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ABSTRACT

The work performed by our group in the last 16 years in connec-
tion with the foundations of quantum mechanics can be roughly divided in
four stages: The preparatory or introductory stage, the period of stoc-
hastic quantum mechanics, the period of stochastic electrodynamics and
finally, the present stage. In this paper we present a summary of the
development and main results of the various stages; however, in view of
the minor significance of the first one, and of the excellent recen sum-
mary by Brody(1 of the second and third, we shall pay special attention
to our current work, which consists basically in the construction of a
new version of stochastic electrodynamics.

RESUMEN

El trabajo realizado por nuestro grupc en los iltimos 16 afos
relativo a los fundamentos de la mecdnica cufntica, puede dividirse a
grandes rasgos en cuatro etapas: la preparatoria o introductoria, la dedi

T Presentado en la asamblea general ordinaria de la SMF el 21 de junio de
1984.
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cada a la mecinica cudntica estocdstica, la dedicada a la electrodinami-
ca estocastica y, finalmente, 1la etapa actual. En este trabajo se pre-
senta un resumen breve del desarrollo y los resultados principales de ca
da una de ellas; sin embargo, dados el significado menor de la primera
etapa y la publicacidn reciente de un excelente trabajo de Brodytl) en
que se revisan la segunda y tercera etapas, aqui se presta atencién espe
cial al trabajo actual del grupo, el que consiste en lo fundamental en
un primer intento de construccidn de una nueva versidn de la electrodind
mica estocastica.

1. PRELIMINARY STAGE: BROWNIAN ANALOGY.

Our work on the foundations of quantum mechanics initiated in
the late 60's, was motivated by a general state of intellectual dissatis
faction with the orthodox views on quantum mechanics. By that time ex-
tensive discussions and numerous controversies on the interpretations of
quantum mechanics had arisen{z); but there existed few, scarcely known
and unaccomplished efforts to construct a fundamental thecry that would
explain the quantum formalism. On analysing the various facts of quan-
tum mechanics it gradually became clear that stochasticity should play
animportant rcle in any causal and objective description of the quantum
phenomenon. This feeling was reinforced by our rather accidental ac-
quaintance with Fényes' work(s), which represents a serious effort to
understand quantum mechanics in terms of a stochastic Markovian behav-
iour of the electron.

This line of research was stimulated, but at the same time limi
ted, by the analogy with Brownian motion, by far the best-known stochas-
tic process at the time. Indeed, it led to the identification of common
features of quantum mechanics and Markov processes, and to the use of a
methodology that had been essentially foreignto quantum theory(4). Howev
er, the close analogy between the stochastic electron and the Brownian
particle raised several questions which in the framework of this primi-
tive treatment could not be solved satisfactorily, namely: Which is the
essential difference between a classical and a quantum Brownian motion?
In the frictionless quantum motion, how isit thata stationary state can
be reached?

It soon became clear that some fundamental points were wrong or
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at least obscure, since any theory aimed at a better understanding of
quantum mechanics should permit to distinguish clearly a quantum system
from a classical one. 3

Unfortunately the confusioh still prevails -it is present even
in Jammer's excellent book-(z] to the extent that special terminology
has been suggested to describe the "Brownian motion" of the electron;
this widespread confusion adds its share to the aprioristic attitude of
many nonspecialist against the possibility of a causal, stochastic expla
nation of quantum mechanics.

2. STOCHASTIC QUANTUM MECHANICS

As a result of this work it seemed necessary to construct a
more elaborate formalism that could serve to describe a more general
stochastic process (in the Markovian approximation), and to distinguish
between Brownian motion and guantum mechanics as two different physical
situations. The intention was to show that quantum mechanics can indeed
be understood as the result of a specific stochastic process added upon
otherwise classical laws of motion, without yet inquiring into the ori-
gin of stochasticity; stochastic quantum mechanics has therefore an ex-
plicitly declared phenomenological character.

