(qij) = ij(qi
configuration Q4

j) we get the equation for determining the crossover

E%M (ml.l 2 (qr.|‘ = h',' 0)2 = wlll 2 (qn‘r‘ - q.:O)Z) = Q 5 (2.34)
; 1 11 ij1 il j1 ij1 Ja -

~

The crossover energy at qij relative to the minimum of Vii(q) is

Be = Vis(ayg) - Vig@l) = ] M 2@, -y ® . (2.35)
1

i1 ij1 i1
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It should be stressed that the crossover splitting EU((;_L) -E (qp)
is composed of dynamic Vij and static Kij parts. Some authors have preferr
ed considering one of these only, while neglecting completely the contribu
tion of the other.(s’ﬁ) -

2.5. Vibronic eigenstates

Substituting EU/L(Q) from (2.25) for Et(&) in Eq. (2.12) and
solving it, we obtain the eigenvalues Enc' These represent the total
energy of the system in the adiabatic approximation. EU/L(Q) is the poten
tial-energy surface governing the motion of the lattice oscillators.
Insofar as EU/L(ﬁ) differs from the diabatic hyper-paraboloids in the
vicinity of the crossover line L only, E., and x,.(q) can be approximated
by the energies and eigenstates of harmonic oscillators, respectively

(£, = Moy, /h}i q,):
B ™ g huo,(my + 1) + Q ’ (2.36)
@ = H(w% ann D" (£~ g2 e -~ (dlE =7 )2 (2.37)
Xnt 1 A 5 Ty ti t1 Etl) ) - ’

In fact, (2.36-7) describe vibrational-like states which contain a nearly
complete information on the whole system. Actually, E,, comprise not only
purely vibrational terms but electronic and lattice-displacement energies
as well. On the other hand, the eigenstates Xnt(a) contain information on
the displacement, that is, on the magnitude of the electron-phonon
interaction. These electron-coupled vibrational states are called
"vibronic'; the corresponding entity will hereafter be named 'vibron" for
short.

A vibron can perform vertical transitions within a well leading
to local lattice relaxation through giving away excess emergy to the latti
ce heat reservoir. This relaxation is made possible thanks to the intra-
vibronic coupling terms, accounted for in (2.36) and (2.37) by way of the
corresponding frequency dispersion in W, (the "superscripts omitted).
What is more important for our purpose, the vibron can also perform hori-
zontal energy-conserving transitions from one well to the other. Such
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transitions, leading to the net population of the latter well at the
expense of the former, are described in terms of (2.8), which are in fact
quasistationary states, being just approximate solutions to Schrédinger's
equation (2.7).

2.6, Congigurational-coordinate diagrams

A configurational-coordinate diagram is the one which depicts
the potential energy of a vibron in one or more electronic states versus
the coordinate q of the promoting mode (subscript p hereafter drOpped).N
This is the profile of the vibronic potential energy hypersurface Ey/(@)
along the transition path LP, assuned rectilinear. For the first time now
the single-promoting-mode proposition, mentioned earlier, is being put into
effect. An example is shown in Fig. 1 with the quantities introduced in
Section 2.4 denoted therein. Mathematically, the potential-energy profile
in a CC-diagram obtains from (2.25) and (2.26) setting all ql =0 for 1#p.
Depending on the relative strength of the electron-lattice coupling (to
which the displacement of the minima are proportional), there are three
different types of diagrams distinguished by the relationship between the
lattice reorganization energy E_ and the reaction heat Q. From (2.33) and
(2.34) we obtain

