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ABSTRACf

The work perforrned by our group in the last 16 years in connec-
tion with the íoundations oí quantum mechanics can be roughly divided in
íour stages: The preparatory or introduetory stage, the period oí stoc-
hastie quantum meehanies, the period oí stoehastie electrodynamics and
fina11y, the present stage. In this paper we present a surnmary oí the
development and main results of the various stagesi however, in view oí
the minar significance of the first one, and of the excellent recen sum-
mary by Brody(1) oí the second and third, we shall pay special attention
to our current work, which consists basieally in the construction of a
new version of stochastic electrodynamics.

RESUt-lEN

El trabajo realizado por nuestro grupo en los últimos 16 años
relativo a los fundamentos de la mecánica cuántica, puede dividirse a
grandes rasgos en cuatro etapas: la preparatoria ° introductoria, la dedi

t Presentado en la asamblea general ordinaria de la SMF el 21 de junio de
19B4.
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cada a la I~cánica cuántica estocástica, la dedicada a la electrodinámi-
ca estocástica y, finalmente. la etapa actual. En este trabajo se pre-
senta un resume~ breve del desarrollo y los resultados principales de c~
da una de ellas; sin embargo. dados el significado menor de la primera
etapa y la publicación reciente de un excelente trabajo de Brody(l) en
que se revisan la segunda y tercera etapas, aquí se presta atención esp~
cial al trabajo actual del grupo, el quP consiste en 10 fundamental en
1m primer intento de construcción de una nueva versión de la electrodin~
mica estocástica.

1. l'RELI~Il:-'[ARYSTAGE: BROI\~lA~ A'IIAl0GY.

Our \\'01).; 00 the fOlmdations of qu;mtum mcchanics ini tiatcd in
the late 60' s, was J'OOtiv3tedby a general statc of intel1ectual dissatis
faetian with the orthoc~x views on quantum mcchanics. By that time ex-
tensive Jiseussions and nl~eTOUS controversies on the intcrprctations of
quantum mech~ics h.1darisen(2); but therc existed fcw, scarcely k-nown
and unaccomplisheJ efforts to construct a fundamental thcory that would
explain the qu:mtum fonnalism. On analysing the various facts of quan-
turo mechanics it gradualIy became clcar that stochasticity should play
an important role in any causal ano objective dcscription of the quantum
phenomenon. This feeling '..•.as reinforccd by our rather accidental ac-
quaintancc Id th Fénycs1 work(:;}, ,,-hich represents a serious effort to

underst.::mdqu;mtum~ChMics in teI1lL'iof a stachastic J-tarkovian behav-
iour oí the electron.

This line of research was stimulatcd, but at the same tin~ limi
ted, by the analo~~ with Brownian moticn, by far the best-known stochas-
tic proccss at the tin'('. Indced, it leJ to the identification af COfTlnxm

fcatures of quantum mechanies and Markavproeesscs, and to the use of a
mcthodalogy that had been esscntially foreignt() qU<lIltWTl thcory(4). Ilowcv
er, the close analo&')'oet\\'ccn the sto<.:hastic clcetron nml the Browninn
particle raiscd several questions whieh in the framcwark of this primi-
tivC' treatmcnt cOlJld not he solvcu satisfactorily, n~ly: Which is the
cssential differenee bctwcen a classical anu a quantum Brownian JlX)tion?
In the frietionless quantum rrotion,ho1" is it thlta stationary state can
be reached?

It soon bccame clear that so~ ftmdamcntal points wcrc wrong al"
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at least obscure, since any theory aimed at a bettcr understanding of
quantum mechanics should pp.rmit to distinguish clearly a quantum system
from a classical ene.

Unfortunately the confusio~ still prevails -it is present even
in Jammerls excellent book-(2) to the extent that special terminology
has been suggested to describe the "Brownian IOOtion" oE the electron;
this widespread confusion adds its share to the aprioristic attitude of
m1.I1y nonspecialist against the possibility of a causal, stochastic expl~
nation of quantum mechanics.