The closest antecedent of our work in this direction is Nelson's
well-known Markovian theory of quantum mechanics{s’ﬁ), which had clear-
ly established the possibility of a phenomenological treatment in coor-
dinate space similar to the Einstein-Smoluchowski treatment of Brownian
motion. Based on the introduction of two different derivatives of a
local function with reference to the initial and to the final point, we
developed a kinematics that would serve to describe a general Markovian

)

drift or systematic time derivative:

process in coordinate space In this description, in addition to the

D_=03/ot + Vv (1a)

there appears the osmotic or stochastic time derivative:

D =TV o+ V2 (1b)
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where
u=DV £fnp (2)

is the stochastic velocity,D is the diffusion coefficient and o is the
density of particles. Four different accelerations may therefore be
defined, in terms of which one can write the stochastic generalization
of Newton's second law:

m(A; 0. *A,1.) V+m) =% . (3)

As a result of imposing three physical conditions, namely: The time-
reversal invariance of Eq.(3) when ?(t)#(-t), the continuity equation
for p, and the recovery of the classical description in the Newtonian
limit, Eq.(3) tranforms into

m(DCV - W) = ¥ (4a)
-+ = 5
D.u+ DSY =0 (4b)
with A = - n? still undefined.

The system of Eqs.(4) admits a first integration and lineariza
tion in terms of the new variables

y = oR* S/VX, o1/2 o S/VR

-

(5)

where
u=2DVR, V= 2DVS. (6)

As a result of this integration one obtains the linear, uncou-
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pled equations

e 2 .ol
+2mD JTX-—SE = -2mD” AV

L (7
Since the free parameter ) appears only in the combination
D /X one may take AZ = 1 by an adequate selection of the phenomeno-
logical parameter D. With X = -1 Eq.(7) is parabolic and the ampli-
tudes ¥ are real; with A = +1 it is hyperbolic and the amplitudes ¥ are
in general complex. To stress the physical differences we speak in the
first case of an Einstein process (a classical, Brownian-type process
in the limit of negligible friction) and in the second case of a de
Broglie (non-classical, wave-1like) process. The Schrddinger equation
is obtained from Eq.(7) for A = 1, with a suitable selection of the dif
fusion coefficient:

D=h/2m . (8)

The above results show that quantum mechanics can indeed be in
terpreted as a Markov process, but irreducible to Brownian-type stoch-
astic motion. This formalism has allowed a variety of extensions and
generalizations, such as the introduction of spin(s), relativistic
(9), the extension to mixed states(lo'll)

formulations(6’12-14); the corresponding path-integral formulation has

(14,15)

treatments and variational

been developed and applied to the problem of barrier penetra-
More general schemes have been developed, either as a theo-
1y of the electron(lé) or even as a field theory(17). An important off
spring of stochastic quantum mechanics in the so-called stochastic
quantization, a stochastic treatment of field theory developed in re-
cent year5(17'18).

The theory has also received much criticism. An analysis of
the objections raised reveals that they are most frequently the result
of a traditional, classical approach to stochastic processes and the
consequent lack of distinction between Einstein and de Broglie proc-
esses, though in some cases they are related to a specific technical
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detail, such as considering the backward derivative % = fg as the time
inversion of b, * Dg- The main shortcoming of stochastic quantum me-
chanics is its phenomelogical character: Being a formal theory, it is
unable to elucidate the physical mechanism responsible for stochasti-
city and, in the last instance, for quantization. However, it has the
merit of indicating the way along which one should look for a deeper
and more fundamental theory; this is the subject of the next section.

3. STOCHASTIC ELECTRODYNAMICS

The search for an explanation of quantum stochasticity in terms
of a physical cause represents obviously a departure from the orthodox
views on quantum mechanics. Stochastic electrodynamics (SED) in such an
attempt: Its purpose is to interpret the quantum phenomenon as origina-
ting in the interaction with the allpervading zero-point radiation field
produced by the far matter in the universe. Intuitively one can view
this field as the result of the superposition of the uncorrelated fields
emitted be all accelerated charges in the universe. This assumption can
in principle help to solve an old dilemma: Recall that at the beginning
of the century, the planetary model of the atom was dismissed because of
the instability produced by the radiation of the accelerated electron.
SED attempts to revindicate this radiation as the ultimate cause of atom
ic stability and stochasticity at the same time, by proposing that a
state of equilibrium can be reached in which the energy absorbed by the
electron from the stochastic field is compensated in the average by the
radiated energy. In this picture, radiation is necessary to stabilize
the (stochastic) atomic orbits. As opposed to earlier models, the atom-
ic electron is now considered an open system that continuously exchanges
energy with the random zero-point radiation field.