E -Q=Muw_%(@."-q.° LYy 2.38
e T N, < ) 950 , (2.38)
(subscript p revoked to avoid confusion), account being taken of the fact
that under the rectilinearity assumption qz, q;, and q;4 all lie on the
transition line L, which now is one of the coordinate axes, the qp—axis.
For q.° - q.%> 0, the three cases are:
Jp ip
0 :
ip qijp) ’
ii) intermediate coupling (Ers Q, q
p:’qijp)'
Also, from (2.33), (2.34), and (2.35) we obtain the relation

i) Weak coupling (E <Q, q

0 > .
3p” Yi3p)
iii) strong coupling (Er> Q; qj

E_= (B, +Q)?/4E_ (2.39)
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Potential-energy profile along the promoting-mode coordinate in a
strong-coupling situation. The adiabatic energy surfaces are
represented by solid lines. The diabatic surfaces are depicted by
dashed lines in the vicinity of the crossover (transition) coordi-
nate. Far from crossover these coincide with the corresponding
adiabatic branches. See the text for an explanation of the
notations. The reaction from left to richt is endothermic.
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between the crossover and reorganization energies. E_. = E, for intermediate
coupling. The above types of CC-diagram will appear in the experimental
examples to be considered below.

3. TRANSITION RATE

3.1. General definition of reaction-nate

The reaction-rate theory provides a method for calculating the
rate of horizontal energy-conserving transitions in the two-state model of
Section 2. The method is based on an occurrence-probability approach used
in Eyring's chemical-rate theory but extended so as to allow for a quantum-
mechanical description of the vibrational mﬂtion.(q) The reaction-rate is

given by

kip = €D (kgT/R) (2h/2,) exp-(By/kgD) (3.1)
where

k(T) = § W(E_) exp-(E /k;T) A (E /k;T) (3.2)

is a gquantum correction to the rate equation presented ctherwise in a
conventional classical form. Here E; =E -E,E is the energy of motion
along the reaction (promoting mode) coordinate q, Eh is the excess of
energy relative to the barrier height E_ along q. W(En) is the total
transition probability

W(En) = l{ . Wn-n-fEn) F(Enn T)
n',n

weighed thermally over the initial state n', assumed to be in thermal
equilibrium, F(En., T) being the occupation probability at level En,.
More specifically, n' and n'" quantize the motions along the coordinates q,
of the modes orthogonal to q in the initial (n') and final (n'') states,
respectively. As stated in Section 2, the latter modes accept and distri-
bute the excess energy following a horizontal transition through the intra
lattice coupling. These shall be called 'accepting modes' hereafter. Z
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is the complete partition function of the initial state,

# = &
Zi { exp (En./kBT) (3.3)

nl

is the partition function of the accepting modes in that state. Finally,
AE = En+1 - En is the spacing between the subsequent energy levels along
the reaction coordinate. kB, h, and T have their usual meaning. Calculat
ing W(En) simplifies when q is a normal coordinate of the system; it is
then dynamically separable from the domain of all the mode coordinates.
In that case Wo,w is independent of the initial-state quantum numbers n',
and summing up over n' would give Wn,n"(En) so that no thermal averaging
is required any more. Now

=1

k=2 } (B ) exp- (B, /KT) exp-(E /K.T) (4E, /h)

if i .
n,n

/n (3.4)

Equation (3.4) for k has a simple physical meaning:(7) While
n. "(E ) is the transition probablllty at energy E along the reaction
coordlnate, (hZ, ) lexp- (E /k T)A;E can be 1nterpreted as the probability
per unit time for an approach to the barrier between the initial and final
states along that same coordinate, with emergy within the interval AEn.
As a matter of fact, the normalized probability that a system would occupy
a volume dqdpq in phase space is (Zih)'1 exp- (E/k,T) dqdpq. In time dt
all the phase points within a distance dq = v_dt from the barrier will
strike it; now the desired expression follows since dpq = vq—ldE. Although
using classical arguments for interpreting a quantal formula, the above
considerations merelyunderline the basic result that a 'quantum-mechanical
rate is given as a sum of probability products in the manner of classical
probabilistics."

For a purely classical description one may set simply

M, s n
W(En) = ! " where n = Eh/hv - 7 s (3.5)
lO, n<n

From (3.2) converting the sum into an integral one finds X = 1, and
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(3.1) assumes its classical form. For a quantum-mechanical calculation of
the relaxation rate, however, knowledge of the transition probability W(E))
is required. The latter can be found given the potential-energy surface
governing the process.

