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ABSTRACT

The foundations of equi1ibrium classical statistical mechanics
were laid down in 1902 independent1y by Gibbs and Einstein. The latter's
contribution, developed in three papers published between 1902 and 1904,
is usually forgotten and when oot, rapidly dismissed as equivalent to
Gibb's. We review in detail Einsteio's ideas 00 the foundations of
statistical mechanics and show that they coostitute the beginning of a
research program that led Einstein to quaotum theory. We also show how
these ideas may be used as a starting point for an introductory course on
the subject.



696

RESUMEN

Los fundamentos de la mecán~ca estadística de equilibrio fueron
presentados en 1902 de manera independiente por Gibbs y Einstein. La con-
tribución de este último, desarrollada en tres trabajos publicados entre
1902 y 1904, es generalmente olvidada y cuando no, se le menciona de paso
como una formulación equivalente a la de Gibbs. En este trabajo revisamos
en detalle las ideas de Einstein respecto a los fundamentos de la mec5nica
estadística y mostramos que constituyen la base de un programa de investiga
ción que mas tarde llevó a Einstein a la teoría cuan tica. Mostramos tam- -
bién como las ideas de Einstein pueden ser usadas en un curso introducto-
rio sobre el teL,a.

1. I~TRODUcrION

In ]902, a few days a[ter bcing appointcd to thc Patent Office
in Bern, Einstein submitted for publication hi5 thiro scicntific paper
lU1uer the tittlc oE "Kinetic Thcory oE Equilibritun and the 1\~'oPrincipIes
of Thcnoodynamics,,(l). In this paper he laid dovm the founuations of
statistical mechanics indcpcndently of Gibb's work published the sarne

ycar(2). As reBaTds the subsequent development oE the subjcct, Einstein's
contribution has passed unnoticed and has onIl' recent]}' reccivcd sorre
attcntion(3,4,S,6). It is the objcct cf thi5 ~udy to try to explain

Einstein's ide<l~on the fotmuations oE statistical mcclmnics, since they
fom the basis Df a rcscarch program that led to the study of Brownian
motion and of black-body radiation (7,8) J .m.d also becausc they could be
uscd as an alternativc introduction to the subject.

In hi s ncxt papcr publishcJ thc following year J !lA ThcoI)' of the
Foundations of Thclmodyn,'lJTlics,,(9),Einstein elaborated on the samc theory
in a more general manncr discussing explicitly howthe concept of
probability is uscd. In the following section we wi11 present Einstein's
theory following main1y this papero This is done in a w~y that might be
useful whcndiscussing the foundations of classical statistical mechanics
in a course on the subject.

5ection 3 is dedicated to Einstein's 1904 papcr IITO\~ardsa
Universal Holccular 111eoryof Hcat" (10), \dlCre energy fluctuations are discus
sed in particular far black-boJy radiation. Finally, \o,esh311 brief1y
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comment in section 4 on the importance of Einstein's contribution to the
foundations of statistical mechanics.

2. EINSTEIN' S STATISTICAL ~lECHANICS

2.1) In the introductjon to bis 1902 paper Einstein stated that:

the mechanics has not achieved the 90al of establishin9 a
sufficient basis for a general theory of heat. This is
due to the fact that the theorem of heat equilibrium and
the second fundamental theorem are not deduced using
exclusively the mechanical equations and the probability
theory althou9h Maxwell's as well as Boltzmann's
theories have come close to this goal. Hence, it is the
purpose of this paper to fill this gap. (11)

In the discussion that fol]o"~d Einstein developcu a theory,
now called statistical mcchanics, ~hich extracted the thermod~lamical
bchavior of general systcms govcnlcd by mcchanical cquations of matian.
Befare discuSSlllg the crnlcept of tenperaturc, he rcmarked trwt the theory
might be rcdevclopcd in a more general way(I2). This reformulation ,~'as
prescnted thc following year. Although both papers are sñnilar in contcnt,
we shall restrict our attention to the second ane, since it is a more
nature presp.ntation and deals in detail on the nced of a non-mcchanical
hypathesis in order to be able to spcak of probabilitics and establish the
thcory.

In a letter to his friend Miehele Besso dated January 1903
Einstein wTote cnthusiastically about this secand papcl' on the foundatians
of statistical mechanics:

At last on Monday 1 sent away my paper after many modifi-cations and corrections. Now it is completely clear and
simple and 1 am fully satisfied. The concepts of temper-
ature and entropy follow from the principle of energy
conservation and the atomistic theory. By employing the
hypothesis that the state distributions of isolated sys-
tems never pass into those which are less probable~ there
follows the second law of thermodyna~ics in its more
general form, namely the impossibility of a penpctuum
mobiee of the second kind. (13)
Thc papel' is dividcd into nine sections beginning with a general
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rnechanical description of isolated systcms, and thcn passcs on to thc
discussion of 3n crgodic hypothcsis and how observable quantitics may be
calculated 35 average s aver a largo ensemble of similar isalated systcms
once their distribution is knO\,TI. The Jiscussion of thc distribution o[ a
large ensemble of systems in thcnnal contact ,dth a heat bath and of the
conecpts of temperaturc and cntropy [orm the next part of the paper, "hile
the 1ast sections are devotcd to a proof of the socarrd law of thenmodyna-
mies.