2. STOOV\STIC QUANTUl-1~IECHANICS

As a rcsult of this work it seemed necessary to construct a
more elaborate formalism that couId serve to describe a more general
stochastic process (in the ~mrkovian approximation), and to distinguish
betv.¡eenBrO\~ian ITOtion and quantum mechanics as two different physical
situations. The intention was to show that quantum mechanics can indced
be understood as the result oí a specific stochastic process added upon
otherwise cIassical laws of mation, without yet inquiring into the ori-
gin of stochasticity; stochastic quantum mechanics has therefore an cx-
plicitly declared phcnomenological character.

The closest antecedent of our work in this direction is Nclson's
well-knawn Markovian theory of quantum mechanics(5,6), which had clear-
Iy established the possibility oí a phenomenological treatment in coor-
dinate spacc similar to the Einstcin-Smluchcwski treatment of Brov..nian
ITOtion. Based on the introduction of two different derivatives of a
local function with reference to the initial and to the final paint, we
developcd a kinematics that would serve to describe a general ~nrkovian
process in coordinate space(7). In this description, in addition to the
drift or systematic time derivative:

a/at + V'V
there appears the osmotic OY stochastic time derivative:

(la)

(lb)
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wherc

~=lW£np (2)

is the stochastic velocity,D is the diffusion coefficient and p is the
dcnsity oí particles. Four different accelerations may therefore be
defined, in terms oí which ene can write the stochastic generalizatían
oí Newton's second law:

(3)

As a result oí imposing three physical conclítions, namely: The time-
reversa! invariance of Eq.(3) when F(t)=F(-t), the continuity equation
for p, and the recovery oí the classical description in the Newtonian
limito Eq.(3) tranforms into

wi th A n2 sti!! undefined.

(4a)

(4b)

The system of Eqs.(4) admits a first integration and !ineariza
tion in terms oí the new variables

~,R, S/IA= 1/2 ,S/IA
(5)e p e

where

~ ~ 2DVS. (6)u = 2DVR. V =

As a result oí this integratían Dne obtains the linear, uncou-
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plcd equations

a~+
.2mD T-'i.--at (7)

Since the free paramcter A appears only in the combinatían
D T-'i.one may take ,2 = l by an adequate seleetion of the phenomeno-
logieal pararneter Do With, = -1 &jo (7) is parabolie and the ampli-
tudes ~ are real; with , = +1 it is hyperbolie and the amplitudes ~ are
in general complexo To stress the physical differcnces we speak in the
first case oí an Einstein process (a classical, Brownian~type process

in the limit of negligible frietion) and in the seeond ease of a de
Broglie (non-classical, \.¡ave-! ikc) process. Thc Schrodinger equation

is obtained froo &jo (7) for, = 1, with a suitable seleetion of the di.!:
£Usían coefficient:

D = hl2m (S)

The aboye Tesults show that qUaJltlln ITIC'chanics can indecd be in
tcrpreted 35 a ~brkov proccss, but irreducible to Br~TIian-typestoch-
astíe motian. This fo~,lism has allowed a varicty oí extensions and
generalizations, 5uch as the introduction oí spin(8), relativistic
trcatmcnts(9), the extcnsion to ~xed states(IO.ll) anu variatíanal
formulations(6,12-14); the eorresponding path-integral formulation has
been developed(14.IS) and applied to the problem of barrier penetra-
tion(IS) o ~bre general schcmcs have been developcd, either as a thco-
ry of the eleetron(l6) or even as a field theory (17) o An impcrtant off
spring oí stochastic quantummcchanics in the so~callcd stochastic
quantization, a stochastic treatment cf ficId theory dcvcloped in re-
eent years(17,IS) o

lhe theory has a150 rcccived much criticismo An analysis oí
the objections raised rcvcals that they are IOOst frcqucntly the result
oC a traditional, classical approach to stochastic proccsses and the
conscqucnt lack of distinction between Einstein and de BrogUe proc-
esscs. though in sorne cases they are relatcd to a spccific technical
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detai 1, such as considcring thc back.\'Jardderi vat ive ~ - 05 as the time
inversion of Vc + Os' The maio shortcoming of stochastic quantum n~-

ehmlic5 is its phcnomelogical char3cter: Being a fotm.1.1 thcory, it is
unable to elucidate thc physical mechanism responsiblc fay stochasti-
cit)' and, in thc last instanee, far quantization. Iiowcver, it has the
merit of indicating the way along which ene should look far a deeper
amI JOOre flUldarncntal thcory; this is the subject oí the nex! section.

