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ABSTRACT

The foundations of equilibrium classical statistical mechanics
were laid down in 1902 independently by Gibbs and Einstein. The latter's
contribution, developed in three papers published between 1902 and 1904,

is usually forgotten and when not, rapidly dismissed as equivalent to
Gibb's. We review in detail Einstein's ideas on the foundations of
statistical mechanics and show that they constitute the beginning of a
research program that led Einstein to guantum theory. We also show how

these ideas may be used as a starting peint for an introductory course on

the subject.
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RESUMEN

Los fundamentos de la mecdnica estadistica de equilibric fueron
presentados en 1902 de manera independiente por Gibbs y Einstein. La con-
tribucidn de este Gltimo, desarrollada en tres trabajos publicados entre
1902 y 1904, es generalmente olvidada y cuando no, se le menciona de paso
como una formulacidén equivalente a la de Gibbs. En este trabajo revisamos
en cetalle las ideas de Einstein respecto a los fundamentos de la mecanica
estadistica y mostramos que constituyen la base de un programa de investiga
cidn que mis tarde llevd a Einstein a la teorfa cufintica. Mostramos tam-
bién como las ideas de Einstein pueden ser usadas en un curso introducto-
rio sobre el tema.

1. INTRODUCTION

In 1902, a few days after being appointed to the Patent Office
in Bern, Einstein submitted for publication his third scientific paper
under the tittle of "Kinetic Theory of Equilibrium and the Two Principles
of Thermodyn&mics"{l). In this paper he laid down the foundations of
statistical mechanics independently of Gibb's work published the same
year{z). As regards the subsequent development of the subject, Einstein's
contribution has passed unnoticed and has only recently received some
attention(3’4’5’6). It is the object of this study to try to explain
Einstein's ideas on the foundations of statistical mechanics, since they
form the basis of a research program that led to the study of Brownian
motion and of black-body radiation(7’8), and also because they could be
used as an alternative introduction to the subject.

In his next paper published the following year, "A Theory of the
Foundations of Thermodynamics”(g), Einstein elaborated on the same theory
in a more general manner discussing explicitly how the concept of
probability is used. In the following section we will present Einstein's
theory following mainly this paper. This is done in a way that might be
useful when discussing the foundations of classical statistical mechanics
in a course on the subject.

Section 3 is dedicated to Einstein's 1904 paper '"Towards a

(10)

Universal Molecular Theory of Heat"' ™, where energy fluctuations are discus

sed in particular for black-body radiation. Finally, we shall briefly
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comment in section 4 on the importance of Einstein's contribution to the
foundations of statistical mechanics.

2. EINSTEIN'S STATISTICAL MECHANICS

2.1) In the introduction to his 1902 paper Einstein stated that:

the mechanics has not achieved the goal of establishing a
sufficient basis for a general theory of heat. This is
due to the fact that the theorem of heat equilibrium and
the second fundamental theorem are not deduced using
exclusively the mechanical equations and the probability
theory although Maxwell's as well as Boltzmann's

theories have come close to this goal. Hence, it is the
purpose of this paper to fill this gap. (11)

In the discussion that followed Einstein developed a theory,
now called statistical mechanics, which extracted the thermodynamical
behavior of general systems governed by mechanical equations of motion.
Before discussing the concept of temperature, he remarked that the theory
might be redeveloped in a more general way(lz). This reformulation was
presented the following year. Although both papers are similar in content,
we shall restrict our attention to the second one, since it is a more
nature presentation and deals in detail on the need of a non-mechanical
hypothesis in order to be able to speak of probabilities and establish the
theory.

In a letter to his friend Michele Besso dated January 1903
Einstein wrote enthusiastically about this second paper on the foundations
of statistical mechanics:

At last on Monday I sent away my paper after many modifi-

cations and corrections. Now it is completely clear and

simple and I am fully satisfied. The concepts of temper-

ature and entropy follow from the principle of energy

conservation and the atomistic theory. By employing the

hypothesis that the state distributions of isolated sys-

tems never pass into those which are less probable, there

follows the second law of thermodynamics in its more

general form, namely the impossibility of a peapetuum
mobile of the second kind. (13)

The paper is divided into nine sections beginning with a general
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mechanical description of isolated systems, and then passes on to the
discussion of an ergodic hypothesis and how observable quantities may be
calculated as averages over a large ensemble of similar isolated systems
once their distribution is known. The discussion of the distribution of a
large ensemble of systems in thermal contact with a heat bath and of the
concepts of temperature and entropy form the next part of the paper, while
the last sections are devoted to a proof of the second law of thermodyna-

mics.