2.2) Consider un is01atod physical systern describcd by a great
numbcr, suy n, of sealar quantitics PI, ...• Pn called state variables.
Einstein did no! say \\'hat thcse 5tate variables represent, but since thc
system is iso13teJ "it becomeevident that thc state of the system at a
givcn instant will wüque1y detcnninc the tranSfOnTI3tionof the system,,(14).

That i~, the statc variables must satisfy equations of the fora

(i 1, ...• n) • (1)

Einstein also assumcd th3t the tot31 energy E is the only constant of the

motion,

E E(Pl, ... ' Pn) = consto (2)

In the 1902 paper the state variables rcprescnted the positions
and morncntao[ a grcat numhcr o[ particles. liowevcr, as '"'te rrcntioncd
befare, he then remarked that the discussion could possible be extended to
systems defined in a 5till more general ,\'ay. This more ganeral formulation
is the one that appcars in the aboye p<.tragraph;the sta!e variables are no!
dividcd into p05ition5 and mamcnta (ar velocities) and ane daes not nccd
to spcak of atoms as the constituents oí the physica1 systerr..

2.3) Froma modern perspective, the greatcst mnrit oí Einstcin's
paper bclongs to the second scction whcrc probabilistic conccpts and éU1

crgodic hypothcsi5 are introduced. Thi5 5cction bcgins with a st3tcment

that the theory applies only to cqui1ibrium statcs:
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Experience shows us that an isolated system after a lapse
of time reaches a state in which no observable quantity
will suffer variations in tiMe; we will then say that
this state is stationary. (15)
To tUldcrstand l(hat condition mus! be satisfied by thc state

variables Pi' o •• , Pn in a station.:tI)' statc it is ncccesaI)' to provide a
relationship bet"~cn these and the observable quantities of thc systcm.
Einstein assumed "tha! 3n observable quantity can alh'ays be detcnnincd by
too tire average of a certain ftmetion of too statc variables
PI' , P ,,(16). That is, if f' denotes an observable quantity, therc mus!

n
exist a ftmction of the statc variables f such that

f l. I
= 1m T

T==oo

... , p (t)) dt
n

(3)

where (p (t)m , p (t)) is a solution oC the equations of motion (1).
1 n
Einstein also asslDllC'u, that in crder that <111observable

quantitü ....s remnin constnnt in timc, the stnte variables "ah./ays takc the
sarrc values .•..-ith the sarrc frc'lucncy,,(l7). Thi~ phrasc constitutcs Einstein1s
ergodic h)~thesjs. Its arigins are ta be fcund in Bo1tzmannin 1871 and

~laThell in 1879. Boltzmann state that:

the great irregularity of the thermal motion and the variety of
extrins;c forces acting upon bodies make it probable that in
virtue of the motion we call heat the atoms of bodies take
on all positions and vp'locities compatible with the equation
of energy. (18)

Max\.;e11, in arder ta prave BoH:<:.tn<UlJ1 I s theorem on the average distr ibution

of encrgy assumcd that:

The system. if 1eft to itself in its actual state of
motion. will, sooner of later, pass through every phase
which is consistent with the equation of energy. (19)
Boltzmarm's and ~ta.x\.:cll's hypothcses are equivalent, but not to

Einstein's. Indecd, the fonncr imply thc cxistcncc of on1y one trajcctory
on thc set of statc variables consistent with the cquation oí cncq,,!,(2),
\vhilc Einstcin's h)11othesis allows the existcnce of any number of indepcnd-
ent trajectories. Ilowever, ",..hcn Einstein used thc crgodic hypothesis, he
Jid so more in thc scnsc oí Bo1tzmarmanu t-L.'lxw"cl1 as ""C shall scc be10"".
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Let liS consider an isolatcd physical system dcscribctl by

equations (1) with a total cncrb~ E which is in a stationary statc. Assumc
that the valucs of the statc variables Pi' ... Pn are knovm nt any instant
of a time intcrval of length T and let r be an arbitrary region o[ thc spacc
of statc variables "hile 1 is the total time the statc variables takc valucs
insidc r. Einstein's ergodic hypothcsis nov.' statcs that "thc quantity r/T
[or T = OD has, for an}' region r a .•..-el1 dcfincd limit,,(20).