3. STOCIIASTI e ELECTRODYNAr-1les

The search fay 3Il cxplanation of quanturn stochasticity in tenns
of a physical cause reprcscnts obviously a departure fram the orthodox
vicws on quantum mechanics. Stochastic electrodynamics (Sr~)in such an
attcmpt: It5 purpose is to intcrpret the quantum phenomenonas origina-
ting in the interaction with the allpervading zero-pointradiation field
produeeJ by the far matter in the lmiversc. Intuitively one can vicw
this field as the result of the superposition of the uncorrelated fields
cmitted be .111 aceelerated chargcs in the tmiversc. This assumption can
in principIe help to salve <U1 oId dilcrrrna: Recall that at the beginning
of the century, the planetary model of the atom was dismisscd because of
thc instability produccd by the radiation of the accelerated electron.
SED attempts to revindicate this radiation as the ul timate cause of ato!!!
ic stability and stochasticity at the same time, by proposing that a
state of cquilibrit.un can he reached in which the energy absorbed by the
clcctron from the stochastic field is compensatcd in the average by the
radiatcd energy. In this picture, radiation is necessary to stabilize
the (stochastic) atomic orbits. As 0pposco to earlicr lTlodeIs, the atOln-
le elcctron is now considcred an open system that continuously cxchanges
encrgy with the random zera-point radiation [icld.

The idea of this ficId 15 certainly not ncw: It Has already cn-
visaged by Planck(20) ano sorneof itsean smJlogical eonsequences were
studiedbyNernst(2l). In prcscnt-day physics it appears as the vaelIDlTl
of ql.lantumelectrodynamics, usually-but not ah •.ays inpractiee(221. rcgars!.
ed as a virtual field. though \oJith fluctuations giving rise to observa-
ble effeets (see, c.g., the disclIssion in Ref. 23). The assLm1ptionof
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rcality of thc vncl.UTlm fich.l is not free of difficultics. evcn ve!)'
serious ones as the cosmological implications of its cnormous energy
deosity; thi5 is an tmsolved problem, which strictly spcaking affects
quantum e lectrodymunics 3S we 11.

The idea oí a close cOfUlcction bctwecn qU3Iltum stochasticity
and the zera-point radiation [¡cid is more thml thrce decades oId and
has beco rediscovered by several independent workers. It is mentioned
explicitly by Kalitsin(24) already in 1953. but the first attempts to
elaborate a theoty based on it are due to Braffort and coworkers(25)
and ~larshall (26). A short review o[ SED is presented in Re£. 27 and a
more dctailed ene GUl be founJ in Ref. 28

The zera-poiot ficlJ is nonnally asslllncd to be a solution oí
~L.1xwCll'5equations without sourccs, th3t can be exprcssed in tcnns of
Fouricr components \vith stochastic amplitudes averaging to z.ero and hay
ing independent Gaussian distributions. By thc rl~uirement oí Lorentz
invariance, its spectral dellsity must be of th€" fonu Aoo3. Nith
A = 4h/3nc

2
, thc cnergy of th(' ficId loode w is -!-hü', as it should at zero

tcmpcraturc.

Refare entcring into thc dynamics, let us i Ilustrate the funcL'l
mental role that the hypothcsis o[ the zero-point field may playas a
fOlmdational cornerstone of quantum theary.

Considcr a hlackhouy in equilibrilD1l at tempcrature 1. Its
IIDdcof frcquency w •••••i 11 have the average energy

mId assLU11ingthe ficId componcnts to be Gaussianly distributed with ze-
ro mean, the variance of the ellergy is

Using thc h'ell-knOl\TI Einstein formula [or the fluctuations of
tlle' encq.,'Y of a systcm in thcnn.'ll cquilibriwn \.,rith <l heat bath at t('m-
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perature T:

2er B I/KT (9)

we get the differential equatían

with solution

o

where So is an integratían constant; since fer T ~ 00 (6 + O) <er>
should become infinite, we mus! take BO = O and thus we get the classi
cal fonnula