7.7) Consider an isolated physical system described by a great
number, say n, of scalar quantities pi, ... , Pn called state variables.
Einstein did not say what these state variables represent, but since the
system is isolated "it become evident that the state of the system at a

given instant will uniquely determine the transformation of the system"[l4).
That is, the state variables must satisfy equations of the form
dp; ’
S ‘pi(pl 3 s 3 Pn) ’ (i = Ay waus g Y (1)
dt

Finstein also assumed that the total emergy E is the only constant of the

motion,
E=E({y, .-+ » Py) = CONSt. (2)

In the 1902 paper the state variables represented the positions
and momenta of a great number of particles. However, as we mentioned
before, he then remarked that the discussion could possible be extended to
systems defined in a still more general way. This more general formulation
is the one that appears in the above paragraph; the state variables are not
divided into positions and momenta (or velocities) and one does not need

to speak of atoms as the constituents of the physical system.

2.3 From a modern perspective, the greatest merit of Einstein's
paper belongs to the second section where probabilistic concepts and an
ergodic hypothesis are introduced. This section begins with a statement

that the theory applies only to equilibrium states:
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Experience shows us that an isolated system after a lapse

of time reaches a state in which no observable quantity

will suffer variations in time; we will then say that

this state is stationary. (15)

To understand what condition must be satisfied by the state
variables p,, «.. P in a stationary state it is neccesary to provide a
relationship between these and the observable quantities of the system.
Finstein assumed "that an observable quantity can always be determined by

the time average of a certain function of the state variables
1(16) P

Pys ++v 3 P That is, if f denotes an observable quantity, there must
exist a function of the state variables f such that
N T
o ems 51
E-umt [fo,@, ., b 0) d : (3)
T=00 o
where (pl(t]m R G pn(t)) is a solution of the equations of motion (1).

Einstein also assumed, that in order that all observable
quantities remain constant in time, the state variables "always take the

same values with the same frequency”(17}.

This phrase constitutes Einstein's
ergodic hypothesis. Its origins are to be found in Boltzmann in 1871 and
Maxwell in 1879. Boltzmann state that:

the great irregularity of the thermal motion and the variety of

extrinsic forces acting upon bodies make it probable that in

virtue of the motion we call heat the atoms of bodies take

on all positions and velocities compatible with the equation

of energy. (18)

Maxwell, in order to prove Boltzmann's theorem on the average distribution
of energy assumed that:

The system, if left to itself in its actual state of

motion, will, sooner of later, pass through every phase

which is consistent with the equation of energy. (19)

Boltzmann's and Maxwell's hypotheses are cquivalent, but not to
Einstein's. Indeed, the former imply the existence of only one trajectory
on the set of state variables consistent with the equation of energy(2),
while Einstein's hypothesis allows the existence of any number of independ-
ent trajectories. However, when Einstein used the ergodic hypothesis, he

did so more in the sense of Boltzmann and Maxwell as we shall see below.
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Let us consider an isolated physical system described by
equations (1) with a total energy E which is in a staticnary state. Assume
that the values of the state variables p;, ... p, are known at any instant
of a time interval of length T and let I' be an arbitrary region of the space
of state variables while 1 is the total time the state variables take values
inside TI'. Einstein's ergodic hypothesis now states that "the quantity 7T/T
for T = « has, for any region I' a well defined limit"(zo).

In order to be able to speak of probabilities Einstein considered:

a great number (N) of independent physical systems all of them

described by the system of equations (1). We choose an

arbitrary instant t and ask for the distribution of the pos-

sible states of these N systems provided that the total
energy E takes a value between E* and E* + SE*. (21)

Due to the ergodic hypothesis Einstein then concluded that

the probability that the state variables of a system chosen
at random from the N at time t take values in the region
I, assumes the values

lim % = const. (4)
T=co

The number of systems [dN] such that their state variables
belong to the region I' is therefore

N lim T (22) (5)
T=m

Einstein did not go into the details of the relation between Egqs. (4} and
(5). However, we will presently give an argument to show that probabilities
may be calculated through averages over a large collection of systems.