In arder to be able to spcak of probabilities Einstein considercd:
a great number (N) of independent physical systems al1 of them
described by the system of equations (1). He choose an
arbitrary instant t and ask far the distribution of the pos-
sib1e states of these N systems provided that the total
energy E takes a value between E* and E* + óE*. (21)

Duc to tl~ crgodic h}~thcsi5 Einstein then concluucu that
the probability that the state variables of a system chosen
at random from the N at time t take values in the regien
r, assumes the values

lim f = consto
T:oo

(4)

The number of systems [dN] such that their state variables
belong to the region r is therefore

(5)(22)ti 1 im .:r:
T:OO T

Einstein did not go into the details oí the relatíon bctheen Eqs. (4) and
(S). Ibwevcr , ~c will presently r.ivc an argument to show that probabilities
may be calculated through avcrages over a large collect ion of systerns.

We have quoted at length from Einstein's paper, since as mentioned
carlier, one of its grcatest mcrits lies in establishing the ergodic
h}vothesis as a central postulate oí statistical mcchanics. In 1912 Paul
ano Tatiana Ehrcnfest suggcstcd that the ergodic hYl~thcsis be replaccd by

thcir quasi-ergodic hypothesis which states that any trajcctory approaches
arbitrarily closely any poin! consistent ~ith the cqution oí encrgy(23) .

Einstein knc~ of Bolt~~Jm's ~ork through his lcctures on Gas
Theory(24). There thc crgodic hypothesis as quoted above is not rrentioned,
but when dealing with the proof of Liouville1s thcorem, Bolt~ referred
to both his work and ~IaX\'lellwhich .•..'e quoted. On the other hand, Boltzmann
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considered "an enonnously large munber oE mechanical systems, a11 oE which
have the same properties"(ZS), and how they may be distributed ayer the
space of state variables. He concluded that the "simplest case of a
stationary state distribution,,(26) is ane that is constant over the se! of
states consistent with the equation (2) of conservati.on oE energy and call
ed such a distribution an ergodic one*. He then discussed the equality of
time averages as thosc defined by equation (3) and averages taken ayer the
ensemble of systems distributed ergodically which is the canten! o£
equatíons (4) and (5).

To see thís, let p(r;t) denote the probabílíty that the values of
the state variables of a systern chose at randorn from the N be found in thc
region r at time t. Then

p(r;t) dN(t)
¡;r (6)

where dN(t) is the number of systems of the ensemble that satisfy the con
dition j~~t sta~ed. Now let fr be the characteristic function of the
regíon r and fr íts time average as defíned by Eq. (3). Since thís tíme
average does not depend on the initial conditions

l. T1m T
1':00

(7)

Define the average of the function fr over the collection of systems at
time t, tr by

_ dN(t)
- -N-- (8)

* Such a distribution was termed "microcanonical" by Gibbs(27). which is
the name now cornmonly used, while Einstein did not assign to it any name
in particular. According to Brush(28), the name "ergodic" became associ.
ated with the hypothesis we have been discussing by Paul and Tatiana
Ehrenfest(23) •

••The function fr takes the value 1 for points inside r and zero otherwise.
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v:here (p;il (t) , ...• P (i) (t)) denotes the valuc>s oí the stato variables
n

of the i-th systcm at time t.

From Einstcin's ergodic hypothesis, it fo110W5 that the statc V3£
iables oí a11 the rncmbcrs of the ensemble spcnd the sarne ffaetian oí timP
in the regian r, 50 that

lUSO. since a11 the membcrs oí the ensemble are in a stcady 5tate'

£=1'

It is pl~~iblc to assumc that it is irnmatcrial whethcr time avcraging ar
gtato space avcraging is pcr[olmcd first. so it is now clear that

l' = f

.hich, on behalf of Eqs. (6), (7) and (8) may be written as

p(rJ cL~= lim -T"
t\ T.:oo

(9)

To be able to calculate probabilities Ei~stcin proposed that [or
311Y 5mall regian g in the space oí stato variables such that the first
stato variable] ies bctwecn PI and PI + dpI •...• the n-th bct~ecn Pn
and Pn + tipn• the munbcr of systems oí the ensemble that at time t 1ic
,~ithin g dN

t
1S givcn by

J"t dp
"

... , Pn) dp, , ... , dPn

~here t is an unkno"TI function. Using F4S. (1) and an argumcnt similar to
that used in the proof o[ Liouvillcls Thcorcm(29) J thc number of systcms
oí thc ensemble which at time t + dt lie within the samc region g is

dNt + dt

n d (E~V)
L --dpl

\1:-1 dPv
(10)
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Since the distribution oí systems in the state space is stationary,
dNt' dNt+dt• Hence, Eq. (10) may be solved and Einstein found that

e = exp {-J EVe! dt + ~ (E) } (11)