(ID)

which cerresponds te the Rayleigh-Jeans law. NO' let us add to these
elementary considerations a single new ingredient, namely, the zero-
point ficId. For this we assUIDe the mas! natural hypotheses. namely:
i) "Ihe meanenergy is a SlDTI oí the thennal and zero-poiot contributions:

ii) The zero~point ficId is Gaussian:

üi) The zero-point ficId and the thermal part are statistically inde-
pendent, and thus the variance oí the energy is

e 2:lE <e> 2 = O'2 + 02
e -r O
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whence

Inserting this result into Einstein's formula (9) we get the
ncw differential equation

(11)

The solution of Eq.(ll) th.t goes to (10) in the classical lim
it is

(12)

This is Planck's law for the blackbody for <cO> I O; it suffl
ces to take <co> = O as corresponds to the absence oí the zero.point
ficId, to recovcr classical physics. This derivation, due to Boycr(29)
and Theimer(30). allows a150 to lcarn a little more about <£0> from
first principIes. In faet, Wien's law fer the spectral density oí
radiation in equilibrium with matter at temperatura T

3 (wp(w) = w f f)

gives when comp.red with Eq.(12), <cO>awand PO(w) aw3, in agreement
with the argL~ntsmcntioned aboye, In writing EO e ihw Planck's co£
stant acquires • physical meaning: It measures the fluctuations of the
random field and hence .150 the fluctuations impressed by this field
U90n the particle (as expresscd, c.g., in the Heisenberg inequalities).
Other derivations of Planck' s law from SED are prcsend in Re£. 31-

To develop a theory oí thc moticn oí electrons in interaction
with the random ficId we can in principIe start for the Hamiltonian of
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the entire (field plus partiele) s)'stcm:

1 ~ eA2 ~ lE 2
H = 2m (p - e ) + V(x) + 2 nA (PnÁ

whith

(13)

~'£nÁ O. w = ell< l' + 1
(PnÁ + iwnqnÁ)n n • anÁ nIlWn

2 2 2 = 1:. hw<p > w <qn),>nI. n 2 n

(14)

and derive the lIamiIton equations [ay both the particle and the fieId
variables. An approxirnate procedure uscd to eliminate the lattcr leads
to a stochastic cxtension of the AbrahamLorcntz equation far the paT-

tiele:

mX = F(x) x + e(~ v+ -
e x B) (15)

This highlynontrivial stochastic diffcrential equation with c£
louTcd ncisc is somewhat simplified by neglecting the magnetic force
and taking the long-wavolength limit. in whieh E = E(t); Eq. (15) reduces
then to

(16 )

with T = Zc2/3mc3. This is the Braffort-f-tushall equation. usually

takcn as the starting poiot oí SED. It has beco applied to simple lin-
ear problems, such as the free particlc(32), the paTtiele subject to a
eonstant foreo(32) and the harmonie osci11ator(25,26.33.34) (see Ref.28

far a more complete list of rcfcrcnccs). Let us briefly mention sorne
of the rcsul ts fer the hannonic osci llator: Owing te the Gaussian dis-
tribution of the randomficld amplitudes, thc particle variables x anJ
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pare Gaussian as wcll and the stationary phase-spacc distribution is

P(x,p) = n1h exp [- ';w 2 1 22-(E... + - J1LJ X )J2m 2

At temperatures 1>0 the average energy oí the ficId modes is
t hw(I+6)/(1-6) with 6 = exp(-hw/kT) and the phase-space distribution
takes the fonn

P(x,p) 1
ni, 1-6 r- 2 l + 1 2 2 l-eJ1+0 exp ~ hw (2m I J1LJ x ) 1+0 (17)

which is just the Wigncr distribution £01' a mixture in equilibrium
wi th a hcat bath at tcn'q)craturc T. as dcscribcd by quantlDll statistical
mechanics (see, e.g., Ref. 35). The Lamb shift and the radiative
dceay rate are obtained whcn the radiatían reaction i5 introduced as a
perturbat ion.