We have quoted at length from Einstein's paper, since as mentioned
earlier, one of its greatest merits lies in establishing the ergodic
hypothesis as a central postulate of statistical mechanics. In 1912 Paul
and Tatiana Ehrenfest suggested that the ergodic hypothesis be replaced by
their quasi-ergodic hypothesis which states that any trajectory approaches
arbitrarily closely any point consistent with the eqution of energy

Einstein knew of Boltzmann's work through his lectures on Gas
Theory(24). There the ergodic hypothesis as quoted above is not mentioned,
but when dealing with the proof of Liouville's theorem, Boltzmann referred
to both his work and Maxwell which we quoted. On the other hand, Boltzmann



701

considered "an enormously large number of mechanical systems, all of which
have the same properties”(zs), and how they may be distributed over the
space of state variables. He concluded that the '"simplest case of a
stationary state distribution“(z6J is one that is constant over the set of
states consistent with the equation (2) of conservation of energy and call
ed such a distribution an ergodic one*. He then discussed the equality of
time averages as those defined by equation (3) and averages taken over the
ensemble of systems distributed ergodically which is the content of
equations (4) and (5).

To see this, let P(I';t) denote the probability that the values of
the state variables of a system chose at random from the N be found in the

region I' at time t. Then

dN(t)
) (6)

P(r5t) =

where dN(t) is the number of systems of the ensemble that satisfy the con
dition just stated. Now let fr be the characteristic function of the

% ~

region ' and fT its time average as defined by Eq. (3). Since this time
average does not depend on the initial conditions

fro=limz . (M
T=c

=

Define the average of the function fF over the collection of systems at
time t, T} by

- ¥ (i) (i)
fr(t} = Z ﬁflﬂ(Pl (t)’ Ll ] Pn (t))
i=1
= _dlrgﬁ ; (8)
4 @ i ‘ < . . (27) . :
Such a distribution was termed "microcanonical" by Gibbs , which is

the name now commonly used, while Einstein did not assign to it any name
in particular. According to Brush(ze), the name "ergodic" became associ
ated with the hypothesis we have been discussing by Paul and Tatiana
Ehrenfest (23),

*‘The function fF takes the value 1 for points inside T and zero otherwise.
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where (pfi)(t) P péi)(t)) denotes the values of the state variables
of the i-th system at time t.

From Einstein's ergodic hypothesis, it follows that the state var
iables of all the members of the ecnsemble spend the same fraction of time
in the region r, so that

=k

|

Also, since all the members of the ensemble are in a steady state'

=T

Hl >

It is plausible to assume that it is immaterial whether time averaging or

state space averaging is performed first, so it is now clear that
F-f
which, on bchalf of Egs. (6), (7) and (8) may be written as

p(r) = -d—J?i

(9)

To be able to calculate probabilities Einstein proposed that for
any small region g in the space of state variables such that the first
state variable lies between p, and p, + dp, , ... , the n-th between p,
and p, + dp,, the number of systems of the ensemble that at time t lie
within g dNt is given by

dM'[-_ =efP1 3 s pn) dp1 3 s 3 dpn »

where € is an unknown function. Using Eqs. (1) and an argument similar to

that used in the proof of Liouville's Theorem(zg), the number of systems

of the ensemble which at time t + dt lie within the same region g is
% a(ev,)

v=1 3p,

dN, = dNt =

t+d

dpy ... dpdt . (10)
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Since the distribution of systems in the state space is stationary,
dN, = dN, , 4. Hence, Eq. (10) may be solved and Einstein found that

n 9y
€ = exp {-J j —2 dt + w(E)} ) (11)
v=1 apv

where the function y is a constant of integration. It now follows that

for any region g
dN = const. e-m{ dp; ... dpp "
2

where m stands for the integral that appears in the argument of the expo-
nential of Eq. (11). Introducing new state variables m, , ... , m, that
absorb the factor e-m, Einstein arrived at the important formula

dN = const. J dmy «ue dmy 12)

If the state variables are the positions and momenta of the con-
stituents of the system and the equations of motion (1) are Hamilton's
equations of motion, the sum

n 3
Z _22 dt

v=1 pr

that appears in Eq. (11) is zero, provided that the potential energy de-
pends only on the positions. The same is true if the state variables are
positions and velocities and Eqs. (1) are obtained from Lagrange's or
Newton's equations of motion. Hence, it is not clear why Einstein chose
such an abstract formulation and what kind of equations of motion he had

in mind.