The idea of this field is certainly not new: It was already en-

(20)
21) g

. In present-day physics it appears as the vacumm
of quantum electrodynamics, usually-but not always inpractice(zzl-regarg

visaged by Planck and some of itscon smological consequences were

studied by Nernst (

ed as a virtual field, though with fluctuations giving rise to observa-
ble effects (see, e.g., the discussion in Ref. 23). The assumption of
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reality of the vacumm field is not free of difficulties, even very
serious ones as the cosmological implications of its enormous energy
density; this is an unsolved problem, which strictly speaking affects
quantum electrodynamics as well.

The idea of a close connection between quantum stochasticity
and the zero-point radiation field is more than three decades old and
has been rediscovered by several independent workers. It is mentioned
explicitly by Kalitsin(za) already in 1953, but the first attempts to
elaborate a theory based on it are due to Braffort and coworkers(zs)
and Marsha11(26). A short review of SED is presented in Ref. 27 and a
more detailed one can be found in Ref. 28

The zero-point field is normally assumed to be a solution of
Maxwell's equations without sources, that can be expressed in terms of
Fourier components with stochastic amplitudes averaging to zero and hav
ing independent Gaussian distributions. By the requirement of Lorentz
invariance, its spectral density must be of the form Aws. With
A= 4h/3Hc2, the energy of the field mode w is hw, as it should at zero
temperature.

Before entering into the dynamics, let us illustrate the funda
mental role that the hypothesis of the zero-point field may play as a
foundational cornerstone of quantum theory.

Consider a blackbody in equilibrium at temperature T. Its
mode of frequency w will have the average energy

<g (w)) = <5,].(u;}>

and assuming the field components to be Gaussianly distributed with ze-
ro mean, the variance of the energy is

Using the well-known Einstein formula for the fluctuations of
the energy of a system in thermal equilibrium with a heat bath at tem-
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perature T:

o= - = . B = 1/KT (9)
we get the differential equation

9<EL>

i 2 _
38 + <ET> = ()
with solution
J
<gp> = Bn‘fB

where BO is an integration constant; since for T + = (B + 0) <ep>
should become infinite, we must take BO = 0 and thus we get the classi
cal formula

= KT (10)

™|

(E‘,r> =

which corresponds to the Rayleigh-Jeans law. Now let us add to these
elementary considerations a single new ingredient, namely, the zero-
point field. For this we assume the most natural hypotheses, namely:

i) ‘The mean energy is a sum of the thermal and zero-point contributions:

<gw)> = <e> + <g >

T 0
ii) The zero-point field is Gaussian:

2 2
oy = <EO>

iii) The zero-point field and the thermal part are statistically inde-
pendent, and thus the variance of the energy is
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whence

Y 2
gr = <E> 00 <:.:T> + 2<50><5T>

Inserting this result into Einstein's formula (9) we get the
new differential equation

9<eT>
9B

+ <€T>2 + 2<EO> (ET> =0 o (1-1)
The solution of Eq.(11) that goes to (10) in the classical lim
it is

2<E0>

<a.[,> = ____e23<€0>_1 (12)

This is Planck's law for the blackbody for <e,> # 0; it suffi
ces to take <€p> = 0 as corresponds to the absence of the zero-point

field, to recover classical physics. This derivation, due to Boyer(zg)

and Theimer (0

, allows also to learn a little more about <€g> from
first principles. In fact, Wien's law for the spectral density of

radiation in equilibrium with matter at temperatura T

o) = wE@

gives when compared with Eq.(12), <ggpow and po(m) aws, in agreement
with the arguments mentioned above, In writing € = % hw Planck's con
stant acquires a physical meaning: It measures the fluctuations of the
random field and hence also the fluctuations impressed by this field
unon the particle (as expressed, e.g., in the Heisenberg inequalities).
Other derivations of Planck's law from SED are presend in Ref. 31.

To develop a theory of the motion of electrons in interaction
with the random field we can in principle start for the Hamiltonian of
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the entire (field plus particle) system:

Hege G- SR7+VE v 32 0F) *+uf 4 (13)
whith
_ 1 i(kn-X-wnt) , ..
K_/_Z‘Tm_cﬁ— rf:).—/m;l_'l_ e s ee

- A 1 -
£ =0, w =clk|; a, +—— (p., *iwg..) (14)
K] ni n n nh T e ni nna

and derive the Hamilton equations for both the particle and the field
variables. An approximate procedure used to eliminate the latter leads
to a stochastic extension of the Abraham Lorentz equation for the par-

ticle:

2 . +
m = FR) + 25 xre®e Y xB) . (15)
3c
This highly nontrivial stochastic differential equation with co
loured noise is somewhat simplified by neglecting the magnetic force
and taking the long-wavelength limit, in which E = E{t); Eq.(15) reduces
then to

i Bl + i * alire (16)

with 1 = Zez/smcs. This is the Braffort-Marshall equation, usually

taken as the starting point of SED. It has been applied to simple lin-
ear problems, such as the free particlc(sz), the particle subject to a
(32) and the harmonic oscillator(25’26’33’34} (see Ref.28

for a more complete list of references). Let us briefly mention some

constant force

of the results for the harmonic oscillator: Owing to the Gaussian dis-

tribution of the random field amplitudes, the particle variables x and
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p are Gaussian as well and the stationary phase-space distribution is

2
1 - 2 1 2.2.—
P(x,p) = 5 exp J:- i (R»2m + 5 ma°x }_I )

At temperatures T>0 the average energy of the field modes is
% hw(1+6)/(1-6) with 8 = exp(-hw/kT) and the phase-space distribution
takes the form

2 .
1 2 2Zs 1-8
PGP = 5 Tog 0| g By + 3w L] (A

which is just the Wigner distribution for a mixture in equilibrium
with a heat bath at temperature T, as described by quantum statistical
mechanics (see, e.g., Ref. 35). The Lamb shift and the radiative
decay rate are obtained when the radiation reaction is introduced as a
perturbation.

In spite of the remarkable coincidence with quantum mechanics,
there are conceptural differences that deserve a close attention. For
instance, for SED the ground state is the state in which the rates of
absorption and radiation of energy are equal. The Heisenberg inequali
ty reflects the fluctuations impressed by the field upon x and p in the
stationary state. Owing to the relatively long corrclation time of the
single field components, the particle fluctuations are highly correlat-
ed, which explains the narrow emission and absorption lines. Here we
have a theory that can explain in principle the successes of the formal
stochastic theories of quantum mechanics, but we also face some problems.
For instance, in Eq.(17) the excited states appear simply as mathemati-
cal components of the equilibrium distribution, devoid of a direct phys
ical meaning. Also a fundamental epistemological question, namely, why
Schddinger's equation provides a correct description of the system,
remains unanswered. It is clear that some basic elements are still
lacking in the theory.

In addition to those mentioned above, other problems have
been successfully approached, such as the study of the free radiation
ficld(26’34’36) (37) (26,38,39).

SED has also served to suggest an explanation of the origin and meaning

the van der Walls forces and diamagnetism
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of the electron spin(sg).

However, the few attempts to solve nonlinear problems have
been unsuccessful. The usual procedure is to construct a Fokker-Planck
equation for the (multiply periodic) classical system perturbed by the
random field and the radiation reaction(40’41] (See also Refs. 28 and
41 for more complete references). For the hydrogen atom, for instance,
this procedure leads to a ground state of zero energy, which implies
spontaneous ionization. Moreover, the system turns out to be non-
ergodic and the Fokker-Planck equation admits several coexisting statio
nary solutions(39’4l’42) (See also Refs. 1 and 28).

For the quartic oscillator, the results are not as aberrant:
The ground-state energy is correctly predicted to first order in the
perturbation, but the second order result is incorrect(41). Another
unsatisfactory result, common to all nonlinear problems, is the lack of
detailed energy balance at every single frequency of radiation; it
would thus seem that the mechanical system pumps energy from some field
modes into others, contradicting Kirchhoff's law on the universality
of the equilibrium spectral density. This problem was first discussed

and has been rediscussed afterward5(44).

4. THE PRESENT STAGE: SED ANEW

A general feeling of frustration has involved SED in recent
years, due to its inability to produce new positive results. But a
careful revision of the situation tends to suggest that the difficul-
ties encountered are methodological rather than a matter of principle.
Even though we cannot afirm at this stage that SED is an essentially ,
correct theory, there are two points that strengthen our confidence.
First, the simplicity and physical clarity of its postulates and second,
the positive results it has furnished, which can hardly be considered a
mere coincidence with quantum mechanics. It seems therefore opportune
to explore anew the possibilities of SED and try to obtain a better
understanding of its implications. This has been the purpose of our

most recent work(45).
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Let us start by examining a fundamental point, namely, the
origin of quantization. For this purpose, we first consider a system
subject to an external binding force F(x,x,t):

mX = F (18)

such that it can reach a stationary periodic state of motion (we shall
consider one-dimensional motion, for simplicity). By writing

A sin 8, x =0A cos

~
]

with

A

A(t), 6= at+ ¢(t)

one obtains

<Femfweg =0, <(F+ w0k, =0 (19)

where < >q denotes averaging over a period T = 2n/Q, under the assump-
tion that A and ¢ are essentially constant during that period. This
approximate description in terms of a harmonic oscillation is valid
only in the stationary state of motion. We can therefore speak of a
local linearization, that changes from state to state: For every value
of the amplitude (or the energy), there will be a different value of
@ for Egs. (19) to hold, which reflects the asynchrony of the system.