(12)

where the funetían W is a constant of integratían. It now follo~sthat
for any region g

dN = consto e-mJ dp, ••- dPn
9

where m stands for the integral that appears in the argument of the expo-
nentia! of Eq. (11). Introducing new state variables TIl , oo. , TIn that
absorb the factor e-m, Einstein arrived at the impol~ant formula

dN = consto J dn, .•• dnn

If the state variables are the positions and momenta oí the con~
stituents of the system and the equations of motion (1) are Hami1ton's
equations oí motian, the sum

that appears in Eq. (11) is zero, provided that the potentia1 energy de-
pends only on the positions. The same is true if the state variables are
positions and velocities and Eqs. (1) are obtained from Lagrangels or
Newton's equations oí motian. Hence, it is no! clear why Einstein chose
such an abstraet formulation and what kind oí equations oí motian he had
in mind.

2.41 Einstein now turned to the prob1em of finding the distribu-
tion that describes a small systcm in thcnmal contact with a much larger
one. .~ considered an ensemble oí systems such that each system has an
energy E between E- and E* + óE* and is formed two subsystems t and o with
cnergies H and n, respectively, 50 that E = H + n, and with state variables
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nI, ... ,IT).,and TrI ••••• n~' respectively.
Let dN1 denote the nUJT1ber oí systems oí trc ensemble whose state

variable TII, o •• , TIATII , ••• 7T~ lie betwcen fI¡ and TII + dTIl , oo. , TI£,

and "t + d TIt, respectively. According to Eq. (12)

whcrc e = consto
Einstein assumed that ~ cauId be writtcn as

~ - 2h E

,nth h sore yet unkn""n function. Then

dN, _2h(H+ r¡)consto e dTI1 oo. dIT). dnI ••• d1ft

Nowlet dN denote the ntm1ber oí SystCFS oí the
satisfy the condition that the variables TII' o •• , lT£

Val\~5 rnentioned beforc"while no restriction is placed
TII, o •• , ITA' If wc define the quantity by

ensemble that
lic within thc

up::mthe variables

x(e) J
-2hH= e (13)

where the integral extends to al1 the valucs oí the statc variables far
which H lies within E. and E* + áE*:

dN, _2hHconsto X(E. - n) e dTIl ... do. (14)

We way now wr ite

-2hE
X(E) = w(E)

where by definition

w(E) = J dIT, ... d\

(15)
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with the region oí integration as in Eg. (13). Since n is small compared
with E<:

X(E< - n) = X(E<) - nX'(E<) (16)

where X'(E*) is the partial derivative oí X with rcspect to E valued at
E<. From Eq. (15)

- 2hEX' (E<) = e [w'(E) - 2hw(E)] (17)

At this point, Einstein argued that if X'(E<) = O then X(E< - n) wi11 not
depend on the state oí the srnall system. As can be seen easily from Eq.
(17) this condition is fu1fi11ed if

w' (E)
h=--

zw(E)
(18)

which defines the function h. ''The quantity h depends on1y on the state
oí the system L which possesses an energy ~nich is relatively infinite,,(30).

The probability t~1t the state variables oí a sma!l system in
contact with a much larger one lic between the values Tri and
TTI'" ÚTIl' o •• JTr£and 7Tg,'" dnt is given, according te Eqs. (14), (16)
and (18) by

d -2hnd dN2 = consto e nl o •• TIt (19)

The distribution given by Eq. (19), now known as canonical, was
obtaincd an the assumption that X'(E*) = O. This assumption is not neces-
sary as can be seen readily. 5tarting frem Eq. (12) and integrating over
a11 the values oí the state variables such that too energy of the systern
lies between E* and E* + óE* we find that

w(E<) = consto e-w(E)

On the other hand

(20)
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dN, = consto ~ elji(H+nl dn •..•

wherc the integration is carried ayer a11 the values oí the state variables
of the system L for which its energy lies close to the value H. Wemay now

"Tite

d.~, = consto elji(E*) w(H)dn •..• unl

or, with the help of Eq. (20)

Now,

lji(H) = lji(E) - nlji'(E*)

where W'(E*) is the partial derivative of W with respcct to the energy
evaluated at E*. Hence,

dN, - 2hrl
consto e dTT1' •• dTT i

where we have define<! h by

h - i lji' (E*)
From Eq. (26) we find that

w' (E*)
lji'(E*) = ---

w(E*)

anu that

w' (E*)
h=--

2w(E*)
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Z.51 In the 1902 paper, Einstein discussed in detail the
quantity h, first showing that it is a positive quantity and arguing that
"the equality of the quantities h is then the necessary and sufficient
condition for the stationary coup1ing (therma1 equi1ibrium) of too two sys
tems,,(31). FollO\<ing Bo1tzrn."Uu/32)he went on to discuss the mechanica1 -
mcaning oí the quantity h by considering the subsystano as a single mole-
cule and the sybsystem 1:as thc remaining IJl)lecules and fotmd that too
mean kinetic energy of a single molecule E is given by

e •
3

4h
(21)

On the other hand, since
quantity is proportional
prcssure proportional to

1... = kT
4h

"the kinctic theory oí gases shows us that this
to the pressure at constant volume,,(33) and the
the temperature, Einstein concluded that

(22)

•where k is a universal constant .
Thc discussion presented in the 1903 paper is somew}mt briefer.