2.4) Einstein now turned to the problem of finding the distribu-
tion that describes a small system in thermal contact with a much larger
one. He considered an ensemble of systems such that each system has an
energy E between E* and E* + 6E* and is formed two subsystems L and ¢ with
energies H and n, respectively, so that E = H + n, and with state variables
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| ’HA and  fis sew Tos respectively.
Let dN; denote the number of systems of the ensemble whose state
variable M}, ... , My Ty «ee my lie between 1, and M, + dmy, , ... , T

and Ty * d s respectively. According to Eq. (12)

dN, = CAlly s dﬂ}\ dm ... dﬂﬂ, .
where C = const.
Einstein assumed that v could be written as

¥=-2hE §

with h some yet unknown function. Then

-2h(H+ n)
dN;, = const. e d%...mudn..d%
Now let dN denote the number of systers of the ensemble that
satisfy the condition that the variables m,, ... , T lie within the
values mentioned before while no restriction is placed upon the variables

Mys wwar 500 If we define the quantity by

X

(13)

x(e) =Je’2h“ dn, ... dn, ,

where the integral extends to all the values of the state variables for
which H lies within E* and E* + §E*:

=-2h
dN; = const. x(E* - n) e - dmy ... dy : (14)
We way now write
x(B) = "% y(E) ; (15)

where by definition

w(E) =Jdnl wes G ,
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with the region of integration as in Eq. (13). Since n is small compared
with E*:

X(E* - n) = x(E*) - nX'(E*) , (16)

where X'(E*) is the partial derivative of y with respect to E valued at
E*. From Eq. (15)

X' (€ = e E[W' (B) - 2hu(E)] . (17)

At this point, Einstein argued that if y'(E*) = 0 then x(E* - n) will not
depend on the state of the small system. As can be seen easily from Eqg.
(17) this condition is fulfilled if

w' (E)
h = - (18)
zw(E)

which defines the function h. "The quantity h depends only on the state

of the system & which possesses an energy which is relatively infinite”(SO}.
The probability that the state variables of a small system in

contact with a much larger one lie between the values m; and

My, # iy gy e ,nzand L dnE is given, according to Egs. (14), (16)

and (18) by

dN, = const. e_Zhndnl i d"l : (19)
The distribution given by Eq. (19), now known as canonical, was
obtained an the assumption that y'(E*) = 0. This assumption is not neces-
sary as can be seen readily. Starting from Eq. (12) and integrating over
all the values of the state variables such that the energy of the system
lies between E* and E* + GE* we find that

w(E*) = const. e V(E) . (20)

On the other hand
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-
dN, = COl’lSt.er(H+n) dl; ... dnAJdTH e d“)\ ’

where the integration is carried over all the values of the state variables
of the system I for which its energy lies close to the value H. We may now

write

dN, = const. gt &%) wHdm, ... d“k 3
or, with the help of Eq. (20)

dN, = const. eWE*) e?JJ(H) dmy ... d“i .
Now,

Y(H) = W(E) - ny'(E*) ,

where y'(E*) is the partial derivative of y with respect to the energy
evaluated at E*. Hence,

dN, = const. Kol dmy ... dm, 5
where we have defined h by
h= -7y (E)

From Eq. (26) we find that

w' (E*)
v E = -
w(E*)
and that
w' (E*)
h = :

) 2w(E*)
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2.5) 1In the 1902 paper, Einstein discussed in detail the
guantity h, first showing that it is a positive quantity and arguing that
"the equality of the quantities h is then the necessary and sufficient
condition for the stationary coupling (thermal equilibrium) of the two sys
tems"(31). Following Boltzmann(sz) he went on to discuss the mechanical -
meaning of the quantity h by considering the subsystem g as a single mole-
cule and the sybsystem ¢ as the remaining molecules and found that the
mean kinetic energy of a single molecule e is given by

_ 3
€= — 3 (21)
4h
On the other hand, since "the kinetic theory of gases shows us that this
quantity is proportional to the pressure at constant volume"(33) and the
pressure proportional to the temperature, Einstein concluded that

1y, (22)
*
where k is a universal constant .

