INFLUENCE OF THREE-BODY FORCES ON T=0 SPECTRUM IN ⁴HE

J.J. Bevelacqua

GPU Nuclear Corporation, P.O. Box 480, Middletown, Pennsylvania 17057*

and

United States Department of Energy, P.O. Box E, Oak Ridge, Tennessee 37830

(recibido junio 28, 1984; aceptado octubre 19, 1984)

ABSTRACT

A ⁴He shell-model formalism, including two- and three-body forces is used to calculate the energy and width of the following T = 0levels: 0⁺(g.s.), 0⁺(20.1 MeV), 4⁺(24.6 MeV), 1⁺(25.5 MeV), and 2⁺(33.0 MeV). Three-body plus two-body forces lead to significant improvements, in comparison with only two-body forces, in both level width and energy estimates for the T = 0 states noted above.

RESUMEN

Usando un formalismo de modelo de capas en ⁴He y tomando en consi deración fuerzas de dos y tres cuerpos, se calculan la energía y la anchura de los niveles de T=0 siguientes: $O^+(g.s.)$, $O^+(20.1 \text{ MeV})$, $4^+(24.6 \text{ MeV})$, $1^+(25.5 \text{ MeV})$ y $2^+(33.0 \text{ MeV})$. Al tomar en cuenta las fuerzas de tres cuer-

Present address.

que se obtienen considerando únicamente fuerzas de dos cuerpos.

1. INTRODUCTION

Levels in the ⁴He system below about 50 MeV are of a T=0 or T=1character⁽¹⁾. The T=1 levels consist of a 1p - 1h (shell-model) character and are relatively well described by two-body interactions (2-6). However. the T = 0 spectrum involves more complex structures (7-9) and is distorted relative to the experimental spectrum (10,11). This distortion is amplified when the model ground state binding energy agrees with experiment (5). Improvements in the 0^+ T = 0 spectrum, as well as an improved charge form factor and rms radius, were obtained by introducing a shell-model Hamiltonian which includes both two-body plus three-body forces (12). The applica bility of three-body forces in the T = 0 spectrum in ⁴He has yet to be established. However, the poor agreement between two-body model calculations and data for the (1⁺,0) 25.5 MeV and (2⁺,0) 33.0 MeV levels^(5,10) and the (4⁺,0) 24.6 MeV level^(9,11) suggest other areas where three-body forces may lead to improvements in the calculated T = 0 spectrum in ⁴He. If the three-body model of Ref. 12 is valid, it should also lead to an improved representation of the 4⁺, 1⁺, and 2⁺ levels noted above.

The approach of using three-body forces within a shell-model framework will lead to highly model-dependent results. Even though our results will be model dependent, they will provide an indication of the applicability of three-body forces in the ⁴He T = 0 spectrum.

2. FORMULATION

The three-body force of Ref. 12 was formulated by only considering the $0^+(g.s.)$ and $0^+(20.1 \text{ MeV})$ levels. In formulating the three-body model only $(0s)^3$ and $(0s)^2(1s)$ configurations (in internal coordinates) were considered because the dominant components of the aforementioned 0^+ states involve $0\hbar\omega$ and $2\hbar\omega$ excitations⁽⁷⁾. In a simplified view, the $J^{\pi} = 0^+$ three-body forces only contained $0\hbar\omega$ and $2\hbar\omega$ components. In order to calculate the positions of the $1^+(25.5 \text{ MeV})$, $2^+(33.0 \text{ MeV})$, and $4^+(24.6 \text{ MeV})$ levels (which contain significant $4\hbar\omega$ components), three-body forces with $4\hbar\omega$ content must be determined $^{(5,8,9)}$. Herein, the $4\hbar\omega$ three-body interaction strength will be determined by considering the $(4^+,0)$ 24.6 MeV level⁽¹¹⁾. Once the $4\hbar\omega$ three-body interaction strength is determined, it will be used with the $0\hbar\omega$ and $2\hbar\omega$ three-body components⁽¹²⁾ to calculate the positions of 1^+ and 2^+ levels. Model eigenenergies for the 1^+ and 2^+ levels will provide a critical test of the adequacy of the proposed threebody approach. Level width comparisons will provide additional criteria to determine the adequacy of the proposed model.