3.2. Thansition probability

Generally, the transition probability W(En) is defined in terms
of the flux of vibrons in the initial electronic state i along the reaction
coordinate q towards the transition configuration at Qg This flux is
partially reflected back from the barrier and partially transmitted to the
final electronic state f. The reverse current back from the final state
is neglected, for it is assumed that once in that state the vibron relaxes
rapidly to lower levels, giving away the excess energy through its coupling
to the accepting modes, so that the chances of return are rather small.
Under these conditions,

W(E) = j ; (3.6)

transmitted/J incident

with
i@ =3 moot hE -

Clearly, W(En) can be found by solving the vibronic problem, as formulated
by (2.12) and (2.25), in the vicinity of the crossover configuration Q-
To get an idea of the complexity of the problem, we shall seek
a solution of Schrédinger's equation (2.7) with H = TL + Hif in terms of
the linear combination xni(q)|i;q> + an(q)[f;q> = i;i(q)|i;0> +§;f(q)]f;0>
of corresponding adiabatic-approximation wavefunctions pertaining to the
initial and final electronic states. Retaining adiabaticity (2.9) and
making use of the definitions of Section 2.4 we obtain a system of coupled
vibronic equations for X . and §£f:

(B - T, -V, (@) = Ve * KX ¢ g

3:7)
(- T, - Vo (@)X, = OV,

i Y KX
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These have been solved for Vif = (0 and Kif = const. assuming linear diabatic
potentials in the vicinity of crossover. Clearly, the solutions would tend
to the ones pertinent to the diabatic wells, as one moves away from the
Crossover.

It has been shown that the transition probability can often be
represented as a product,

W(E) = W (E) W.(E) , (3.8)

of the probability Wy for rearrangement of the lattice configuration
(displacement of the equilibrium position from qf to qg) times the probabi-
lity W, for a change of the electronic state from i to f. Transitions with
W, = 1 are called "adiabatic", while those with W << 1 are "nonadiabatic"’;
otherwise, intermediate transitions are termed "notadiabatic". Clearly,

the electron-transfer factor will depend essentially on the mixing parameter
K,¢ or in other words on the magnitude of the adiabatic-enmergy splitting at
crossover: the larger the splitting, the higher W, and viceversa.

Various expressions have been derived for the transition probabi
lity depending on the magnitude of the excess energy Eh “E. ~E relative
to the barrier peak, as well as on whether the energy-surfaces form (C-
diagrams of the weakly- or strongly- coupling type. We shall next summarize
the formulae obtained so far.

At large positive Eh (overbarrier transitions) the lattice
rearranges classically, W = 1. In this case the derived expressions for
W(E,) = We(En) rest largely on the semiclassical Landau-Zener approach:

Wg = 1 - exp-(2ny) § (3.9)
where

y = (K,2/2hv) (E_|E - Ec|)'i : (3.10)
This is the probability for a single passage of the crossing point g ¢.

Equation (3.9) reasonably predicts W -1 for K;; large and W_+0 at

vanishing K;¢ .
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3.2.1. Strong coupling®)
Landau-Zener's equation (3.9) has been generalized to account for
the possibility of multiple transitions back and forth through the crossover
point at Ep>> 0:

We = 2(1 - exp-(2ny))/(2 - exp-(2my)) ¥ (3.11)

At T:'n<< 0 the transition along the reaction coordinate q occurs
by nuclear tunneling (W <1). A one-way transition probability has been
obtained reading (3.8), where

We = 2v*Y exp-@V/T(M? (3.12)
Foon (E,,8)° ,

W=l —£ %~ exp-((ng-ny)*hv/E,) exp-(E./hv) " (3.13)
ni+nf
2 n, ingt

far below the crossover energy the motion along q being quantized by
(2.36). Here n; and ng are the vibronic quantum numbers in the initial
and final electronic states, respectively, which numbers are chosen so as
to satisfy the energy-conservation condition