The discussion presented in the 1903 paper is somewhat briefer.
It starts by postulating relation (22) where T is the absolute temperature,
then shows that the equality of the quantity h for two systems establishes
thermal equilibrium between them and that Eq. (21) holds**. Again using
the results of kinetic theory Einstein argued that the mean kinetic ener-
gy is proportional to the absolute temperature and concluded that "the
quantity we have denoted by absolute temperature ... is nothing but the
temperatures of a system measured with the gas thernmmeter"(34).

Before continuing with our presentation we would like to remark
that there is a great methodological rigor in Einstein's discussion in that
he tries to deduce the thermodynamic behavior of a system from the movement
of its constituent parts. Through relations (18) and (22) the central
concept of temperature assumes a microscopic character.

*
This constant is one half of Boltzmann's constant.

**the factor 3 is missing, however, the mistake was corrected in the 1904
paper.
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Z.6) Now that the temperature is defined, it is necessary in order
to complete a theory of the principles of thermodynamics to find out what
the entropy or any other thermodynamic potential is from a microscopic
point of view, and then prove the second law. Einstein began by defining
interminably slow processes as ''those transformations of stationary states
which are so slow that the state distribution at an arbitrary instant is
infinitely close to the stationary state distribution"(35).

During an interminably slow process the system under study may
interact with other subsystems I*; this interaction is characterized by the
value of certain external parameters A;, A, ... . The equations of motion
(1) are still valid but the functions $V(v =1, ... , n) and the energy E
now depend also on the external parameters. The change in energy dE is
therefore given by

. B3E 9E
dE = 5 dy + ) D, dp,, . (23)

An adiabatic transformation is defined by Einstein by the condition that

Q>

Z—E._.lp = B p

P, v .

and an isopicnic transformation by the condition that the external param-
eters remain constant. In the latter case the change in energy dE is
defined as the heat loss and denote by dQ. That is

_v oFE
dQ = ] 55— dpy : (24)
v
For any interminably slow process we may write
dE=dQ+ J&E (25)
A g

The probability dW that the state variables of the system lie
between py and py + dp1, ... P, and p, * dp, respectively before the process
begins is given by

c=2hE
e

dw = dpy »uw Ps .
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where C is a constant defined through the normalization condition
Jec‘m dpy ... dp, = 1 . (26)

After an interminably slow process where h changes to h+dh, E to E+dE,

¢ changes to c+ dc according to the normalization condition

(c+de) - 2(h1—dh){E+—Z %%-dA]
o dp; ... dpp =1

From these two last equations it follows that

“dc - 2Edh - mz% dx) e~2E dp, ... dp_ =0
Einstein argued that the quantity in parenthesis in the integrand

of the last equation must be constant and therefore zero. With the help
of Egs. (22) and (25) he found that

dQ _ E _
T d [T ZkC] 3
thus showing that '"dQ/T is an exact differential of a quantity which we
would like to call the entropy S of the system"tse). Taking into account
Eq. (26) we may write
=B 7
§=q- Zkke y (27)
where
¥ 28
G 1ogJe i dpr ... dpy ¥ (akd

and the integration extends to all possible values of the state variables.
From a modern perspective one would write, instead of Egs.
(23)-(25),
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and

dE

n

dq = 2[%5] dr ,

where the barred quantities are averages using the state distribution
given by Eq. (19). In an interminably slow process where h changes to

h + dh, A; to Ay + dhy, X» to Az +dA, , ... , c changes by an amount dc,
which, with the help of Eq. (26) is found to be given by

do: = —L Fdr -2
2KT? 2kT

3E
Llgg) & -

From the last two equations

dQ = -2kdc - = Edr - 3 3
TZ

or

‘-’1§=dﬁ.- ch]

2.7) What now follows is a proof that the quantity defined as
the entropy indeed possesses the properties it should; that is, a proof of
the second law of thermodynamics. As we shall see, Einstein was not wholly
succesful, since he had to introduce an extra hypothesis taken from kinetic
theory, and hence defeated his purpose expressed in the introduction of the
1902 and 1903 papers of deriving the fundamental principles of thermodynamics
without recourse to kinetic theory.