Let us now look at Eq.(16) from point of view. We can rewrite
it by adding mﬂzx on both sides:

mk + m0lx = (F+mPx] +m¥ +eE . (20)

If we select 2 so as to comply with Eqs.(19), then the effect
of the terms within square brackets is simply a periodic alteration
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which averages to zero in the stationary state and Eq.(20) can be ap-
proximated by the linear equation

mx = - mﬂzx + mtX + eE . (21)

Here we are taking into account that the radiation reaction
and the random electric force are small compared with the external
force and hence do not alter the stationary periodic motion signifi-
cantly. These terms play actually a stabilizing role: As seen from
Eq.(20) the field mode of frequency @ sustains the oscillation and the
radiation reaction force prevents an infinite resonant response to this
mode.

The solution of the linearized Eq.(21) can be used to derive

some interesting results, such as the Heisenberg relation

2 2 4 (22)
%% % 4
for the dispersions of x and p, and
i
<k> =7 hQ (23)

for the average kinetic energy per degree of freedom. (The system is
assumed to have the right ergodic properties for the time averages to
coincide with the ensemble averages). We recall that these results
hold only in the stationary state. This means that Eq.(23) must hold
in addition to the relation between <K> and © obtained from the line-
arization condition: The value of @ (and that of <K>) is thus
uniquely fixed and the motion be comes quantized. This is the propos-
ed mechanism of quantization. In other words, of all classically al-
lowed states, only one is stationary under the influence of the random
electromagnetic field.

Consider, e.g., the circular_orbits of the hydrogen atom.
Eq.(20) goes into (21) for F(x) = - Eg x and Egs.(19) give

a

Q = (e2/ma%)1/?
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The kinetic energy associated to this orbital motion is there
fore, according to classical mechanics,

2
. 1 4.2.1/3
w0 =5 =1 (meteh)l/ (24)
On the other hand, Eq.(23) gives
i
<Kk> =3hQ (25)
for two degrees of freedom. Combining Egs.(24) and (25) we obtain
4 4
ﬂzm;s . E:-(K):—E-? (26]
h 2h

which are the quantum mechanical results for the ground state.

By virtue of the nonlinearity of the force, it is natural to
assume that the system can respond preferentially also to one of the
harmonics, say nQ, of the field; in this case one has for two-dimen-
sional motion:

<K> = 3 hin (27)

o =

instead of Eq.(25), and this leads to the correct values for the energy
levels of the excited states:

_ _me : (28)

These results can be generalized to elliptic ortibs and sim-
ilar methods can be applied to other simple nonlinear problems, with
satisfactory results. They can also be rephrased in a more familiar
form, by noticing that the average kinetic energy is related to the
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m g2 . _ R o
<> = T §x° dv = - fpdx = 3o

J=nh . (29)

This approximate calculation suggests a physical explanation of the
phenomenological Wilson-Sommerfeld rules.

Notice also that by assigning a wavelength to the orbital mo-
tion of velocity v sustained by the field harmonic nQ:

| s
<K> = 7-hnﬂ =3 mv

one obtains

which indicates that de Broglie's wavelength can be interpreted as a
dynamical (average) property acquired by the particle through its inter
action with the vacuum field.

Let us now develop a formalism based on the heuristic approach
outlined above. It is clear from Eq.(21) that the properties of the
field variables will reflect themselves in the stationary solution. The
statistical properties are reflected in the calculation of averages and
dispersions, such as Eqs.(22) and (23). Similarly, the canonical pro-
perties of the field determine a symplectic structure for the particle
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variables. To see this, we introduce the Poisson bracket with respect
to the random field amplitudes, which we shall call Poissonian:

5 = I ] 2 = 9 3
» o *
m aam)\ aam aam Bam

and calculate the Poissonian of x and p corresponding to the sationary
solution of Eq.(21); the result is

<x.1;pj> = ihnSiJ.