Q = (nj - nghy
Further,
Fninf(‘sg’gif) =g Hy (E,0) an(gif— £g) - zn)'_Hni—l(gif)an‘l(gif- 30
+ gy (€560 -1 (Eig - £D) , (3.14)
where
£ = M2/m)? (q - )

is the dimensionless phonon coordinate. Eq. (3.13) holds good for
|K;¢| <<E,. H_(E) are the Hermite polynomials of order n.
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3.2.2. Weak coupling1%)

At large positive E, (overbarrier transitions) Landau-Zener's
formalism yields for the two-way transition probability

We =2(1 = exp- (2my)) exp-(27y) § (3.15)

It vanishes for both large and small Kif. The maximum value of W, is 0.5.
Well under the barrier (E,<<0) the electron-transfer term is

given by
We = 2my exp+(2v)/T(1-Vv?Y . (3.16)

However, its maximum value being 2 at large y, We now does not have the
meaning of a probability, as does the product (3.8). For a strongly-
quantized system

W = (FR n, /Fin)? 2" 0N/ e expr(2Q/hv)  ,  (3.17)
which has been derived by a two-fold application of (3.13). Here
F:ini(gif) = 285, (B, (E4g) - gl (€M, By *
+ ZniHni(EifJHni_l(—Eif) , (3.18)
while Pﬁinf(gg,gif) is given by (3.14).

3.3. Pantdition functions

When the motion along the reaction coordinate q is dynamically
separable from the domain of the accepting modes, that coordinate factorizes

out from the complete partition function Z; of the initial state to give

z, = 2} exp- (/2K D/ (1 - exp-(v/kgD)

1

where 7' is the partition function of the nonreactive (accepting) modes.
1
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One obtains

2*/2 = 2 sinh(hw2k T) (3.19)
i 1 B

to be inserted in the general rate equation (3.1). Eq. (3.19) holds good

for harmonic vibration along the promoting-mode coordinate.

3.4. Reaction rate

From (3.1) and (3.19) we obtain the rate constant of the present
two-site harmonic-vibration model,

kis = 2v sinh(hv/2k;T) § W (E)W (E_) exp-(E /kg) , (3.20)
n

where v = w/2m is the vibrational frequency of the promoting mode, while

n is the vibronic quantum number of the quantized motion along the reaction
coordinate. W, and W; are the electron-transfer and lattice-rearrangement
factors, respectively, W(E,) = We(E,) Wr(E,) being the transition
probability at energy E,. For a strongly quantized system (hv & E,) the
relevant formulae for W, are those given in Section 3.2 which pertain to
energies E, sufficiently far from the barrier top. Near the top or for
weakly quantized cases (hv<<Eg), quasiclassical techniques have been
used in deriving expressions for W, described in detail elsewhere.(s) The
semiclassical formulae for W, obtained so far are reproduced in 3.2. In
the strong-coupling case the electron transfer is adiabatic (W = 1) at
large electron-energy splittings K;¢, and notadiabatic (W < 1) otherwise.
It is perhaps in this case alone that a probabilistics interpretation
applies to W,. In weak-coupling situations the electron transfer is
predicted to always be notadiabatic (max W, = 0.5) over the barrier.
Another peculiarity in that case is the ultimate value of W, = 2 at large
Kig

.

The transition from i to f is termed "endothermic'" for Q> 0,
"jsothermic' for Q = 0, and "exothermic'" for Q< 0. The transition rates

in two opposite directions are simply interrelated:
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ke; = kig exp-(Q/kgT) (3.21)

3.5. Comrection facton fon weakfy-quantized systems

We shall herein summarize some results obtained for weakly-
quantized systems (hv<< Ep) which pertain to nonadiabatic and adiabatic
transitions, respectively. The obtained formulae may be found useful in
interpreting experimentally observed relaxation rates.

3.5.1. Nonadiabaticity

In case of a strong nonadiabaticity (|Kj¢| << Ep) resulting from
a weak electron-transfer interaction in a transition involving a high
barrier the lower-temperature relaxation rates may be too small to be
measured. More significant rates occur at higher temperatures, where
overbarrier transitions through classical lattice rearrangement (W, = 1)
predominate. An Arrhenius temperature behavior results but the observed
preexponential factor is much lower than the expected promoting-mode
frequency, sometimes by many orders of magnitude.