Let us consider a great number (N) of identical isolated systems
all satisfying the equations of motion (1) and with energy between E* and
E* = §6E*. If the region of state space determined by the allowed values
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of the energy is subdivided into ¢ regioms g, , ... , & all of them with
the same extension and if W, , ... , Wi are the probabilities that the
state variables of a system chosen at random lie in g, , ... , 8g Trespec-
vely, then

- Wy B gn @ W, m
Wl—WZ “aw W [l

The probability W that of the N systems ¢, be found in the region
g1 5 ++ 2 € be found in the region 8, is given by

N
W= L N!
%] Byl ol ewm ER 4

and if ¢ is sufficiently large, by

log W = const. -[e logedp, ... dpn 5

the sum being replaced by an integral.

For a stationary distribution e is constant and the probability
W a maximm. However, if the distribution ¢ depends on the state variables
it can be shown that the expression log W does not possess an extremum.
Hence, Einstein assumed that

if we examine the N systems considered during an

arbitrary time interval we can be sure that the

state distribution (and therefore aiso W) vary

continuously in time and we must therefore assume

that state distributions which are less probable are

always followed by more probable ones. That is, W

always increases until the state distribution becomes

constant and W a maximum (37).

From this proposition Einstein argued that if ¢ and ¢' denote

the state distribution at a time t and a later time t' the inequality
-log ' 2 log ¢ (29)

holds.
The quantity log W is very similar to Boltzmann's H function and
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the assumption that follows is the content of Boltzmann's theoremisg).
Hence, as we mentioned before, Einstein's purpose of eliminating kinetic
theory in the derivation of the principles of thermodynamics was not wholly
successful. As Klein comments Einstein's assumption 'was far from adequate
as a basis for understanding the puzzle of irreversibility"(sg).

2.8) Before proving the second law of thermodynamics by proving
the impossibility of a perpetual motion machine of the second kind, Einstein
applied the results found above to a particular case. Let us consider an
infinite number of subsystems ¢,, 0,, ... that form an isolated system.

In principle these systems may only interact adiabatically. The state
distribution for the subsystem o, is given by

dW, = exp {c; - ZhE;} J dPl(l)--- dpntl) ’

9

where the index 1 refers to the subsystem o,. The state distribution for
the other subsystems are given by similar relations. The state distribution
for the complete system dW is therefore given by

dw = dwlde sae ™ exp{Z (C\) = Zh\)E\J)}Ldpl eve dpn y

where the sum extends to all the subsystems and the integral to an arbi-
trarily small region g.

Let us now assume that the subsystems interact arbitrarily being
the whole system isolated, until thermal equilibrium is attained. The
state distribution will now be given by

dW‘=dW{ dw; oo = exp { E(cv' - Zhv'Ev')}I dp; ... dp, .
g
Hence,

e = Nexp {Z(CV - Zhva)} "

-~ i " '
e! N exp {Z(cv Zhv Ev )} s
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and using equality (29)
1 f = 1 -
E(Zhu Ev c,') 2 E(ZhvEV cv)
Since the quantities inside the parentheses are, except for a constant,
the entropies, Einstein concluded that

! R SLH a2 B B, % s ; (30)

2.9) Finally, Einstein considered an isoclated system composed
by several subsystems: the heat reservoir W, the machine M and some other
subsystems I, I, ... which may interact with M adiabatically and have,
relatively infinite energy compared to that of the machine. All the
subsystems are in a stationary state.

The machine M follows an arbitrary cycle in a way that the state
distributions of the subsystems f,, I,, ... may vary by adiabatic interac-
tions and produces a certain amount of work while receiving a certain
quantity of heat Q from W. The change in entropy experienced by W is -Q/T,
while the entropy of M does not change since the process is cyclic. Since
the subsystems £,, L,, ... interacted adiabatically, they did not change

their entropy either. Hence.

and using inequality (30)
Q=0

"This relation expresses the impossibility of the existence of a perpetuum
mobile of the second kind"(40).
In section 4 we shall comment on how, from a modern point of view,

one may prove the second law of thermodynamics.
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3. THE SCALE OF ATOMIC MAGNITUDES

3.1) In March of 1904 Einstein sent for publication his third
paper on the foundations of statistical mechanics under the title '"On the
General Molecular Theory of Heat', where he presented some complementary

results(lo).

The paper starts with a simple derivation of an expression
for the entropy which we shall discuss presently and a derivation of the
second law of thermodynamics which we will not go into since it essential-
ly repeats the argument given in the 1903 paper. The last three sections
of the paper, dealing with the general meaning of the constantkand an ap-
plication of a fluctuation formula to black-body radiation form the most
interesting part of the paper and will occupy our attention in this sec-
tion. As remarked by Kelin(41), this is the first paper that shows the
unique qualities that characterize Einstein's mature science.