(31)

<xi;xj> = <pi;pj> =0

to lowest’order in T. Note that these results are independent of Q and

hence they apply for any binding force and any (stationary) state of mo
tion. Using Eqgs.(31) one obtains for any phase-space variables f,g:

<f;g> = ih [f,g}xp (32)

where [ , ]xp is the usual Poisson bracket with respect to x and p.
Two particular instances of Eqs.(32) are

3f
api

I I L (33)
1

<x.;f> = ih
i

Let us now attempt to describe the dynamics. Since the effects
of both the radiation reaction and the random electric force are small
when the system is close to a stationary state, the dynamics will be
essentially determined by the external force, which means that the
equation of evolution for any function f( x,p,t) is basically the classi-
cal equation
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2

with H = gﬁ + V. However, since x and p are random variables that must
satisfy Eq.(31), the phase-space functions f and H are subject to the

constriction expressed in (32):
ih [f,H]xp = <f;H>

By introducing this into the above equation we obtain

ihf = in af <f;H> (34)
at
which we propose as the equation of evolution for f. It is interesting
to observe that even though our description has been strictly causal,
In writing Eq(34) any reference to the cause of stochasticity has been
lost; this suggests explaining the apparently non-causal statistical

behaviour of quantum mechanics as an artifact of the description.
Eq. (34) applied to the probability density p gives

in %ﬁ = <H;p> (35)

since p is a conserved quantity and therefore p = 0. To describe the
evolution in terms of stationary states we introduce a Hilbert space
with vectors ¢n such that

E=1C e—icnt/h¢

Yo W s o (36)

It follows from Egs.(35) and (36) that the ¢, are the solutions of the
eigenvalue equation

e = <H;¢n> (37)
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and the eigenvalues are given by
= * -
€, Jor <H;o.> du (38)

where 11 is the accesible phase space, assuming the ¢ to be properl
2 - I Y

normalized: f¢;¢ o= L Now, suppose we want the quantity
Ty <H;p>du

to attain an extremal value under small independent variations of
ylor ), subject to the normalization condition

Ju*g dy = 1.

The corresponding variational problem reads (when only the P

are varied)

J8U* (<H3y> -av)du = 0

and its solutions are, according to Egs.(37) and (38), v = ¢n' A= €n
This means that the energy parameter acquires the extremal values €
when U corresponds to the stationary solutions ¢, . This formalism has
allowed us to transform the problem of calculating the quantized values
of O corresponding to the stationary states of motion, into an
eigenvalue problem.

As a further step in this attempt to extricate the connection
between SED and quantum mechanics, we observe that the present descrip-
tion lends itself to an operator formalism, in which the operators are
associated to the corresponding dynamical variables by means of the
relation

A= <Ajp> (39)
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From the properties of the Poisson brackets one can derive use-
ful properties for the operators. For instance, the identity

<A;BC> = <A;B>C + B<A;C>
leads to
ABy = <A;B>¢ + BA
or interchan,ng A and B:

ABp = <A;B>p + BAs

These equations can be combined and rewritten as

(AB1 =[AB] = <A;B> . (40)
The first (second) cxpression is the commutator of R and ﬁ in the A(B)
representation; fq.(40) tells us therefore that the value of the commu
tator is independent of the representation. Thus for instance, the
commutator of x and f; is

[R,p1 = 1n
in both the x and the p representation. From Eqs.(33);

p; = -ih 3/ax;

in the x representation and

X; = ih3/dp;

in the p representacion.
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On may further write the Jacobi identity:
<AB;p>> - <B;<Aj;¢>> = <<A;B>;¢>

In terms of operators:

whence
[A,B] = <A}B> . (41)

For instance, for the components of the orbital angular momentum this
relation gives

A

[E.,E. ] =38 gk

i | ijkk :

Finally, the eigenvalue equation (37) takes the form

and the general solution (36) satisfies the equation

h 98 - i
ih 3t HE
.
with H = %ﬁ + V(x) in the x representation. We thus recover the usual

quantum formulation in Hilbert space.

The results presented in this section suggest that a proper
consideration of the specific dynamical effects of the random electro-
magnetic field may solve the problems faced by SED in connection with
energy balance and the existence of stationary states. Our arguments
have been mainly heuristic and it is obviously necessary to develop a
more rigorous tratment in which every assumption is clearly justified.
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If this can be done the new theory thus developed should not only ex-
plain the well-known quantum phenomenclogy, but also allow us to extend
our knowledge beyond present-day quantum mechanics.
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