For a strong-coupling situation the nonadiabatic electron-trans
fer probability from (3.11) is W, = 4my. Inserting into (3.2) by making
use of (3.10), and replacing the sum by an integral we get

o(T) = 2(Kie2/hv) (*/EkgDE . (3.22)

Physically this is an adiabaticity correction to the classical-rate equation

equation. Substituting for k in
ki = k(T) (2kgT/hv) sinh(hv/ZkgT)v exp- (Ey/kgT) (3.24)
we obtain a preexponential factor that amounts to
1
2v(K. 2/hv) (n3/E k T)* (2k_T/hv) sinh(hv/2k _T)
if r B B B

Comparing with the experimentally measured value can serve the purpose of

determining [Kj¢|.
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3.5.2. Classical, intermediate, and quantal vibrons

At the other extreme of sufficiently large |K, | the electron
transfer in a strong-coupling situation will be adiabatic (We =1). The
resulting transition rate can now be expected to be considerably higher at
comparable barrier heights than the one considered in 3.5.1. Even though
the low-temperature rate may still be too low, the efficiency of the sub-
barrier lattice-tummeling transitions at higher vibronic levels will grow
increasingly higher as the temperature is raised. Under appropriate
conditions the contribution of these tunneling transitions to the overall
rate kif may even equal the one of the classical overbarrier jumps at some
temperature TE, wherefrom the classical jumps will grow more and more
superior. Clearly, T, is called "Christov's characteristic temperature'
will depend essentially on the shape of the potential-energy profile along
the promoting-mode coordinate near the barrier top. Aproximating for that

top by an inverted parabola of frequency v, T, has been shown to be given
(8
by

#
T = hv” /mky . (3.25)

Further, using quasiclassical techniques, the quantum-correction factor to
Eq. (3.1) has been found to be(g)

(T) = (n/2) (T/T)/sin((n/2) (T/T)) (3.26)

at temperatures T>-% T_. MNumerically k(T) is large near % O wherefrom it
drops down as the temperature is increased to attain valves as low as 1 at
T>>T,. Based on these arguments, one can therefore, define the following

three temperature ranges of external appearance of an adiabatic vibron:
i) Quantal (T‘Z%VTC): lattice tunneling predominating;

ii) intermediate (% T.<T<2 T.): lattice tunneling and classical jumps

nearly equally effective;

iii) classical (2 T_< T): classical jumps predominating.

Normally the curvature at the barrier top would exceed that at the well
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minima: V" > v. Consequently, the second and third factors on the right-
hand side of Eq. (3.24) would nearly cancel out so that the preexponential
factor measured within the intermediate range would exceed the anticipated
promoting mode frequency because k > 1. Otherwise, the experimental tempe
rature dependence o the rate constant in that range would very closely
resemble a straight line in the Arrhenius coordinates. Yet, the magnitude
of its intercepts would not only be due to classical but to quantum
physics as well.

Although the above profound conclusion of the reaction-rate
theory is often underestimated or is simply not taken into account by
experimentalists, it substantiates the currently expressed opinion
that"the quantum-mechanical tunneling is not an unique property of the
low temperatures aloné[(g)

In addition to the intercepts, the magnitude of the experimental
activation energy E, in the intermediate range also contains details of
the barrier shape due to the quantal effects. Using

3
E,=-———-—Inkj, and

3(1/k,T)

(3.24-6), we obtain assuming v s> v 5
E =E -LkT (3:27)

around the characteristic temperature. The activation energy determined
from Arrhenius plots in the intermediate range is, therefore, lower than
the barrier height by an amount proportional to the curvature at the

barrier top. This same curvature is also related to the magnitude of the

electron-exchange coupling constant |Kjg| :
Te = (hv/mkg) (1 + 2Ep/|Kjel) ; (3.28)
as shown recently through differentiating Eq. (2.25) in the vicinity of

the crossover configuration.
The formulae of this Section can be used to analyze experimental
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data for the intermediate range aimed at reproducing the potential -energy
profile controlling an adiabatic nonradiative transition in a strong-coupl
ing situation. Alternatively, the rate equation (3.24) with quantum-
correction factor (3.26) can be regarded as a three-parameter (8, Tay Ep
formula, which can be fitted to experimental data by means of an appropriate
computer program.

