MODELOS FENOMENOLOGICOS PARA LA RELAJACION POR REORIENTACION

A. Marcano O.

Instituto Venezolano de Investigaciones Científicas - IVIC Centro de Física, Caracas 1010-A, Venezuela

(recibido junio 28, 1984; aceptado octubre 31, 1984)

RESUMEN

Se presenta un estudio sobre el papel jugado por la relajación por reorientación en la interacción de la luz polarizada con un medio <u>ga</u> seoso. Se demuestra que si la reorientación ocurre como una colisión fuerte, ella influye en el valor de la anisotropía inducida.

En el caso de alta degeneración esta influencia es débil si la reorientación tiene lugar como una difusión a través de los estados deg<u>e</u> nerados.

ABSTRACT

A study of the role played by reorientational relaxation in the interaction of polarized light with a gaseous medium is presented. It is shown that when the reorientation occurs as a strong collision process, it influences the value of the induced anisotropy. In the case of high degeneracy, this influence is weak if the reorientational relaxation occurs as a diffusion through the degenerate states.

1. INTRODUCCION

La propagación de la luz a través de medios gaseosos es influen ciada fuertemente por diferentes procesos de relajación. Para un sistema de dos estados no degenerados la teoría distingue dos tipos principales de relajación. Ellos son, la relajación de las poblaciones, caracte rizada por un tiempo de relajación T₁ y la relajación de fase cuyo tiempo característico es T₂.

Por otro lado, es bien conocido, que si un sistema cuántico (átomos o moléculas) posee un momento angular J, sus estados están (2J+1) veces degenerados respecto a las proyecciones del momento o, como suele decirse, respecto a los valores del número magnético m. Cuando se tiene un sistema con estados degenerados respecto a las orientaciones del momento es necesario introducir un tercer tipo de relajación de las poblaciones para estos estados. La relajación entre estados con valores dif<u>e</u> rentes de m es conocida en la literatura con el nombre de relajación re<u>o</u> rientacional.

Los procesos de reorientación han sido con frecuencia obviados en la teoría de la interacción de la luz con los gases⁽¹⁻⁵⁾. En los últimos tiempos se han venido desarrollando técnicas no lineales para el estudio de la interacción de la luz con la materia, tales como doble reso nancia, espectroscopía de saturación y de polarización, etc. Se presenta de importancia aclarar el papel jugado por la reorientación en este tipo de interacciones. Por ejemplo, el uso de la técnica de espectroscopía de polarización demostró que una luz intensa y polarizada induce anisotropía (dicroismo y birrefringencia) en un medio gaseoso⁽⁶⁾. La anisotro pía tiene su origen en la perturbación de la distribución de poblaciones de los estados degenerados. La relajación por reorientación tiende a igualar de nuevo las poblaciones y por lo tanto a reducir la anisotropía.

A pesar de la complejidad de los fenómenos bajo estudio, la investigación puede ser llevada a cabo utilizando modelos fenomenológicos simples para la descripción de la relajación por reorientación. Un primer modelo considera al proceso de reorientación como resultado de un choque fuerte, en el cual la probabilidad de transición entre estados con diferentes números magnéticos m no depende del valor de estos números. Contrario a este modelo puede sugerirse otro, según el cual la reo rientación ocurre sólo entre estados con valores cercanos a m. En este caso la reorientación puede ser considerada como una difusión a través de los estados degenerados.

La finalidad del presente trabajo consiste en aclarar, en base a los dos modelos descritos, cuando la reorientación es importante en el establecimiento del equilibrio de las poblaciones de un sistema gaseoso con estados degenerados.

A manera de ejemplo se investiga la influencia de la reorientación sobre el valor de la anisotropía inducida por el campo. Se presenta igualmente una comparación de los resultados para los dos modelos de<u>s</u> critos.

2. METODO DE CALCULO

Se considera que el medio gaseoso consiste en un sistema de dos estados degenerados relacionados a través de colisiones con un reservorio de energía compuesto por estados adyacentes (ver la Fig. 1). Este resorvorio para el caso de gases moleculares puede estar compuesto por estados rotacional-vibracionales cercanos o corresponder a estados electrónicos cercanos para el caso de un gas de átomos. La línea de absorción del sistema se considera ensanchada homogéneamente.

