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ABSTRACT

Fourier Transform provides elegant methods to study the Fraun-
hofer diffraction for many types of apertures, not only for the calcula-
tion of the amplitude and intensity distributions of the pattern but
also the understanding of the diffraction phenomenon. In this paper it
is shown that both amplitude and intensity distributions of the pattern
are Fourier Transforms of the specific functions. The results are ap-
plied to the diffraction produced by any bidimensional array of identi-
cal apertures and are extended to the well known cases, {.e., the dif-
fraction grating, the Young experiment, the rectangular slit and the
long slit.

RESUMEN

La transformada de Fourier aporta métodos elegantes para el es-
tudio de la difraccidn de Fraunhofer producida por muchos tipos de aber-
turas, no sélo para el cdlculo de las distribuciones de amplitud e inten
sidad del patrdn sino también, para la comprensidn del fendmeno de la di
fraccidn. En este articulo se muestra la relacidn entre estas distribu-
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ciones y las transformadas de Fourier de funciones especificas. Los re
sultados obtenidos son aplicades a los casos de rejilla de difraccidn,
experimento de Young, abertura rectangular y ranura larga.

INTRODUCT ION

The bidimensional Fourier transform of a functicn{l} f(x,y) is
defined as

-]

FP,Q) = ” £(x,y) exp i [Px + Qyl dxdy. (1)

-00

On the other hand, the amplitude distribution for the hidimen-
sional pattern of Fraunhofer diffraction of a monochromatic plane wave
which is incident on any bidimensional dispersor(z) (Fig. 1) is given by

E(E,n) = ” e(x,y) exp i[‘;—g x + %yjdxdy, (2)
DISPERSOR

where e(x,y) is the superficial amplitude density on the dispersor or
aperture function 3 and k is the wave number of the plane wave. Let
us define the spacial frequencies(4) P and Q of the diffraction pattern
as

=

Pel , o=k, (3a,b)

and extend the limits of the double integral in Eq.(2) over the interval
(-=, =). That is posible because the dispersor is transparent only into
a finite region of the space. Then, Eq.(2) shows the same form than

Eq. (1), and we conclude that the amplitude distribution of the pattern
is the bidimensional Fourier transform of the aperture function.
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Fig. 1 Illustrating the Fraunhofer diffraction.
Now, the intensity of the diffraction pattern is defined as(s)
I(P,Q = E(P,QE*(P,Q) . (4
Then, according with Eq.(1) we can write

1(P,Q) = m [ (,Y) e (0,v) exp i [P(x-u) + Qly-v)] dxdydudy ,

and after the change of variable x-u=z, y-v=w we obtdin

[=-]

[” e(x,y) s*(x-z,Y—W)dXdy] exp il Pz+Qw)] dzdw

-0

n

I(P,Q)

(%)

I(P,Q) = I__(z,w) exp i[Pz + Qwidzdw ,

€E

 Pemmn.g . () Bl |



614

where FES(z,w) is the autocorrelation of the aperture function(ﬁl.

Eq.(5) is the Fourier transform of the bidimensional Winer-Khintchine
7

theorem' /).

REGULAR BIDIMENSIONAL ARRAY OF IDENTICAL APERTURES

Any regular bidimensional array of identical apertures (Fig.2)
is composed of N colums and M rows which are regularly apart, with a
and b the separation constants for each pair of consecutive rows and
each pair of consecutive colums respectively. Then, the aperture func

tion of the array is

_ Nel Mol - 6
ep(x%y) = E, I, e(x-na, y-mb) , (6)

with ¢(x-na, y-mb) the aperture function for the nm-aperture. From
Eq. (1) the amplitude distribution of the pattern will be

N§1 Mil E_(P,Q)
. n=0 m=0 nm’

Ep(P,Q)

<N Jm i dxd 7
* i iea f €(x-na, y-mb) exp i[Px+Qyldxdy , (7)

-0
where Enm(P,Q) is the contribution from the nm-aperture. Replacing

s = x-na and t = y-mb into Eq.(7) and extending the integral only over
the nm-aperture, we obtain

) . , N-1 M-1 .
LT(P,Q) = fJ e(s,t) exp i[Ps + Qtldsdt nEO mEO exp i[ nPa+mQb]

nm-apt.