The $4\hbar\omega$ component of the model three-body interaction may be determined by considering the difference between the measured and calculated (two-body) position of the 4⁺ level. This difference may be minimized by including a more general Hamiltonian which includes a three-body term in addition to the usually considered two-body term⁽¹²⁾

$$H' = H + U$$
 , (1)

where H is the two-body Hamiltonian⁽⁵⁾ and U is the three-body Hamiltonian. The choice of the three-body term is motivated by a recent study of the splitting of the ground and first excited state (FES) in ${}^{4}\text{He}^{(12)}$. The three-body term is defined in terms of a projection operator which selects A = 3 triton $|p_1\rangle$ or ${}^{3}\text{He}$ $|p_2\rangle$ clusters from the ${}^{4}\text{He}$ basis state^(5,12):

$$U = \sum_{j=1}^{2} \sum_{i=2}^{2} |p_{i} > \Delta_{ji} < p_{i}| \qquad (2)$$

The quantities appearing in Eq. (2) are discussed in more detail in Ref. 12. This form for U was chosen for the FES problem because the dominant ground and FES configurations were based on a limited number of configurations. However, the 4⁺ problem is complicated because the 4ħ ω content of this state admits many more configurations $|p_i\rangle$ than the 0ħ ω and 2ħ ω structure of the ground and first excited states. For this reason, we choose to make the following simplifying assumptions for the strengths Δ_{ii} (N₁₂, L₁₂, N_B, L_B, i):

$$\Delta_{ii}(N_{12}, L_{12}, N_{B}, L_{B}, i) = \Delta_{0}, \quad ,$$
 (3)

where $\rho' = \rho/2$ and

$$\rho = 2(N_{12} + N_{\rm B}) + L_{12} + L_{\rm B} \qquad (4)$$

The three-body force strengths are dependent on the total oscillator content (ρ) of the A = 3 cluster state which is defined by the radial (N_{12} and $N_{\rm B}$) and orbital (L_{12} and $L_{\rm B}$) quantum numbers ^(5,12). For example, all A = 3 clusters with 4ħ ω of internal excitation, such as (Og)(Os), (Od)², (2s)(Os), etc., have the same three-body strength within the framework of our model. For consistency with Ref. 12, we use the same values of Δ_{ρ} , for Oh ω and 2ħ ω three-body strengths:

(5)

$$\Delta_0 = +1.86 \text{ MeV}$$
 ,
 $\Delta_1 = -3.60 \text{ MeV}$.

Following the methodology of Ref. 12, Δ_2 may be obtained by fitting the model 4⁺ eigenenergy to the experimental value of 24.6 MeV. This is achieved with the value Δ_2 = -5.02 MeV.

The Δ_0 , Δ_1 , and Δ_2 values complete the specification of the model three-body force. When this force is combined with the model two-body interaction^(5,13), the general Hamiltonian (Eq. (1)) is completely specified. The general Hamiltonian can be used in an analogous manner to the standard Hamiltonian H⁽⁵⁾ in the generalized R-matrix equation^(14,15)

$$\sum_{\lambda'} \left[\langle \lambda | H' - E | \lambda' \rangle + \sum_{c} \gamma_{\lambda c} (b_{\lambda'c} - b_{c}) \gamma_{\lambda'c} \right] A_{\lambda'} = 0 \quad .$$
 (6)

The quantities appearing in Eq. (6) are defined in detail if Ref. 5 and will not be discussed further herein. The determination of level energies

306

and widths is achieved from the information appearing in Eq.(6). (5)

The Δ_0 and Δ_1 values noted above and the Δ_2 value derived from the 4⁺ level lead to a three-body model prediction for the 4⁺ level which has a width of 2.5 MeV and occurs at 24.6 MeV excitation energy. Although these results are highly model dependent, they do suggest that a large three-body component is required to describe the (4⁺,0) level within a 4h ω model space⁽⁵⁾. Although Δ_2 is large, it is not inconsistent with threebody strengths (Δ_0 and Δ_1) extracted from a consideration of the "He 0⁺ spectrum⁽¹²⁾. However, the importance of three-body effects will not become clear until the 1⁺ and 2⁺ eigenenergies are calculated.

3. RESULTS AND DISCUSSION

Using the Δ_0 , Δ_1 , and Δ_2 values, calculations for other T = 0 levels will be performed. The limited set of three-body matrix elements (0, 2, and 4ħ ω) restricts our T = 0 calculation to positive parity states. We further restrict consideration to the levels of Fiarman and Meyerhof⁽¹⁰⁾. With these caveats in mind, two-body plus three-body force calculations will be performed for the (1⁺,0) 25.5 MeV and (2⁺,0) 33.0 MeV levels.