4. APPLICATION

4.1. F center in alkali halides

Among a number of puzzling occurrences at the F center, two old
experimental facts have recently inspired renewed theoretical efforts:
i) The apparent ionizability of the relaxed excited F state (F*)

at low temperature;(lz)

ii) the optical appearance of 'ghost" polaron states related to the F

center.

The point is that you cannot simply explain (i) in terms of the transition
to a conduction-band state, for this would require a positive reaction heat
Q making the (endothermic) process physically impossible at low temperature.
Then, what if you regard ionization as merely the transition to some appro
priate polaron state, assuming that (i) and (ii) are interrelated?
Clearly, (i) would follow immediately, provided the latter transition would
require negative or no reaction heat at all. This was supported on
constructing the configurational-coordinate diagram of the KC1 F center
by using empirical datg on the optical absorption, emission, and ionizat-
ion energies~of F and F*: Definitely, an exothermic ionization reaction
energe%lfgr F*, involving the possible transition to a virtual polaron

The E* ionization rates were next calculated from experimental

data on the F* lifetime and ionization efficiency. When plotted versus the
corresponding absolute temperatures, a dependence typical of an exo- or

state.

iso- thermic reaction clearly emerged. The pertinent reaction-rate formula
was then applied yielding a very satisfactory agreement (Fig. 2.). The
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obtained value of the electron-exchange constant |K;jg|, regarded as a
fitting parameter, was explained in terms of the transition to a virtual
polaron state centered a few lattice spacings away from the vacan:y.(14)

A further attempt was then made to pre-calculate a consistent
configurational - coordinate diagram of the F center and the bound polaron
for a most material where it was expected to work.(ls) Nal was chosen,
since it was known to couple the F center to a single (Alg) vibrational
mode. The semicontinuum model of the F center potential was used, even
though somewhat archaic, which was coupled to a Alg-type vibration through
modulating both the depth V_ and width r of the spherical well by the
phonon coordinate q, while leaving the Coulomb tail unchanged,

V(r,q) = -V (ry,d) (1-N@r-1,-q) - @/e)N(r-1,-a)

where N(x) stands for Heaviside's step function, and r is the radial
electron coordinate. The linear electron-phonon coupling operator was
found to be

b(r) =?1-; [VD+ [5]‘.{;1— l]VM+ XJ(I'N(T'TQ)) - {Vo = Z—i]&(r- ro) i
where Vg = V,(rg,0), Vy and ay are Madelung's potential and constant,
respectively, while y is the electron affinity of the crystal. K is equal
to 6 for a breathing-mode type local vibration, and to ay for the Alg
lattice mode. The static electronic problem was solved, and, following
the prescriptions of Section 2.3., the diabatic potentials calculated.
These are shown in Fig. 3 for the 1s- and 2p- like F bound states, as well
as for the 2p- like bound polaron state. The resulting EC-diagram is

clearly of the type deduced from experimental data for the KCl1 F center.(14)

4.7. 04f-Center impunity dipokes An alkaly halides

The reaction - rate approach was also applied to explaining
experimentally measured relaxation rates of off-center dipolar defects,
suchas Ag®, F, Cu', and Li*, in a mmber of host materials. From a
quantum-mechanical point of view what makes the ion go off-center is the
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pseudo - Jahn-Teller interaction.(l6) This is properly described by a
transition Hamiltonian of the Eq. (2.21) type; however, now the promoting
mode, rather than the electron-transfer interaction, mixes the two static
states |1;0> and |f;0>, already split-of in energy at crossover (@;¢=0)
by E;; = Eg-E;:

Hif =%—Mm2q2 = %Elf{ll;o ><1;0| = [f;O ><f;0| +
*+ 8, a(]i30><£50] + [£50><i30]) . (4.1)