= E(P,Q) Yo (8)
n=0 m=0
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Fig. 2 Bidimensional array of identical apertures. The numeration
indicates the nm-order of each aperture. The origin of the frame

has been dislocated by the DPirac's delta function §(x-a, y-b) for
convenience.

Note that into Eq.(8) the nm-subindex is dropped because the amplitude
contributions from all apertures of the array are identical. To solve
the summatory in Eq.(8) we call a = Pa/2 and B = Qb/2 and apply the re-
lationship(8)

J=1 s : :
Lo (exp i2x)7 = exp i[(J-1)x]. sin Jx ,
J=0 sin x
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then

E;(P,Q) = E(P,Q) -exp il (N-1)a*(M-1)6] sin Na . sin Mg . (9)

sin @ sin B

And according with Eq.(4), the intensity distribution of the diffraction
pattern will be

. 2 . 2
1,(P,Q = E(P,QE*(P,Q [51“ 3 [51“ e (10)

sin o sin B

An interesting remark is obtained after the application of in-
() to Eq. (8). Let us symbolize this operation
by means of the letter F 1. From Eq.(8) we have

verse Fourier transform

- - N-1 M-1
_ ek | 3
c.r(x,y) =F l:E.I.(P,Qﬂ = F |:E(P,Q) nEO mEO exp il nPa+nQb]] :

And using the properties of the convolution product ©) symbolized by *,
we can write

e o1 [N-1 M1
ET(x,y) =l [E(P,Q)] * F IIVZ 7 exp i[nPa + nQb]:l
n=0 =0

But, F'll E(P,Qj] £(u,v) is the aperture function for any aperture of
the array and Fl [ I, exp ilnPa+mQb]] = i §(u+na, v+mb), where each
Dirac's delta functic,m(lo) specifies the location of a particular aper-
ture into the array. After the substitution of these results into the

expresion above, we obtain an alternative form for Eq. (6):

¥ * o s -
ET(x,y) = ” e(u,v) [nEO mEO §(x-na-u, y-mb-v)J dudy, (11

-0

where the summatory of Dirac's delta functions is called the bidimensional
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comb function. Thus, any bidimensional regular array of identical aper
tures is the convolution between a specific aperture function and a
bidimensional regular comb function. And, taking into account Eq. (5),
the Fraunhofer diffraction realizes the bidimensional Wiener-Khintchine
theorem for such array.

apLIcATIONS (11
The single rectangularn S04t
This is obtained when N=1 and M=1. Further, if the slit is
homogeneous and its dimensions are L and L', the corresponding aperture

function can be defined as

[Aexpi(p -—<x<% , - a—<y<=—
e(x,y) = (12)

0 in other case .

where A and ¢ are real numbers. Then, from Eq.(2),
L/2 LYy2
E(P,Q) = J J A -exp i¢ - exp i[ Px+Qy] dxdy
-L/2 -L'/2

= A. exp i¢ LL' sinc ¢(P) sinc ¢'(Q) ,

with sinc 6=sin 6/6, Y(P)=PL/2 , ¥'(Q)=QL'/2 .
Replacing the results above into Egs.(9) and (10) we abtain

ET(P,Q) ALL' exp i¢ sinc ¢(P) sinc ¢'(Q) , (13)

A%L"y? sinc? w(P) sinc® v'(Q . (14)

1;(2,Q
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The aingle Long alit

This is a rectangular slit with one of its dimensions very much
large (infinity at the limit) in comparison with the other, Thus, from
the results above, we have for the amplitude distribution of its diffrac
tion pattemn

Ep(P,Q) = AL exp i¢ sinc y(P) lim [L'sinc ¥'(Q)]

IRE)
But, it is known(lz) that
L' /2
lim [L' sinc ¢'(Q)] = 1lim J exp iQy dy = 2n8(Q) . (15)
Lo Lo -L'/2

Then,
E;(P,Q = 2mAL exp i¢ sincy(P)s(Q)