In spite oí the rcm1rkable coincidence with quantum mechanics.
there are conceptural diffcrcnccs that descrve a close attention. For
instanee, £01' SED the grOlUlu statc is the statc in which the rates of
<1h501'pt10nand radiatían of cncrgy are eqml. The lIeiscnherg inequa1l
ty rcf1ects thc fluctuat ions impressed by the fieId lIpanx and p in the
stationary statc. o..•.ing to the rclatively long ("or'":cl~~1"i.ontime of the
single ficId components, thc particle fluct~~tions are highly correlat-
ed, which cxplains the n3rraw cmission and absorption lines. Here we
have a theot). that can cxplain in principIe the successes of the fonnal
stochastic theories oí quanttunmechanics, but wc also face sorneproblems.
For instanee, in Eq.(17) thc excited states aprear simply 35 mathemati-
cal components of the cquilibrium distribution, devaid oí a direct phy~
icaI meaning. Also a ftUlJamcntal epistcJOOlogical qucstion, namely, why
SchOdingcr's equation provides a correct description of the system,
remoins unanswered. It is cleur that sornebasic elements are still
lacking in the theory.

In addition to those mentioned above, other problems have
becn successfully approachcd, such 3S the study of the free radiation
ficld(26,34,36) the van der W"lIs forccs(37) and diamagnetism(26,3R,39).
SED has also served to suggcst an explanatíon of the origin and meaning
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of the eleetron spin(39).
H~cvcr, the few attempts to salve nonlinear problems have

becn unsuccessful. The usual proccdurc is to construct a Fokker-Planck
equation for the (multiply periodie) elassieal system perturbed by the
random field and the radiation rcaetion(40.4l) (See also Refs. 28 and
41 for noTe complete references). For the hydrogcn atom, for instanee,
this proccdure leads to a ground state of zera energy, which Unplics
spontaneous ionization. [\breover, the system turns out to be non-
ergodic and the Fokker-Planck equation admits several coexisting statiQ
nary solutions(39.4l.42) (See also Refs. 1 and 28).

For the quartic oscillator, the results are no! as aberrant:
Thc ground-state energy is correctly predicted to first arder in the
perturbation, but the second arder result is incorrect(41). Anothcr
unsatisfactory result, cornmon to all nonlinear problems, is the lack of
dctailed energy balance at every single frcquency of radiation; it
would thus seem that the mechanical system pumps energy from sorne field
modes into others, contradicting Kirchhoff's law on the universality
of the equilibrium speetral density. Ihis problem was first diseussed
by Boyer(43) and has been rediseussed afterwards(44).

4. lllE PRESE,'.¡r SfAGE: SED ANEW

A general feeling oí írustration has involved SED in recent
ycars, duc to its inability to produce new positive results. But a
careful rcvision oí the situation tends to suggest that the difficul-
ties encountcred are methodologieal rathcr than a matter oí principIe.
Evcn though we cannot afirm at this stagc that SED is an essentially ,
correet theory, there are two points that strengthen our confidence.
First, the simplicity and physical elarity oí its postulates and second.
the positive results it has furnished, which can hardly be considered a
mere coincidence with quantlUllmechanics. It seems therefore opportunc
to explore anew the possibilities of SED and try to obtain a better
understanding of its implications. Ihis has been the purpose of our
mostreeent work(45).
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Let liS start by examining a flUldarrentalpoint, namely, the
origín oí quantization. For this purpose, we first consider a system
subject to an external binding force F(x,x,t):

mX = F (18)

such that it can reach a stationary periodic state oí motian (we shall
considcr ene-dimensional motion, for simplicity). By writing

x = A sin e, x=nAcos e

with

A = A(t], e ¡¡t + Ht)

one obtains

«F + mlx)x>¡¡ o 2 • o (19)«F + nílx)x>¡¡ =

where < >n denotes averaging ayer a period T = 2n/Q, under the assump-
tion that A and $ are essentially constant during that periodo This
approximate description in terms oí a harmonic oscillation is valid
only in the stationary state oí motian. Wecan therefore speak oí a
local 1inearization , that changes from state to statc: For every value
of the amplitude (or the energy), there will be a different value of
¡¡for Eqs. (19) to hold, which reflects the asynchrony of the system.

