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ABSTRACf

when confining oneself to the two-dimensional case it is possible
to give simple geometric interpretations to the properties of alternative
orthonorma1ization schemes. The symmetry, proximity and localization pro£
erties of the symrnetric orthonormalization, and the delocalization property
of the canonical scheme, among others. become thus evident at first sight.
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RESlMEN

Al restringirse al caso bidimensional es posible dar interpreta
ciones geométricas sencillas de los diferentes esquemas de ortonormaliza=
ción utilizados en física y química. Las propiedades de simetría, proximi
dad y localización de la ortonormalización simétrica, y la de delocaliza--
ción del esquema canónico, entre otras, resultan entonces evidentes a pr~
mera vista.

l. INfROOOCTlOO

Orthonormal bases are cuestomarily used when solving physical
and chemical problems, because then the mathcmatical formulation usually
beoomcs stmpler. There are nevertheless situations where the natural ba-
ses are nonorthonormal. That is for instance the case of the basis vectors
oí crystallography, or the atomic orbitals used in molecular and solid-
state calculations. This is so in the last case bccause different orbitals,
although orthogonal when bclonging to the same atom, have nonvanishing
overlap when centercd on different atOID6.

As textbooks en mathematics discuss selcly the Gram-Schmidt
procedure(l) ene may gct thc impressien that this is the enly kne.n erth£
normalization scheme. Thcre are in fact infinitely ~~ny such schemes, the
Gram-Schmidt one being probably the most ctunbersome oí a11.

While the propcrties oí a11 alternative orthononnalization schelOOs
are long since we11 known(2), the necessity oí working in a many-dimensional
vectorial space prec1udcs an easy visua1ization oí thc mathematical rcsu1ts.
1£ one starts by considering the two-dimensional case the orthonormalizat-
ion prob1em becames instead a simple gcometrical problem on the plane
which may be solved almost by inspection. It is thcn easy to obtain a
good grasp oí the many important diíferences betwcen the avai1able proce-
dures. As thc two-diJOOnsional case has an interest of its own (remember
molecular orbitals) and thc better understanding thus obtained is valuable
for the general many-dimensional case, a detailed discussion is well war-
ranted.



745

2. ORTIkJf'<JRMALIZATION ON THE PLANE

Let ~l and $2 be two real, nonorthogonal, linearly indeper~ent,
and normalized wavefunctions:

(1)

where S is the averlap. If wc take them to be vcctOTS on the plane \Io'e may

writc instead

(2)

gjk being an eIernent oí thc syrraretric metric matrix

Linear independence implies that tI and ~2 are not paTallel, that i5 (sec
Fig. 1)

- 1< 5 = ~1 • ~2 = COS y < 1
(4)

Det e = 1 - 52 t o

thus showing ~ to be nonsingular.
Our problem is finding a real transformatíon O such that thc new

vcctors

~~ = I O,). ~, (S)
-) f'-'

are orthononnal. That is

1 (6)
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Fig. l. Two unit vectors ~l and ~2 are linearly independent if the anqle
y between them i5 different from O, n. A vector ~2no~al to ~l
may then be obtained by the Gram-Schmidt procedure Eq. (8). The
deshed lioe L i5 a mirror lineo

where ot is the transpose oí O, and 1 the uní! matrix. The general solu-
tion of Eq. (6) is

u (7)

where U is an arbitrary orthogonal matrix. In the general case oí coltl'lex
vectors the hennitian adjoint should be taken instead of the transpose, and

!! should be uni tary.
The best knownortoononnalization method i5 the Gram.Sc:Junidt

process (1) where starting with a given vector ~l i5 a normal vector ~; is

obtained írom
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(8)

It is quite elear that the Gram-Schmidt process gives the leading role to
too initial vector thus destroying the synmetryproperties oí the primitive
seto AsstD1lefor instanee that ~l and ~2 are related by the mirror line ¿
of Fig. 1,

r . ~2 • ~l (9)

where r is the diadie perfonning the refleetion. It is illlllediatelyseen
that the reflection synmetry is not preserved far the new basis, this be-
ing a consequence oí the unequal weight given to each prirnitive vector in
the construction oí too respective new ane, as measured by the projection
~. ~'..-J -J An alternative procedurc is suggested at once where the new
orthogonal vectors are symmetrically rotated respect to the oId anes, as
shown in Fig. 2. It may be seen that the refleetion symmetry is now pre-
served fer the newvectors. As a rnatter oí faet a11 luütary relationships
between basis vectors are preserved in this orthonormalization process(3)
which corresponds to LBwdin's symmetric orthonormalization

(10)

We will nDW
of g (there

find g-l. It should first be notiees that any square root
are four oí them) mus! verify

g (11)

from which we obtain

p = cos a

2pq = eos y
(12)

q sin a
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Fig. 2. The symmetric orthonormalization process generates ne~ vectors
~i,~2which are symmetrically rotated respect to the original
enes, thus preserving orthogonalreLationships such as the mirror
line í.

sin 20 ::o cos y (13)

Because y f O. TI it is casily seen from Fig. 3 that Eq. (13) always has
fOUT different solutions in the interval (~n, n), as given by

a • i :t f + fin (14)

where the choice of the integer n depends on y. The inverse matrix e-l
maynowbe easily written



-j
~

-TI

[

cos afeos 2a

-sin a/cos 2a

p- -o- - --

..