El conjunto de estados inferiores /nl,Jl,ml> están caracterizados por el número magnético ml, el número rotacional Jl y por otros núme ros cuánticos nl. La ecuación de evolución para las poblaciones N_{Jl,ml} de los estados inferiores bajo la condición de resonancia y para la aproximación de la onda rotante es

$$\frac{dN_{J1,m1}}{dt} = \int_{m1'=-J1}^{J1} W_{m1',m1}N_{J1,m1'} - \int_{m1'=-J1}^{J1} W_{m1,m1'}N_{J1,m1} + \frac{1}{T_1} (N_{J1,m1}^{\circ} - N_{J1,m1}) + \frac{2\Omega_o^2}{T_2} (\frac{d^2m}{d_o^2}) (N_{J2,m2} - N_{J1-m1}) .$$
(1)

Fig. 1 Esquema de estados del sistema. Las flechas curvadas se refieren a procesos inducidos por colisiones.

Los primeros dos términos en la Ec.(1) representan el efecto de las col<u>i</u> siones, las cuales reorientan el momento angular del sistema sin cambiar su magnitud; Wml', ml y Wml,ml' son las velocidades de relajación de las transiciones

respectivamente. El tercer término de la Ec.(l)se refiere a aquellas colisiones que inducen transferencia de energía desde los estados activos al reservorio y viceversa; T_1^{-1} es la velocidad de este proceso; $N_{J1,m1}^{\circ}$ es la población de equilibrio; T_2^{-1} es la velocidad de relajación de la fase; $\Omega_{\circ} = E_{\circ}d_{\circ}T_2/h$ es la frecuencia de Rabi en unidades de T_2^{-1} ; E. es la amplitud del campo de bombeo;

$$d_{o} = \begin{bmatrix} J_{1} \\ \Sigma \\ m_{1} = -J_{1} \end{bmatrix} d_{m1}^{2} / (2J_{1}+1) \end{bmatrix}^{1/2} ;$$

 $d_{m1} = \langle n2, J2, m2 \rangle (\vec{E}_o \vec{d}) / n1, J1, m1 \rangle$ es el elemento de matriz de la interacción dipolar; \vec{E}_o es el vector de polarización del campo; \vec{d} es el momento dipolar; $J2 = J1 + \Delta J \ y \ m2 = m1 + \Delta m$; $\Delta J \ y \ \Delta m$ se determinan por las reglas de selección. En el cálculo presentado más abajo siempre se asume que $\Delta J=-1$, lo que no resta generalidad a los resultados. En general d_{m1} depende de los números ml y m2. Sin embargo, si el campo está lineal o circularmente polarizado, los valores de m2 están univocamente d<u>e</u> terminados por ml a través de las reglas de selección; de esta manera, es posible considerar a d_{m1} como una función solamente de m1. Para la población del estado superior /n2, J2, m2> se obtiene una ecuación simi lar a (1). Por razones de simplicidad se considera que los procesos de relajación para los estados superiores e inferiores están caracterizados por las mismas constantes.

El coeficiente de absorción no coherente de un campo de sondeo puede ser calculado por la fórmula

$$\alpha = \alpha \circ \frac{ \prod_{j=1}^{J_2} \prod_{j=-J_1}^{J_1} |\langle n_2, J_2, m_3| \ \vec{de}_p \ |n_1, J_1, m_1 \rangle|^2 \Delta N'_{J_1, m_1} }{ \sum_{j=1}^{J_2} \prod_{j=-J_1}^{J_1} \langle n_2, J_2, m_3| \ \vec{de}_p \ |n_1, J_1, m_1 \rangle|^2 \Delta N'_{J_1, m_1} , \qquad (2)$$

у

donde α_{\circ} es el coeficiente de absorción no saturado; m3=ml+ Δm_3 ; Δm_3 está determinado por las reglas de selección del campo de sondeo; \vec{e}_p es el vector unitario de polarización del campo de sondeo; $\Delta N'_{j1,m1}=N_{j2,m3}$ - $N_{J1,m1}$ es una magnitud que puede ser calculada con la Ec.(1) y con una ecuación similar para la población del estado superior. $\Delta N'_{J1,m1}$ es el valor de equilibrio de esta magnitud. Los elementos de matriz en las Ecs. (1) y (2) pueden ser calculados, por ejemplo, de las relaciones dadas en el parágrafo 29 de la Ref. 7.