Solving the eigenvalue equation we obtain the following-adiabatic energy in
a linear-combination eigenstate (2.23):

Eg/n(@ = 7 Mw?q?s (4 g;% a2 + E;¢?)?) : (4.2)

Clearly, these are of the Eq. (2.25) type. A strong-coupling situation
results, with lower-surface minima at

a} =7 (g, */Mw?)* - E, )P /28, (4.3)

and a barrier peak at q,. = 0. The upper surface has a minima at Bep o
The condition for the occurrence of the minima on E;(q) is

Byd k- [Biel @.4)
where
Ejp = 8i¢2/2Mu? (4.5)

is the Jahn-Teller energy. Under this condition alone is the dipolar off-
centered occurrence possible at all. On the other hand, it is the electron-
energy splitting at q,. = 0 what controls the reorientational transition

of the dipole from q; to q;. Similar conditions apply to Eq. (2.25) if

K._ is assumed constant. Clearly then, the reaction-rate formulae of

if
Section 3 (strong coupling) are inherently applicable to the off-center
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problem, provided %1Eif| substitutes formally for |K;¢|, and |bgs - by;|
for |2g;¢|-

A best fit of the reaction-rate equation (3.20) to the experimen
tal dipolar relaxation time of off-center Ag+ in RbC1l, as measured by
nuclear magnetic resonance techniques,[17) is shown in Fig. 4. The off-
centered occurrence condition (4.4) is met with abundance.

4.3. Intermediate Eu’’ - cation vacancy dipole in KCL

The relaxation time of <110> symmetry Eu®" - cation vacancy di-
poles in a number of alkali halides has been measured by ITC techniques.(ls)
One of these, the KCl entity, has shown a pre-exponential factor that
exceeds by a factor of 2.5 the LO-phonon frequency in the material. In
spite of the relatively high temperature of the ITC peack (219°K) and the
high activation energy measured (0.66 eV), the data were analyzed in terms
of the intermediate dipolar behavior of Section 3.5.2. (1) The result is
displayed in Fig. 5. The quantal appearance of the entity is predicted to
be felt below 150°K but involving relaxation times in excess of 10!¢ s,
too long to be measured. The electron-transfer term was computed to be
0.7 eV, using the formulae of Sec. 3.5.2, which clearly indicates an
adiabatic behavior. The computed characteristic temperature was 276°K.
Believe it or not, quantal effects are sensible in this system at the ice

melting point!

4.4, Nonadiabatic hopping of self-trapped exciton in NaCl

In an ingenious optical experiment Tanimura and Itoh have deter-
mined the hopping rate of a self-trapped excition in Li* doped NaCl.(lg)
The obtained temperature dependence of the rate has been analyzed in terms
of Egs. (3.22) and (3.24), based on an earlier result by Holstein.(T) A
barrier height E = 0.15 eV and an electron-transfer matrix element
|K;¢| = 0.02Z eV have been determined. Under these conditions the electron
transfer is clearly nonadiabatic, so that the analysis made applies. It is
to be stressed that the exciton hopping is basically an isothermic process,
as is the dipolar reorientation. Itoh's data and analysis are reproduced

in Fig. 6.
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Fig.
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parameters are: T¢ = 276°K, Ep = 0.68 eV, vV = vip = 6.39x 10t2g-1?
for an adiabatic reaction. The analysis reveals gquantal effects
at temperatures as high as the ice-melting point. (After C.
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4.5. Futwie perspective

Most of the experimental check-ups of the reaction-rate method
have so far been made for strongly-relaxed defects, that is, for strong-
coupling situations, in ionic crystals. This is largely due to the lack
of formulae for the transition probabilities pertaining to the weak-coupl-
ing case which have not been available until only recently. Future work
will, therefore, have to concentrate on non-radiative deexcitation leading
to luminescence quenching in dilute F centered systems, as well as to
electron trapping by isolated anion vacancies. In addition, the dynamics
of tunneled F to F' center conversions in denser systems has not, up to
this time, been investigated theoretically at all. Another problem which
merits further attention is, undoubtedly, the -hopping motion of self-trap
ped excitons and holes, as well as of light interstitials. The reaction-
rate method can also be applied to nonradiative decays of self-trapped
excitons leading to the production of lattice defects upon irradiation.