It starts by postu1ating re1ation (22) wOOre T is the abso1ute temperature,
tOOn shows that the equali ty of the quantity h for two systems establishes

••therma1 equilibrium bet.een thernand that Eq. (21) ho1ds Again using
the results oí kinetic theor¡ Einstein arzued that the mean kinetic ener-
gy is proportional to the absolute temperature and concluded that "the
quantity we have denoted by absolute temperature ... is nothing but the
temperatures of a system rneasured with the gas thennometerll(34).

Before continuing with our presentation we would like to remark
that there is a great methodological rigor in Einstein's discussion in that
he tries to deduce the thenoodynamic behavior of a system írem the IOOvemcnt
of its constituent parts. Through re1ations (18) and (22) the central
concept of temperature assumes a microscopic character.

This constant is one halE oE Boltzmann's constant .
••The factor 3 is missing, howcver, the mistake was corrected in the 1904

papero
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2.6) Now that thc tem¡~rature is defined, it is necessary' in arder
to complete a theory of thc principIes of thennodynamics to find out what
the entropy or any other thermodynamic potential is from a microscopic
point of view, and thcn prove the second law. Einstein began by defining
intenninably slow processes as "those transfonnations cf stationary states
~hich are so slow that the state distribution at an arbitrary instant is
infinitely clase to the stationary state distribution,,(3S).

DJring an intennimbly slow process the system tmder study ma.y

interact with other subsystems [*; this interaction is characterized by the
value of certain external parameters AlJ A2, .... Thc equations of motian
(1) are still valid but thc functions ~ (v = 1 •... , n) and thc cnergy Ev
now depend a150 on the external parameters. The changc in energy dE is
therefore given by

dE (23)

An adiabatic transformation is defined by Einstein by thc condition that

,dE. O
¿ ap.v

v

and an isopicnic transfonmation by the condition that the externa! param-
etcrs rernain constant. In the latter case the change in energy dE is
defined as the heat 1055 and denote by dQ. That is

For any intenminably slow process we may ~Tite

dE=dQ+ ,dE dA
¿ dA

(24)

(25)

1ñe probability dW that the state variables oí the s}'stem lie
between Pl and Pl + dpl, ... Pn and Pn + dpn respectively befare the process
begins is given by

dW - c-2hE d d- e Pl ..• Pn
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where e is a constan! defined through the normalization condition

fé-2hE dpl ... dPn = 1 (26)

After an intenninably slow process where h changes to h + dh, E to E+ dE,
e changes to e + de according to the nonnalization condition

From these two las! equations it follows that

1

ec-2hE dpl .•. dp
n

o

Einstein argued that the quantity in parenthesis
oí the last equation mus! be constan! and therefore zero.
of Eqs. (22) and (25) he found that

in the integrand
With the he1p

thus showing that "dQ/T is an exact differential oí a quantity which we
wou1d like to call the entropy S of the systern,,(36).Taking into account
Eq. (26) we may write

S = !f - 2kc

where

f
-2hEc = - 10g e dpl .•• dPn

(27)

(28)

and the integration extends to a11 possible values of the state variables.
From a modern perspective ane would write, instead oí Eqs.

(23)-(25)•
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dE = r [::] dp + r [*l dAvv

dQ r[::ldPvv
and

dE = dQ = r[m di.

where the barred quantities are averages using the state distribution
given by Eq. (19). In an interminab1y s10w process whcre h changes to
h + dh. Al to Al + dAl, A2 to A2 + dA2 , ... , e ehangcs by an amOlmt de.
which. with the he1p of Eq. (26) is found to be given by

-1 ~ 1 "1IDEdc=--EdT+-¿ - dA2kT' 2kT ai.

From thc last two equations

or

dQ -2kdc _ 1
T'

Z.71 What now f0110ws is a proof that the quantity defined as
the entropy indccd possesses the propertics it should; that is, a proof of
thc seeond law of thenmodynamics. As we shall sec, Einstein was not wholly
suceesful, sinee he had to introduce an extra hypothesis takcn fr~ kinetic
theory, and henec defcated his purpose expressed in the introduction of the
1902 and 1903 papers of deriving the fundamental princip1es of thermodynamics
without reeourse to kinctie theory.