La Ec. (2) toma en cuenta el hecho que la polarización de los campos de sondeo y de bombeo pueden ser diferentes.

3. MODELO DE CHOQUES FUERTES

Este modelo considera que la probabilidad de reorientación es in dependiente de la orientación del momento angular. En otras palabras, que las velocidades de reorientación $W_{ml',ml}$ y $W_{ml,ml'}$ no dependen de los valores de los números ml' y ml. Luego, podemos escribir:

$$W_{ml', ml} = W_{ml, ml'} = \frac{1}{T_3}$$
, (3)

donde T_3 se define como el tiempo de relajación reorientacional.

Tomando en cuenta (3), de la Ec (1) y de una ecuación similar para N_{J2,m2}, se puede obtener para la diferencia de poblaciones $\Delta N_{J1,m1} = N_{J2,m2} - N_{J1,m1}$ la relación

$$\frac{d\Delta N_{J1,m1}}{dt} = \frac{1}{T_3} (\Delta N_{J1} - \Delta N_{J1,m1}) + \frac{1}{T_1} (\Delta N_{J1}^{\circ} - \Delta N_{J1,m1}) - \frac{4\Omega_{\circ}^2}{T_2} \frac{d_{m1}^2}{d_{\circ}^2} \Delta N_{J1,m1}; \qquad (4)$$

donde

 $\Delta N_{J1} = \sum_{ml=-J1}^{J1} \left(\frac{N_{J2,m2}}{(2J2+1)} + \frac{N_{J1,m1}}{(2J1+1)} \right)$ obedece la ecuación

$$\frac{d\Delta N_{J1}}{dt} = \frac{1}{T_1} (\Delta N_{J1}^{\circ} - \Delta N_{J1}) - \left(\frac{1}{2J1+1} + \frac{1}{2J2+1} \right) \frac{J1}{\Sigma} \frac{2\Omega_o^2}{ml = -J1} \frac{d_{m1}^2}{T_2} \frac{d_{m1}^2}{d_o^2} N_{J1,m1},$$
(5)

y posee un valor de equilibrio ΔN_{J1}° . Resolviendo las Ecs. (4) y (5) para el caso estacionario se calcula que

$$\Delta N_{J1,m1} = \frac{\Delta N_{J1}^{\circ}}{1+4\Omega_{\circ}^{2}(d^{2}m1/d^{2})T_{13}/T_{2}} \cdot \frac{1}{1+S} , \qquad (6)$$

donde la lucatore obtavidare obtavidare obtavidare obtavidare bandete la persona donde la persona do parte en e

$$T_{13}^{-1} = T_1^{-1} + T_3^{-1}$$

y and provide a placed of the submanifered schedule as the objects

$$S = \frac{2T_{1}T_{13}}{T_{2}T_{3}} \left[\frac{1}{2J1+1} + \frac{1}{2J2+1} \right] \prod_{m1=-J1}^{J1} \left[\frac{\Omega_{o}^{2}d^{2}m/d_{o}^{2}}{\frac{4\Omega_{o}^{2}T_{13}}{1+\frac{d^{2}}{T_{2}}}} \right]$$
(7)

Las magnitudes S y T_{13} toman en cuenta la contribución de la rela jación reorientacional. Para el caso de valores altos de T_3 ($T_3 >> T_1, T_2$), la magnitud S tiende a cero, $T_{13} \approx T_1$ y la distribución $\Delta N_{J1,m1}$ calculada mediante la Ec. (6) corresponde al caso en el cual la reorientación no ocurre. Por supuesto la contribución debido a la reorientación desapar<u>e</u> ce en ausencia de saturación ($\Omega_0 <<1$). En un régimen de alta saturación ($\Omega_0 >>1$) de la Ec (7) se obtiene

$$S \approx T_1 / T_3 \quad . \tag{8}$$

La relación (8) determina que los procesos de reorientación influyen fuertemente en la distribución de poblaciones de acuerdo a las orientaciones del momento cuanto T_1 es mucho mayor que T_3 .