Let liSnow lcok at Eq. (16) from point of view. We can rewrite
it by adding mn2x on both sides:

(20)

lf we select ¡¡so as to comply with Eqs.(19), then the effect
oí the tcnms within square brackets is simply a periodic alteration
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which averages to zera in the stationary state and Eq.(20) can be ap-
proximated by the linear equation

•. 2 ...mx = - mn x + XTX + cE (21)

Here we are taking into account that the radiation reaction
and the rmldom electric force are small compared with the external
force and herree do no! alter the stationary periodic maticn signifi-
cantly. Thesc terms play actually a stabilizing role: As secn from
Eq.(20) the field mode of frequency ~ sustains the oscil1ation and the
radiation reaction force prevents ~1 infinite resonan! response to this
rode.

The solution of the linearized Eq.(21) can be uscd to derive
sorne interesting results, such as the l~i5enbergrelation

far the dispersions. oí x and p, and

<K>

(22)

(23)

far the average kinetic energy per dcgrce oí freedom. (The system is
3ssumed to havc the right ergodic properties for the time averages to
coincide with the ensemble averages). We recall that these results
ho1d only in the stationary state. This mean S t~,t Eq.(23) must hold
in addition to the relation between <K> and n obtained from the line-
arization condition: The value of n (and that oí <K» is thus
uniquely fixcd and the motion be comes quantized. Ihis is the propos-
ed mechanism of quantization. In other words, of a11 classically al-
lowed states, onIy one is stationary under thc influence of the random
eIectromagnetic ficId.

Consider, e.g., the circularzorbits oí thc hydrogen atoro.
Eq.(20) goes into (21) for F(x) e3 x and Eqs.(19) give

a

n (e2/ma3) 1/2



565

The kinetic energy associated to this orbital motian is ther~
fore, according to clussical mechanics,

<K> (24)

On the other hand, Eq.(23) gives

<K> 1=2M1 (25)

for two degrees of freedom. Combining Eqs.(24) and (25) we obtain

(:= - < K > (26)

which are the quantum mechanical results for the ground state.
By virtue of the nonlinearity of the force, it is natural to

assume that the system cml respond preferentially a150 to ene of the
harmonics, say nn, oí the ficId; in this case one has for two-dimen-
sional motion:

<K> = i hlln (27)

instead of Eq.(25), and this leads to the correct values for the energy
levels of the excited states:

(28)

These results can be generalized to elliptic ortibs and sim-
ilar methods can be applied to other simple nonlinear prohlews, with
satisfactory results. They can a150 be rephrascd in a more famaliar
form, by noticing that thc average kinetic energy is related to the
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action variable:

<K>

whence from Eq.(27):

J nh (29)

This approximate calculatían suggests a physical explanatían oí the
phenomenological Wilson-Sommerfeld rules.

Notice also that by assigning a wavelength to the orbital mo-
tion oí velocity v sustained by the ficld hanoonic rú.l:

and using once more F4.(27):

<K>

one obtains

112= "2 hIúl ="2 mv

h
A =-mv (30)

which indicates that de Broglie's wavelcngth can be intcrpreted as a
dynamical (average) property acqtlired by the particle through its inte~
action with the V3CUum ficId.

Let us now develop a fonnalism bascd on the heuristic approach
outlined above. It is clear from Eq.(21) that the properties of the
ficId variables will reflect themselves in the stationary solution. The
statistical properties are reflccted in the calculatían oí averages and
dispersions, such as Eqs.(22) and (23). Similarly, the canonical pro-
pertíes oí the ficId determine a symplectic structure for the particle
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variables. Te see this, we introduce the Poisson bracket with rcspect
to the random field amplitudes, which we shall call Poissonian:

< > " EmA [aa:, aaar -
mA

and calculate the Poissonian oí x and p corresponding to the sationary
solution of Eq.(21); the result is

(31)

<x. ;x.> = <p. ;p.> o
1 J 1 J

to lowest"order in T. Note that these results are independent oí n and
hence they apply for any binding force and any (stationary) state of ffiQ

tion. Using Eqs.(31) one obtains for any phase-space variables f,g:

<f;g> =ihlf,g] xp (32)

where [ f ] xp is the usual Poisson bracket with respect to x and p.
Two particular instances of Eqs.(32) are

ih af
api <p. ;f>

1
_ ih af

aXi
(33)