That is, the diffraction pattern will be composed by a series of light
fringes defined by sinc y(P) in the P-direction (Fig.1) but very narrow
(Dirac's delta function at the limit) in the Q-direction. For this
reason, it is possible to reduce this case to the unidimensional
Fraunhofer diffraction by a single slit by means of the following proce-
dure:

@

B0 -3 [ 500 @

-0

L]

AL exp i¢ sinc ¥(P) J 5(Q

=0

(13)

But, by definition the value of the integral into the last expres-
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sion is the unity, and

AL exp i¢ sincy(P) 5

Ep(P)

2.2
L.(P).

A%L? sinc? u(p)

The Young experiment
Fraunhofer diffraction produced by two identical slits is
called Young experiment. For this case N=2 , M=1 and o is the separa-

tion between the slits.

A. With rectangular slits

Let us take two slits whose aperture functions are given by
Eq.(12). Thus, from Eq.(9) we obtain for the corresponding pattern

ET[P,Q) = E(P,Q) exp ia sin 2a/sina "

where E(P,Q) is given by Eq.(13) and sin 2ao/sin o = 2 cos o, o = Pa/2
Then,

ET(P,Q) 2 ALL' exp il¢+alsincy(P) sinc ¢'(Q) cosa(P) ,

4 Az (LL')zsi:u?w{P)sincz V' (Q) cosza(P)

1,(P,Q)

B. With long slits

We obtain the description for the pattern relative to this case
after the application of the limit process for L'>>L and Eq.(15) into
the last results. That is, the amplitude distribution will be

Ep(P,Q = 47 AL exp il ¢*a(P)sincy(P) cosa(P) 6(Q)
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And, by means of the procedure ahove, we can reduce it to the unidimen-
sional Young experiment and to write for the pattern description

2AL exp il ¢+a(P)]  sincy(P) cosa(P) |

E,(P)

2
1y ()

aA%1.2 sinc?y(P) cosia(P) .

The wiidimensional array of rectangularn 58415
We will have that when M=1 and E(P,Q) is given by Ea.(13) for

any aperture. According with Eqs(9) and (10), the diffraction pattern
will be described by

ET(P,Q) ALL' exp i[ ¢+(N-1)a(P)]sinc y(P) sinc ¢'(Q) sin Na(P)/sina(P) s

1.(P,Q) =A%) sinc’ y(P) sinc? ¥'(Q) sin’Na(P)/sin® a(P)

The difgraction grating

This is an unidimensional array of long slits. To obtain the
corresponding amplitude distribution of the diffraction pattern in this
case, let us apply the limit process for L'>>L and Eq.(15) into the last
results. That is

F.I.(P,Q) = 2mAL exp i[ ¢+(N-1)a(P)] sinc ¢(P) sin Na(P)/sin a(P) . 8(Q)

Once more, using the procedure above, it is possible to reduce this
result to an unidimensional expression corresponding to the Fraumhofer
diffraction pattern by any grating, as it is usual to find

Ep(P) = AL exp il ¢*(N-1)a(P)] sinc $(P) sin Na(P)/sin a(P)

2

L(P) = A%L% sinc? y(P) sin” Na(P)/sin’ a(P)
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Finally, we would note that the choice of the limit L'>>L for diffrac-
tion from arrays of long slits is not arbitrary. In fact both cases,

the Young experiment and the diffraction grating, show the arrays ori-
ented on P-direction but the slits oriented on Q-direction Thus, the

reverse possibility, L>>L', is senseless.

CONCLUSION

The elegance of the application of Fourier methods on the study
of the Fraunhofer diffraction produced by any regular array of identical
apertures has two aspects. The first one is the determination of Egs.(9)
and (10) to calculate the amplitude and intensity distributions of the
pattern in any case. To handle them we need to know only the aperture
function of a single aperture of the array, the total number of aperture
and the separation between any pair of consecutive ones, as we showed
after their application of the well known cases. The second one is the
understanding of the Fraunhofer diffraction as the Fourier transform of
the aperture function of the dispersor. In other words, for such phenom
enon the physical space behaves as a Fourier transform operator.
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