De las relaciones (7) y (8) se puede igualmente concluir que el modelo de choques fuertes predice que la contribución reorientacional es prácticamente independiente del valor del momento angular J.

4. MODELO DE DIFUSION

Este modelo sugiere que las colisiones inducen preferiblemente reorientaciones con pequeños cambios en la dirección del momento angular. En el presente cálculo se asume que la relajación reorientacional de un estado con número magnético ml tiene lugar solamente entre los estados vecinos con números ml' =ml ± l con una probabilidad $W_{ml,ml}$ = $1/T_3$, y que la probabilidad de los procesos /nl,Jl,ml'>, /nl,Jl,ml>, siendo ml' ≠ ml ± l, es igual a cero.

Tomando en cuenta estas condiciones,
de la Ec. (1) y de una ecuación similar para $\rm N_{J2,m2}$
 se obtiene

$$\frac{d\Delta N_{J1,ml}}{dt} = \frac{1}{T_3} W_{\text{reorient}} + \frac{1}{T_1} (\Delta N_{J1}^\circ - \Delta N_{J1}) - \frac{4\Omega_o^2}{T_2} \left(\frac{d_{m1}}{d_o}\right)^2 \Delta N_{J1,m1} , \qquad (9)$$

donde

$$W_{\text{reorient}} = \begin{cases} (\Delta N_{J1,ml+1} + \Delta N_{J1,m-1} - 2\Delta N_{J1,ml}) \text{ para } -J1 < m1 < J1 \\ (\Delta N_{J1,ml-1} - \Delta N_{J1,ml}) \text{ para } m1 = J1 \\ (\Delta N_{J1,ml+1} - \Delta N_{J1,ml}) \text{ para } m1 = -J1 \end{cases}$$

La Ec. (9) puede ser resuelta numéricamente y sus resultados comparados con un cálculo similar con ayuda de la Ec. (6) a la luz de la aproximación de choques fuertes.

5. RESULTADOS

Para los cálculos específicos se han tomado valores de parámetros característicos de un gas de moléculas lineales, tales como CO_2 , CO, N_2 , H_2 , etc. En este caso el tiempo T_1 corresponde a un proceso de relajación rotacional. La relajación rotacional es un proceso bastante rápido, frecuentemente del orden de la relajación de fase. Para un gas de CO_2 fue medido $T_1 \approx 2 T_2^{(8-9)}$. Sin embargo, moléculas más ligeras co mo H_2 y D_2 poseen velocidades de relajación rotacional mucho más lentas. Para la molécula de D_2O se ha medido una velocidad de relajación rotacional un orden menor que la medida para $CO_2^{(10)}$. En el cálculo se supone $T_1 = 10 T_2$, sin precisar alguna especificación sobre la molécula.

En la Fig. 2 se muestra la diferencia de poblaciones $\Delta N_{J1,m2}$ normalizada por la condición

 $\Delta N_{J1,m1}^{\circ} = \frac{1}{1+2 J1}$,

como una función del número magnético ml. El cálculo fue llevado a cabo para un campo de bombeo polarizado circularmente hacia la derecha ($\Delta m =$ +1) y para los parámetros T₁ = 10T₂, T₃ = T₂, $\Omega = 0.2$ y Jl = 20. La l<u>í</u> nea b fue calculada utilizando las Ecs. (6) y (7) en la aproximación

Fig. 2 Diferencia de población N_J como función del número magnético ml. La línea a fue calculada en el modelo de difusión, mientras que la línea b en el modelo de choques fuertes. La línea c se r<u>e</u> fiere a un cálculo para $T_3 = 10^6 T_2$.

de choques fuertes, mientras que la línea a corresponde al modelo de difusión (Ec. (9)). La línea continua c se refiere al caso para el cual la reorientación es despreciable $(T_3=10^6T_2)$. En este cálculo vemos que en el modelo de choques fuertes la reorientación es más efectiva que en el caso de una reorientación por difusión.