Let us now attempt to describe the dynamics. Since the effects
oí both the radiatían reaction and the random electric force are small
when the system is close to a stationary sta te, the dynamics will be
essentially dctermined by the externa! force, which means that the
equation oí evolution for anyftn:tion f( x,P. t) is basical1y the classi-
cal equat ion
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2
with H .. ¥ro + V. Hov,ever, since x and pare random variables that must
satisfy Eq. (31), the phase-spacc functions f and 11are subject to the
constriction expressed in (32):

ih [f,1I1 = <f;H>xp

By introducing this into the aboye equation we obtain

ihf = ih af + <f'H>at ' (34)

which we propase as the equation of evolution far f. It is intcresting
to observe that even though OUT dcscription has been strictly causal,

,.in \~iting F~(3~) any refercncc to the cause of stochasticity has becn
los!; this suggcsts explaining the apparently non-causal statistical
bchaviour of quantlUTI mechanics as an <Jl'tifact of the dcscription.

[4.(34) app1ied to the probability dcnsity p gives

ih £P- = <H;o>at (35)

since p is a
evolution in
wi th vectors

conserved quantity and therefore p .. o.
tenms oí stationary states we introduce
~n such that

To describe the
a Hilbert space

p • (36)

It fo11ows from [cs. (35) and (36) that the ~n are the solutions of thc
eigenvalue equ3tion

(37)
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and the eigenvalues are given by

N* <H;t > d~n n
(38)

¡"'hcrc "fJ is the accesible phasc spacc J asstDlling the tP to be properlyn
normalized: f~*~ = l. Now, supposc we wan! the quantity

n n

flj;* <H;\jJ>dfj

to attaio an extremal value under small independent variations oí
l/J(or ¡p), subject to the nonnalization condition

The corresponding variational problem reads (l\'hen ooly thc llJ*

are varied)

fóV«H;~> -A~)d~ = O

ffildits solutions are, according to Eqs. (37) and (38), ~ = $n' A = en'
This means that thc energy parameter acqui res the extrema.l values £n
when \jJ corresponds to the stationary solutions 4>0. This fonnalism has
allowed liS to transform the problem oí calculating the quantizeJ values
oí n corrcsponding to the stationary sta tes oí matico, ioto an
eigenvalue problem.

As a further step in this attcmpt to extricate the connection
betwccn SED and quantum mechanics, we observe that the present descrip-
tion lends itself to an operator fonnalism, in which the operators are
associated to the corresponding dynamical variables by means of the
relation

<A;4J> (39)
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From thc propertics of the Poisson brackets one can derive use.
fuI propcrties for the operators. For instanee, thc identity

<A;BC> ~ <A;B>C + B<A;C>

lcads to

or interch;m~, ::'.& A :md B:

The~c equations can be combined and rcwritten as

IA,B 1 = IA,B 1 = <A;B> (40)

Thc first (s~c"nd) exprcss ion is the conmutator of A and B in the A(B)
representation; ro<¡. (40) tells us therefore that thc value of thc co","!!
tatar is indcp.:-ndcntoí the representation. Thus for instanee, thc
commutator of x and p is

[~,fl 1 = ih

in both the x and thc p rcprcsentation. From Eqs.(33) ,

-iha/ax.
1

in the x reprcsentation and

in the p representacion.
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On may further write the Jacobi identity:

<A;<B;41» - <Bj<A;4»> = «A;B>;lf¡>

In terms of operators:

whence

IA,E I
A

<A;B> ( 41)

For instanee J far
Telation gives

the components of the orbital angular momentum this

Finally, the eigenvalue equation (37) takes the form

and the general solution (36) satisfies the equation

_ 3' A

lh __7. = lti;at
A2

with n = ¥ro + V(x) in the x representation. We thus recover the usual
quantwn formulation in Hilbert spacc.

The results presented in this section suggcst that a proper
consideration of thc specific dynamical effects of the ranrlom electro-
n~gncticficId may salve the problems faced by SED in connection with
energy balance and the existence oí stationary states. OUT arguments
have beco mainly heuristic and it is obviously necessary to develop a
more rigorous tratment in which every assumption is clearly justified.
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If this can be done the new theory thu~developed should not only ex-
plain the Kell-lmo\l,TI quantlIDI phenomenology, but a150 allo,," us to extcnd
our knowledge beyond prcsent-day quantum mechanics.
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