3.2) The derivation presented by Einstein of an expression for
the entropy holds for a system that can absorb energy only in the form of
heat. From the definition of entropy and equations (18) and (22) he
found that

dE w' (E)dE
S=|— =2k |——— = 2k log [«(E)] " (31)
T w(E)
omitting the constant of integration. For a general derivation he remit-
ted the author to the section of the 1903 paper we have discussed in sec-

tion 2.6.

3.3) The meaning of the constant k was made evident by Einstein
through the following argument. Consider a system described by the state
variables X;, Y1, Z1s -+ Xn» ¥n» Zn» &1s N1s T1s -++ 5 En » Nn» Cn Which
denote the rectangular coordinates and corresponding velocities of the
atoms that form the system. If the system is in thermal contact with a
system that acts as a heat bath at temperature To, its state distribution
is given, recalling Egqs. (19) and (22), by

E
dW = C exp {' TETD_} d.)(ld)’ld21... dﬁn dﬂn dﬁn » (32)
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where C is a constant.
The mean kinetic energy of the wv-th particle is then found to
be given by
I\; = SkTg .
On the other hand, using the ideal gas law

pv = RT r

8:31x 1077 erg/deg and from kinetic theory the relation

where R

NT. i

(O8]

pv =

where N = 6.4x 102? (Einstein quotes the value given by O.E. Meyer) is
Avogadro's number and T is the mean free energy of any molecule, it fol-
lows that

Using the values mentiocned for the constants N and R,
-
k =6.5x10 ! erg/deg.

3.4) By integrating cxpression (3Z) over all values of the state
variables such that the energy of the system is found to be between E and
E + dE, the probability dW that the energy of the system is found between
the mentioned limits is

_ B
aw = Ce *Ty(Ep) dE .

The average energy E of the system is then found to be given by
o E

E=| ce *"uE e :

0
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From this equation and the normalization condition for the probability

distribution one obtains

r(ﬁ - E)e 2XT(E) dE = 0
0

and taking the derivative of this expression with respect to T

r

0

E

dE . = T 2kT
2kT? + EE- E?| e w(E) dE = 0 .
aT ] )

Evaluating the integral

zn2%=E2-"ﬁ

toi|

The instantaneous value of the energy E differs from the average
value E by an amount which Einstein called the "energy vacillation' g
(now know as the energy fluctuation) in such a way that

with the help of the last two equations, Einstein found that the mean ener

gy fluctuation €2 is given by

dE

dT ) (33

€2 = 2KT?
As Einstein remarked this result is especially interesting be-
cause "'the absolute constant k thus determines the thermal stability of the
system ... and because it no longer contains any more quantities reminiscent
of the underlying hypotheses of the theory”(42).

3.5) In the final section of this paper Einstein looked for an
independent determination of the universal constantk from the determina-
tion of the energy fluctuations of a system using equation (33). However,
"in the present state of our knowledge ... this does not apply". Indeed,
for only one sort of physical system can we presume from experience that
an energy fluctuation occurs. That system is empty space filled with

thermal radiation'.
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Thermal radiation in equilibrium with the cavity which contains
it is a system where fluctuations are negligible unless the linear dimen
sions of the cavity are of the order of magnitude of the wavelength at -
which the radiation spectrum has its maximum XA . In this case, Einstein
argued, energy fluctuations are comparable to the energy itself; that is

€% = E*°
Taking into account Stefan-Boltzmann's law which states that

E = ovT* ,

where v is the volume of the cavity and ¢ = 7.06x 107° erg/cmadeg" is a
constant, it follows, with the help of equation (68) that

1
c| T

= 0.42 i (34)

& -

[l
[3%]
m—
=

where the value of k found before was used.

This last quantity, (v)l/s, must be the wavelength where the
energy spectrum has its maximum. On the other hand, this quantity \p was
known from experiments to be given by

_. 0.293
?\m—-—'ﬂTr'— .