En la Fig. 3 se grafica el coeficiente de absorción de un campo de sondeo en un medio gaseoso como una función de la amplitud del campo de bombeo (Ω_{\circ}). El cálculo se realizó utilizando el modelo de choques fuertes y las Ecs. (6), (7) y (2). Las curvas a y a' corresponden a un campo de sondeo circularmente polarizado hacia la derecha (Δm_3 =+1), mien tras que las curvas b y b' se refieren a un campo de sondeo con polariza

Fig. 3 Coeficiente de absorción para el campo de sondeo calculado en la aproximación de choques fuertes para los casos T₃=T₂ (líneas a y b) y T₃=10[°]T₂ (líneas a'y b'). Las líneas a y a' corresponden a un campo de sondeo polarizado circularmente hacia la derecha, mientras que b y b' se refieren a un sondeo con polarización circular hacia la izquierda. El campo de bombeo, a su vez, se consideró polarizado circularmente hacia la derecha.

ción circular hacia la izquierda ($\Delta m_3^{=-1}$). Las líneas a' y b' se refieren al caso sin reorientación ($T_3^{=}10^6T_2$) mientras que a y b fueron calculadas para el caso $T_3^{=}T_2^{-1}$. La Fig. 4 representa un cálculo similar llevado a cabo en la aproximación de difusión. Para los valores de los

Fig. 4 Coeficiente de absorción del campo de sondeo calculado en la aproximación de difusión. Las líneas a, a', b y b' corresponden a los mismos casos descritos para la figura 3.

parámetros usados en los cálculos, los resultados obtenidos con el modelo de difusión son bastante similares a los obtenidos en la aproximación que no toma en cuenta los procesos de reorientación. Al mismo tiempo, los cálculos en la aproximación de choques fuertes demuestran que la ani sotropía inducida (dicroísmo y birrefringencia inducidos) puede ser influenciada por los procesos reorientacionales. La Fig. 5 expresa más claramente esta idea. En ella se grafica el valor del dicroísmo induci-

Fig. 5 Anisotropía inducida d como una función del parámetro T₃. Las líneas a,b,c y d fueron calculadas en el modelo de choques fuertes, mientras que las líneas a', b' y c' en el modelo de difusión. Las líneas a y a' se refieren a un cálculo con los parámetros T₁=10T₂ y J1=20. Las líneas b y b' se refieren a un cálculo con los parámetros T₁=10T₂ y J1=20. Las líneas c y c' ilustran el ca so T₁=10T₂ y J1=4. La línea d corresponde al cálculo de la anisotropía inducida por un bombeo linealmente polarizado.

como una función del tiempo de reorientación T3 el cual ha sido considera

do como parámetro. La anisotropía inducida es definida como

$$d = \frac{\alpha D}{\alpha I}$$
,

donde αD y αI son respectivamente los coeficientes de absorción de campos de sondeo polarizados circularmente hacia la derecha y hacia la izquierda.

Las curvas a y a' de la Fig. 5 fueron obtenidas con los mismos valores de los parámetros de las Figs. 3 y 4 para los casos de colisiones fuertes y difusión, respectivamente, mientras que las curvas b y b' corresponden a parámetros típicos para la molécula de CO_2 .

Se puede notar que aun en el caso de pequeños T_1 (curva b), la relajación reorientacional, cuando ésta es producto de una colisión fue<u>r</u> te, influye sobre el valor de la anisotropía inducida. Una débil influencia es predicha por el modelo de difusión.

Los resultados de los cálculos discutidos aquí pueden ser exten didos para los casos de baja degeneración (curvas c y c' en la Fig. 5). Como se demostró más arriba el modelo de choques fuertes predice una dé bil dependencia de los resultados del valor del momento angular J (compare las curvas a y c en la Fig. 5), mientras que el modelo de difusión tiende a dar resultados similares a los calculados por el modelo de cho ques fuertes (curva c).