I~tus eo~~idera great number (N) of identieal isolated systems
a11 satisfying the equations oí metion (1) ano with encrgy bctwecn E* and
E* : áE*. If thc region oí state space determined by the a110wcd values
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oí thc energy is subdivided into t regions &1 , ••. , gt a11 of them with
the same extension and if W1 , O" , Ni are the probabilities that tr.~
state variables oí a system choscn at randorn lic in &1 , o" , gi rcspec-
vely, then

1W, = W, = ... = W£ = 1

The probability W that of the N systems e, be found in the region
&1 , •• _ , E

i
be found in the region gt is given by

W

and if £ is sufficiently large, by

log W = consto -Je loge dp, •.• dPn

the surobeing replaced by an integral.
For a stationary distribution £ is constant and the probability

W a maximum. However, if thc distribution £ dcpends on the state variables
it can be shown that the cxprcssion 10g W dces not possess an cxtremum.
f£TIce, Einstein assumed that

if we examine the N systems considered during an
arbitrary time intcrval we can be surt th~t the
state distribution (and therefore also W) varycontinuously in time and we must therefore assume
that state distributions which are less probable are
always followed by more probable ones. That is. Walways increases until the state distribution becomes
constant and W a maximum (37).
Frorn this proposition Einstein 3rgued that if ( and (1 denote

the state distribution at a time t and a later time tI the inequality

-log £1 ;:: 10g (; (29)

holds.
The quantity 10g W is very similar to Bo1tzmann's H function and
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the assumption that follows is the content of Boltzmann's theorem(38).
l~nce, as we mentioncd befare, Einstein's purpose oí eliminating kinetic
theory in the derivation oí the principIes oí thermodynamics W3S no! wholly
successful. As Klein co~nts Einstein's assumption '~asfar from adequate
as a basis fer tmderstanding the puzzle oí irreversibility"(39).

2.81 Befare proving the sceond law of thcrmodynamies by proving
the Unpossibility oí a perpetual motion machine oE the sccond kind, Einstein
applied the results found ahove to a particular casco Let liS consider an
infirrite number oí subsystems 01,02 ..•. that form an isolated system.
In principIe these systems may only interact adiabatically. The state
distribution far the subsystem al is given by

f (1) (1)dW, = cxp (e, - 2hE,) dp, •.• dPn
9

where the index 1 refers to the suhsystcm al" The state distribution for
the other subsystems are given by similar relations. The state distribution
for the complete system dW is therefore given by

- 2h E )jI dp,v v
9

where the suro extends to al1 the subsystems and the integral te an arbi-
trarily small region g.

Let liS now as sume that the subsystems interact arbitrari1y being
the who1e system iso1ated, unti1 thermal equilibrium is attained. The
state distribution will new be given by

dW';dW' dW', ,
Hence,

£ = N exp ([(e v 2h E )jv v

2h 'E '))1 dp,v v
9

.•• dpn

£' N exp ([(e' - 2h 'E ')jv v v
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and using equality (29)

Since the quantities inside the parentheses are, except far a constant,
the entropics, Einstein concludcd that

s~+ S~ + ••• ~ SI + 52 + ••• (30)

2.9) Finally, Einstein considered an isolated systern composcd
by severa! subsystems: thc hcat rescrvoir W, thc machine M and sorne other
subsystems Ll' E2' o •• which may interact ".'ith Madiabatically and have,
relatively infinite energy comparcd to that of the machine. AIl the
subsystems are in a stationary state.

The machine ~I follO\~'san arbi trary cyele in a \\"ay that the state
distributions of the suhsystcms Ll, E2' o •• may vary by adiahatie interac-
tions and produces a ccrtain amount DE work while receiving a certain
quantity of heat Q from W. The change in entropy experienced by W is -Q/T,
whilc the cntropy of M dces no! change since the process is cyclic. Since
thc subsystcms El, ¿2, ••• interacted adiabatically, thcy did not change
thcir cntropy either. Hcnce.

S' - S 9-
T

and using inequality (30)

Q ~ O

'~his relation expresscs thc impossibility of thc existence of a perpetuum
mobile of the second kind,,(40) .