It is hoped, therefore, that the present paper may contribute to stimulat-
ing further theoretical research in the field.

5. CONCLUDING DISCUSSION

The reaction-rate method described presently has recently been
applied to a variety of nonradiative transitions in ionic solids

(5,10,11,14,15,20,21,22) Earlier it has been developed to deal with

mainly.
(4,23)

nonradiative transfer of electrons or ions in solution and in molecular
crystals.(5’7) It has also been found useful for explaining observed
relaxation rates in biological systems.(za’zs) Even its recent attempted
application to dipolar relaxation phenomena does not seem to be novel,

(26) It is, therefore, rather astonishing that the reaction-rate

too.
method, otherwise so transparent physically,(7) has not yet gained its
deserved popularity and recognition among both solid state theorists and
experimentalists.

The general formulation of the eigenvalue problem in Section 2,
as well as of the transition rate in Section 3, even though taking into

account the accepting modes explicitly, was effectively presented under
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the single-promoting-mode assumption. At least to some extent, this
limitation reflects the present state of the theory, as far as its practical
applications are concerned. Clearly, it should by no means be considered a
serious obstacle to further extensions and developments, so as to cover more
realistic situations, particularly in dipolar relaxation phenomena, when
the motion along the reaction path is analyzed in terms of more than one
promoting modes. Another limitation was introduced in Section 3, even
though not underlined specifically, by assuming that the promoting-mode
frequency was essentially the same in both the initial and final electronic
states. Although pertaining to certain experimental situations, it does
not do so to others, particularly ones of the weak-coupling type. Recently
an extension of the Section 3 formulae has been made to two different
frequencies in i and f, which is soon to be available in the literature.(27)

The reaction rate formula (3.20) pertains, let us say it again,
to energy-conserving transitions promoted by a single mode, whose frequency
does not change along the reaction coordinate, assumed to be one of the
normal coordinates of the system. For a strongly-quantized system the
relevant expressions for the electron-transfer W, and lattice-rearrangement
W;, factors at energies E_ sufficiently far from the barrier top are those
given in Sections 3.2.1 and 3.2.2. For weakly-quantized systems or at
energies nearer to the top the appropriate expressions are to be found

elsewhere.(s’lo)

The resulting equation (3.20) for the transition rate
depends on four free parameters: the mode frequency v, the reaction heat

Q, the lattice-reorganization energy E, = S hv (S- the Huang-Rhys factor),
and the electron-exchange term |K, | (or the total splitting which includes
the dynamic term V,. as well, omitted from most of the above considerations).
For a symmetric-well potential-energy surface Ep(q) the reaction heat
vanishes, so that the number of parameters reduces to three. Symmetric
situations of this type pertain to a variety of nonradiative transitions,
such as dipolar relaxation, polaron or exciton hopping, difussion, etc. In
comparing the theory with experiment, the rate equation (3.20) has been
adapted to the observed rate and the values of the free parameters obtained
from the best fit. Clearly, this would not put an end to the theoretical
effort which would then have to concentrate on providing independent esti-
mates, based eventually on simple models, to substantiate the best-fit
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data. In choosing the type of reaction to explain a particular rate vs.
temperature experimental plot, the following consideration may be found
useful: exo- or iso-thermic reaction types always lead to nonvanishing low-
temperature rates, given by

kg(0) =VWg(E)) WL(E) =+ (5.1)

while endothermic ones end up with vanishing low-temperature rates, accord
ing to (3.21), since these would require a positive reaction heat. What-
ever the reaction type, however, the occurrence of a non-linear decrease
of experimental rate in the Arrhenius plot, as the temperature is lowered,
is always indicative of lattice tunneling in situations where the low-
temperature rate is too small to be measured.

Finally, by applying relative simple computational techniques to
fitting Eq. (3.20), the reaction-rate method may be found to be a useful
tool for interpreting experimental rate data.
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