El valor de la anisotropía inducida se ve igualmente afectada si la polarización de los campos varía. La curva d en la Fig. 5 corres ponde a una anisotropía inducida por un campo de bombeo polarizado lineal mente. Aquí, el parámetro de anisotropía d es la relación entre los coe ficientes de absorción de campos de sondeo con polarización lineal en las direcciones perpendicular y paralela a la polarización del bombeo. El cálculo se realizó en la aproximación de choques fuertes. En este caso el papel de la reorientación se ve fuertemente reducido.

6. DISCUSION Y CONCLUSIONES

Del análisis presentado podemos concluir que si la relajación por reorientación ocurre como un proceso de choques fuertes ella puede influir la interacción de la luz con un sistema gaseoso si las velocidades de reorientación no son menores que las velocidades de otros procesos de relajación igualmente inducidos por colisiones como por ejemplo la relajación rotacional.

Los resultados de los cálculos del valor de la anisotropía inducida para un tiempo de reorientación $T_3=5T_1$ difiere en menos de 10% de los resultados obtenidos en el modelo en el cual se desprecian los procesos reorientacionales. El modelo de difusión para el caso de grandes momentos angulares (J~20) es equivalente con una buena aproximación a despreciar la reorientación. Análisis de la depolarización de la fluorescencia en N_aK⁽¹¹⁾ y S₂⁽¹²⁾ para el caso de alta degeneración (J≈20-50) demostraron que las colisiones que inducen cambios en la magnitud del momento angular no alteran notablemente su orientación. Por otro lado, ex perimentos de doble resonancia realizados en FCN⁽¹³⁾ y B_aO⁽¹⁴⁾ para el caso J~1 concluyeron que las transiciones por colisiones con cambios en la orientación del momento se producen con una frecuencia comparable a las transiciones con variación de la magnitud de éste. Estos hechos experimentales permiten suponer un carácter difusivo para los procesos de reorientación en estos sistemas.

Es de notar que los tiempos T_1 y T_3 se refieren a dos procesos de relajación en general independientes. Para un gas de átomos el par<u>á</u> metro T_1/T_3 puede ser variado utilizando para estos fines el correspondiente "buffer". Por otro lado, los niveles atómicos poseen frecuentemente un momento angular bajo. Se espera que en este caso, un experimen to del tipo de espectroscopía de polarización, donde la señal es proporcional a la anisotropía inducida, puede ser aplicado para el estudio de los fenómenos reorientacionales.

AGRADECIMIENTOS

El autor agradece a los Dres. R. Calvo, y F. García-Golding las recomendaciones sugeridas sobre el presente trabajo.

REFERENCIAS

- 1. E. Armandillo and I.J. Spalding, J. Phys. D8 (1975) 2123.
- 2. V.Y. Baranov, T.K. Kirechenko, V.V. Klavdiev, Y.V. Petrushevich, A.N. Starostin, Sov. J. Quantum Electronic, 5 (1978) 568.
- 3. K. Smith and R.M. Thompson, Computer Modeling of Gas Laser, Plenum Press (1978).
- 4. F.A. Hopf and C.K. Rhodes, Phys. Rev. A8 (1973) 912.
- 5. H.W. Galbraith, M. Dubs and J.I. Steinfeld, Phys. Rev. A26 (1982) 1528.
- 6. C. Wieman and T.W. Hansch, Phys. Rev. Lett 36 (1976) 1170.
- 7. L.D. Landau and E.M. Lifshiz, Quantum Mechanics: Nonrelativistic Theory, Pergamon Oxford 1965.
- 8. R.R. Jacobs, H.J. Pettipiece and S.J. Thomas, Appl. Phys. Lett 24 (1974) 375.
- 9. R.L. Abrams, Appl. Phys. Lett 25 (1974) 609.
- 10. R.I. Sheffield, K. Boyer and A. Javan, Opt. Lett. 5 (1979) 10.
- 11. J. McCormack, A.J. McCaffery and M.D. Rowe, Chem. Phys. <u>48</u> (1980) 121.
- 12. T. A. Caughey, D.R. Crosley, Chem. Phys. 20 (1977) 467.
- 13. H. Jones, Appl. Phys. Lett. 31 (1977) 268.
- 14. S.J. Silvers, R.A. Gottscho and R.W. Field, J. Chem. Phys. 74 (1981) 6000.