In section 4 we shall comment on h~', frem a modern point of view,
one may prove too second law oí thennodynamics.
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3. TIIESCALE OF ATCMIC MAGNITIJDES

3.1} In ~~rch of 1904 Einstein sent for pub1ication his third
paper on the fOlmdations oí statistical mechanicstmder the title IlOn the
General ~blecular Thcory oí Heat" J where he presented sorne compleroontary
rcsults(lO). Thc paper starts with a simple derivation oí an express ion
far the entropy which wc shall discuss presentIy and a derivation oí the
second law oí thermodynamics which we will not go into since it essential-
Iy repeats thc argumcnt given in the 1903 papero The last thrce sections
oí the paper I dealing with the general meaning oí the constant kandan ap~
plication oí a fluctuation f011JR.11a to black-body rOOiation forro the mos!
interesting part oí the paper and will OCCUPY OUT attention in this scc-
tion. As remarked by Ke1in(4I), this is the first paper that shows the
unique qualitics that characterize Einsteints matuTe science.

3.2) The derivation presented by Einstein of an expression íor
the entropy hoIds for a system that can absorb energy onIy in the form of
heat. From the definition of entropy and equations (lB) and (22) he
fOlmd that

s
J
dE _-2k JW'(E)dE-------- 2k 10g [w(E)]
T w(E)

(31)

omitting the constant oí integrationo For a general derivation he remit-
ted the author to the section oí the 1903 paper we have discussed in sec-
tion 2.6.

3.3) The meaning oí the constant k was made evident by Einstein
through the fo1Iowing argumento Consider a system described by the state
variables Xl' Yl' Zl' 0.0 Xn, Yn' Zn, E:l' '11' 1;;1'oo' , E.:n, '1n,Z:nwhich
denote the rectangular coordinates and corresponding velocities oí the
atoms that form the systemo If the system is in thermal contact with a

system that acts as a heat bath at ternpcrature To, its state distribution
is given, recalling E<¡s. (19) and (22), by

(32)



715

where e i5 a constant.
The mean kinetic cnergy oí thc v-th particIo is thcn found to

be given by

Iv = 3kT o

On the other hand, using thc ideal gas law

pv = RT

-7l'..here R = 8.31 x 10 crg/dcg and from kinctic theory the re latien

2 -
pv = "3 NL

whcre N = 6.4x 1023 (Einstein guates thc value given by O.E. Meyer) is
Avogauro's number and 1 is thc mean free energy oí any moleculc, it £01-
lows that

N. 2k = R

Using the values menticned [ar the constants N and R.

_17
k = 6.Sx 10 erg/deg.

3.4) By intcgrating cxprcss ion (32)ayer a11 values oí the 5tato
variables such that the cncrgy of thc system is found to be bctween E and
E + dE, thc pl'obability d\\' that the energy of thc system is fm.md betl<¡ecn

the mentioned limits is
E

- 2kTdW = e e w(E) dE

The average energy E oí thc system is then fOWld to be given by

rE
- 2kTE = e e w(E) dE

o
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From this equation and thc normalization condition far the probability
distribution ane obtains

E

[ CE - E); 2kTw(E) dE O
o

and taking the derivative oí this expression with respect to T

[[2kT' ~ + EE-
o

Evaluating the integral

ZkT' ~ = E' - EE

E

e 2kTw(E) dE o

The instantaneous value oí the energy E differs from the average
value E by an am:>lU1t which Einstein called the "energy vacillation" (;
(now know as the energy fluctuation) in such a way that

With thc help oí the las! two equations, Einstein found that the mean ener
gy fluctuation £2 is given by

£' ZkT' dEdT (33)

As Einstein remarked this result is especially intercsting be-
cause "the ahsolute constan! k thus detennines the thennal stability oí the
system ..• and because it no longer contains any more quantitics reminiscent
of the lUlderlying hypotheses of the theory" (4Z) .

3.5) In the final section of this paper Einstein looked for an
independent determination of the lll1iversal constant k from the detennina-
ticn of too energy fluctuations of a system using equation (33). However,
"in the present state of our knowledge ... this does not apply". Indeed,
for only one sort of physical system can we presume from experience that
an energy fluctuation occurs. That system is emptyspace filled with
thennal radiation". (43)
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Thermal radiation in equilibrium with the cavity which contains
it is a system where fluctuations are negligible unless the linear dimc~
sions of the cavity are oí the arder of magnitudeof the wavelength at
which the radiation spectrum has its maximum Am. In this case, Einstein
argued, energy fluctuations are comparable to the energy itself; that is

Taking into aCCOlll1t Stefan-Boltzmann's law which states that

TI = cvT'

- 5 3 lo
where v is the volume of the cavity and e = 7.06x 10 erg/an deg is a
constant, it follows, with the help of equation (68) that