Table I summarizes the results of two-body (TB) and two-plus three-body (TPTB) forces for the 0⁺ (g.s.), 0⁺(20.1 MeV), 4⁺(24.6 MeV), 1⁺(25.5 MeV), and 2⁺ (33.0 MeV) levels. Model calculations using the TPTB force are improved considerably in comparison to TB results⁽⁵⁾ for all T = 0 states considered herein. The 1⁺ and 2⁺ calculations show significant improvement. The 1⁺ level is shifted from 36.6 MeV using a TB force to 28.1 MeV using the TPTB interaction which is near the experimental position of 25.5 MeV. In a similar fashion, the calculated position of the 2⁺ level is shifted from 38.9 MeV to 31.0 MeV with the TPTB force.

The TPTB forces also lead to improved widths for the T = 0 states considered herein. Significant improvement is obtained with TPTB forces for the 0⁺(20.1 MeV) level, but the model result (TB width of 11.9 MeV and TPTB width of 2.4 MeV) is still considerably larger than the experimental width of 0.27 MeV⁽¹⁶⁾. Marked improvements are also obtained for the other T = 0 levels. The 2⁺ width for both TB(3.8 MeV) and TPTB(5.4 MeV) interactions both fall within the experimental range of 2.8 - 5.6 MeV⁽¹⁶⁾.

307

The 1⁺ experimental width of 2.9-5.6 MeV⁽¹⁶⁾ is also better reproduced by the TPIB force - *i.e.*, a width of 0.4 MeV is derived from the TB force and a width of 2.1 MeV is obtained from the TPTB interaction.

Experiment	
(28.3) ^b)	
b)	
;c)	
,b)	
) ^{b)}	

T	•	D	τ.	—	т
	Δ	к		-	
1	Γ	J.	ы.	-	

Table I. T=0 level energies with two-body and three-body forces.

$J^{\pi}(E_x)$	deal inflaments	Level Width (MeV	(MeV)
(MeV)	TB	TPTB	Experiment
0 ⁺ (g.s.)	0.0	0.0	0.0
$0^{+}(20.1)$	11.9	2.4	0.27 ^{a)}
4 ⁺ (24.6)	4.0	2.5	several ^{b)}
$1^{+}(25.5)$	0.4	2.1	$2.9 - 5.6^{a}$
2+(33.0)	3.8	5.4	$2.8 - 5.6^{a}$
a) Ref. 16. b) Ref. 11.			

TABLE II

Table II. T = 0 level widths with two-body and three-body forces.

308

4. CONCLUSIONS

The results of this study are supportive of theoretical contentions that the description of the "He system with only two-body forces is not sufficient and that multibody forces are needed for a proper description^(12,17). Three-body forces when combined with standard two-body forces lead to improvements in the positions and widths of positive parity T = 0levels of Fiarman and Meyerhof and the (4⁺,0) level of Grüebler et al. The model utilized herein suggests that the impact of three-body forces are large and that three-body forces and needed to properly describe the T = 0spectrum in "He.

REFERENCES

- J.J. Bevelacqua, Nucl. Phys. A341 (1980) 414. 1.
- P. Kramer and M. Moshinsky, *Phys. Lett.* <u>23</u> (1966) 574. P.P. Szydlik, *Phys. Rev.* <u>C1</u> (1970) 146. 2.
- 3.
- P.P. Szydlik, J.R. Borysowicz, and R.F. Wagner, Phys. Rev. C6 (1972) 1902. 4.
- J.J. Bevelacqua and R.J. Philpott, Nucl. Phys. <u>A275</u> (1977) 301. J.J. Bevelacqua, Can. J. Phys. <u>57</u> (1979) 1833. J.J. Bevelacqua, Can. J. Phys. <u>57</u> (1979) 1478. J.J. Bevelacqua, Phys. Rev. <u>C24</u> (1981) 712. 5.
- 6.
- 7.
- 8.
- J.J. Bevelacqua, Phys. Rev. C28 (1983) 2540. 9.
- 10.
- S. Fiarman and N.E. Meyerhof, Nucl. Phys. A206 (1973) 1. W. Grüebler, V. König, P.A. Schmelzbach, B. Jenny, and J. Vybiral, 11. Nucl. Phys. A369 (1981) 381.
- J.J. Bevelacqua, Phys. Rev. C26 (1982) 1292. 12.
- J.P. Elliott, A.D. Jackson, H.A. Mavromatis, E.A. Sanderson, and B. 13. Singh, Nucl. Phys. A121 (1968) 241.
- A.M. Lane and D. Robson, Phys. Rev. 151 (1966) 774; 178 (1969) 1715; 14. 185 (1969) 1403.
- R.J. Philpott and J. George, Nucl. Phys. A233 (1974) 164. 15.
- 16. E.K. Lin, R. Magelberg, and E.L. Naase, Nucl. Phys. A179 (1972) 65.
- 17. J.A. Tjon, Nucl. Phys. A353 (1981) 47c.