Einstein concluded that

not only the type of dependence of the temperature but
also the order of magnitude of Am obtained by means of
the universal molecular theory can be correctly deter-
mined and I feel this agreement should not be ascribed
to chance, given the great generality of our
assumptions. (44)

By the time Einstein wrote this paper he had already read Planck's
papers on black-body radiation(45). Kuhn(46)
ing Eq. (34), Einstein had begun to seek a black-body law of his own,

suggests that after discover-
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but had quickly encountered a paradox, that was discussed in a paper
published the following year(47). This paper discusses Planck's radiation
law, but not Planck's theory; this was left to another paper published in
1906(8) where he proved that Planck's theory rested on a quantum hypothe-
sis.

Fluctuations had already been encountered by Boltzmann and Gibbs,
however, they argued that one could never expect to observe such behav-
i (48). Einstein, on the contrary, instead of applying the theory he had
developed to the realm of thermodynamics, went on to look for new extensions
in fluctuation phenomena. The following year he found another system where

fluctuations could be observed: small particles suspended in a liquidtﬁ).
4, FINAL COMMENTS

As we mentioned in the introduction, in 1902 J.W. Gibbs publish
ed his Principles in Statistical Mechanics where he laid down the founda-
tions of the subject. Gibbs had been thinking about the problem at least
since 1889 when he announced a "A short course on the a priori Deduction
of Thermodynamic Principles from the Theory of Probabilities" for the
academic year 1889-1890 at Yale University(qg).

What Gibbs attempted in his book was to construct a theory of
an ensemble of similar mechanical systems. As he stated in the preface,
for such an ensemble of systems he pursued 'statistical enquiries as a
branch of rational mechanics“(so). However, the relation of this collec-
tionto a single system (the one in the laboratory) was not stated explicit
ly. This was left to Tolman who developed Gibbs' ideas introducing the
concept of a representative ensemble of systems and arguing that the hypo
thesis of equal a priori probabilities was essential in order to construct
the theory(zg}. This hypothesis, Tolman added, can only be justified by
the agreement of the theoretical and experimental results. Gibbs'
methodological point of view is the analogy between the properties he finds
for the canonical ensemble and the properties of a thermodynamic system.

Einstein, as we saw in section 2 took a different point of view.
From the beginning he stated the purpose of deriving the laws of thermody-
namics from mechanical and probabilistic considerations. He assumed that
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any thermodynamic quantity could be calculated as the time average of a
suitable function (Eq. (3)), and hence, that the object of the theory was
to calculate these averages. Through an ergodic hypothesis these averages
could be calculated by averages over and ensemble of systems similar to
the one under study.

Einstein's approach can be profitably used as a starting point
for a discussion on the foundations of classical statistical mechanics in
an introductory course on the subject*. In order to do so, we have supple
mented Einstein's exposition wherever we thought it useful. An example is
the discussion of the ergodic hypothesis and the use of averages over the
ensemble of systems instead of time averages.

As we noted above, Einstein's proof of the second law was not
successful. Noting, from Egs. (20) and (31) that the quantity y is equal
to the entropy with a minus sign, one could try to prove the following
theorem:

(a) If the system can be considered as formed by two subsystems, each
one with well defined values of energy then

w=w1+¢2 ’

where the subindices 1,2, refer to each one of the subsystems.

(b) The quantity ¥ is continuous and differentiable and monotonically
decreasing as a function of the energy.

(¢c) In equilibrium, the values taken by theparameters that define the
quantity y (energy, volume, number of particles) are those that mini-
mize ¢ over the set of constrained states.

The content of this theorem is the second law of thermodynamics
as postulated by Callen(SIJ. A rigorous proof may be constructed from the

(52), while a proof

one found in Ruelle's book on statistical mechanics
more adequate for an introductory course may be constructed by assuming
that the energy E and the quantity ¢ are both proportional to the nmumber

of state variables.

*
one of us (R.R.S.) has used the contents of this discussion in an
undergraduate course on statistical mechanics during the past two years.
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Finally we would like to stress the importance of the papers we
have discussed as the beginning of Einstein's research program on quantum
theory. We agree completely with Kuhn when he states that

What brought Einstein to the black-body problem in 1904

and to Planck in 1906 was the coherent development of a

research program begun in 1902, a program so nearly inde

pendent of Planck’s that it would almost certainly have

led to the black-body law even if Planck had never lived. (53)
Einstein'c mastery of statistical mechanics and fluctuation phenomena were
to be the basic tools in this contribution to quantum theory.
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