(34)

where the value oí k fOl.md befare was used.
This last quantit)', (v)1/3, must be the wavelength where the

energy spectrum has its maximum. On the other hand, this quantity Arn was

lmown from experirnents to be given by

, _ 0.293
"m - -.,.-

Einstein concluded that
not only the type of dependen ce of the temperature but
also the order of magnitude of Am obtained by means of
the universal molecular theory can be eorreetly deter-
mined and 1 feel this a9reement should not be aseribed
to chance, given the great generality of our
assumptions. (44)
By the ttme Einstein wrote this paper he had already read Planck's

papers on blaek-body radiation(4S). Kuhn(46) suggests that after discover-
ing Eq. (34), Einstein had begun to seek a blaek-body law of his own,
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ior(48) .
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but had quickly encountcred a paradox, that was discusscd in a paper
published the following year(47). This paper discusses Planck's radiation
la"", but not Planck's theory; this was leít to another paper published in
1906(S) where he proved that Planck' s theory rested on a quanturn hypothe-
siso

Fluctuations had already been encountered by Boltzmann and Gibbs,
they argued that one could never expect to observe such behav-
Einstein, on the contrary, instcad oí applying the theory he had

developed to the realm oí thermodynamics, wen! on to laok far ncw extensions
in fluctuatian phenomena. The following year he fOlDld another system where
fluctuations could be observed: small particles suspended in a 1iquid (6) .

4. FINAL CctoMENTS

As we mentioned in the introduction, in 1902 J.W. Gibbs publis~
ed his PrincipIes in Statistical Mechanics where he laid dO~TIthe founda-
tion..sof the subject. Gibbs had been thinking about the problem at least
since 1889when he armotnlceda "A short course on the a priori Deduction
of ThenoodynamicPrincipIes from the Theory of Probabil ities" for the
academic year 18R9-1890 at Yale University(49).

~hat Gibbs attempted in his book was to construct a theory oí
an ensemble oí similar mechanical systems. As he stated in the preface,
for such an ensemble oí systems he pursued "statistical enquiries as a
branch of rational mechanics"(SO). Eowever, the relation of this collec-
tianto a single system (the one in the laboratory) was not stated explicit
ly. This was leít to Tolmanwhodevelopcd Gibbs1 ideas introducing the
concept of a representative ensemble oí systems and arguing that the h~
thesis of equal a priori probabilities was essential in order to construct
the theory(29). This hypothesis, Tolman added, can only be justified by
the agreement of the theoretical and experimental results. Gibbs'
methodological point of view is the analogy between the properties he finds
for the canonical ensemble and the properties of a thermodynamic system.

Einstein, as we saw in section 2 took a different point of view.
Fromthe beginning he stated the purpose of dcriving the laws oí thennody-
namics from mechanical and probabilistic considerations. He assl.Dlled that
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any thermodynamie quantity eould be ealeulated as the time average of a
suitable funetion (Eq. (3)), and henee, that the objeet of the theory was
to calculate these averages. Through an ergodic hypothesis these averages
could be calculated by averages ayer and ensemble of systems similar to
the one under study.

Einsteints approach can be profitably used as a starting point
for a discussion en the fOlmdations oE classical statistical rnechanics in
an introductory course on the subject*. In arder to do so, we have suppl~
mented Einstein's cxposition wherever we thought it useful. An example is
the discussion oE the ergodic hypothesis and the use oE averages ayer the
ensemble oE systems instead oE time averagcs.

As we noted aboye, Einstein's proof oE the second law was not
sueeessful. Noting, from Eqs. (20) and (31) that the quantity t/J is equal
to thc entropy with a minus sign, Qne could try to prove the following
theorem:
(a) If the system can be eonsidered as formed by two subsystems, eaeh

ane with wel1 defincd values oí energy then

wherethc subindices 1,2, rcfer to each anc of the subsystems.
(b) The quantity t/J is eantinuaus and differentiable and monotanieally

decreasing as a function of thc encrgy.
(e) In equilibrium, the values taken by thepara~ters that define the

quantity 1V (encrgy, velUI!le,number of particles) are those that mini-
mize 1V over the set of constraincd states.

The content of this theorcm is the sccond law of thermodynamics
as postulated by Callen (51). A rigorous proof may be eonstrueted fram the
ane found in ~lel1e's book an statistical mechanicsCS2), while a proof
more adequatc fer an introductory course may be constructed by assuming
that the energy E and the quantity ~ are both proportional to the number
of state variables .
•One of us (R.R.S.) has used the contents of this discussion in an

undergraduate course on statistical mechanics during the past two years.
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Finally we h'ould like to stress the importancc of the papers h'C

Jmvediscussed as thc beginning oí Einstein' s research program on quantum
thCOTY. Ke agrce completely with Kuhnwhen he statcs that

What brou9ht Einstein to the blaek-body problem in 1904
and to Planek in 1906 was the eoherent development of a
research program begun in 1902, a program so nearly inde
pend;,nt of Planek' s that it would almost eertainly have-
led to the blaek-body law even if Planek had never lived. (53)

Einstein'~ mastery of statistical mechanics and fluctuation phenomena were
to be thc hasic too]s in this contribution to quantum theory.
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