1

o

sin afcos

cos o/cos

-1

2
a
]

2a
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(15)

cosY
sin 2cx

TI

Fig. 3. For any given value of Y in (O, TI) (y I O, TI) there are always
four different solutions to the equation sin 20 - cos y which
determines g-j.

The four different values of a correspond to the four different combina-
tions of signs of the eigem:alues of g-j which are obtained from the secular

equation

name1y

fcos Cl

leos 2a ]'[Sin a]'~ - __ -O
cos 2a

(16)

~. _ (cos a + sin a)/cos 2a •• 1/ I! sin (a' n/4). (17)
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cigcnvalues which are plotted in Fig. 4. Replacing (10) and (15) into
(S) one obtains

~I ces el ~ sin ex
!l ::::cos 20!1 - cos 20 ~2

(18)

,4.,1 -sina
!2 = cos Za ~l

cos a
cos Za ~2

TI
......

: I
: I
I

I
I

I
I
I
I
I

I
I :
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..

I
I
I
I
I

I
I
I
I
I
I
1-5

. .-TI

+ -1Eingenvalues ~- of 9 as a function of a. A comparison with
Fig. 3 shows the branch -n/4 ( a ( n/4 to be the only one which
makes 2-; positive definite.

The new vectors are easily verified to be orthonormalized and to correspond
to a rotation in a of the primitive vectors, as maybe seen from

~l • ~~ = ~2 • ~; ::::(cosa - sina cos y)/cos 20 = cos ex , (19)

where use has been made of Eq. (13). One may see from Fig. 4 that both
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eigenvalues are positive when

-n/4 S a S n/4, a = n/4 - y/2 (20)

this being the only branck in Hg. 3 which makes g-l pos1tlVe definite(4).
This solution is the one depicted in Fig. 2. and has the unique property
oí giving orthonormalized vectors which are the closest to the oId ones in
the sense that

6' = II~¡- ~lll' + 1I~2- ~,ll' (21)

is a InlIUl!JJlll.This property. which ho1ds for the general many-dilrvonsiona1
case (5). maybe easi1y proved here. To that end consider as in Fig. 5 an

arbitralj" pair oí orthononnal vectors J where

+,
TI
2

(22)

Fig. 5. Far a general orthonormalized pair ii. ~; the angles ~l and ~
w111 be different. The case 1s here illustrated where y > n'2
for which it 19 proved in the text that 62 Eq. (21) 1s a minimum
when al - a2

Therefore
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(6/Z) , sin'(o¡/Z) + sin'(o,/Z) Sin'(Ol/Z) + sin'[(y- 0,- n/Z)/Z]

(Z3)
1 1

= 1 - 7 cas 0, - 7 cos (y - 0, - n/Z)

which is easily verifíed to be a minllnuffi if

01 = -n/4 + y/Z = 10,1 (Z4)

A similar proof ho1ds if y> n/Z. The other three solutiMS for a yie1d
orthonormalized vectors which do not have the prox~ty property and are
re1ated to $; and $; Eq. (ZO) by

4>111
.1

$'.' 41111.' (Z5)

In Fig. 6 we p10t too va1ues of the coeficients in Eq. (18) c0E.
responding to the positive-definite branch Eq. (ZO). They are seen to blow-
up in too 1inear1y-dependent case S = cOSy= ,1. The reason for this
behaviour maybe understood in too following fashion. Let us first define

from which it follows that

~; • ~+/jZ cos(y/2) + ~-/;rsin(y/2)

~; = $+/1.[ cos(y/2) - ~-/¡7sin(y/Z)

(Z6)

(Z7)

thus showing that the symmetrically orthonormalized vectors may be obtain-
+ -

ed as a linear combinatían of the already normal vectors ~ J ~ as sho""n
+

in Fig. 7. When$, approacOOs-$, (that is cos y = S approaches -1) $.' .



753

becomes smal1er thl1S requiring a larger coefficient in arder to make
~jturn further away froro~j. In the lirnjt ~2 = -~l an infinitely large
coefficient would be rcquired. A similar analysis holds far the lindt in
which ~2 becomes parallel to ~l. From a mathcmatical point of vi c\!"thc
divergence appears because ane of the eigcnvalues of g vanishes thus
making ane oí the cigenvalues oí g-! to diverge. -

5

o 1

cos ~./ cos 201..

sin eL/ cos 20'.

1
..

. . . . s

1
Fig. 6. Coefficients oi the symmetrically orthonorroalized vectors Eq. (18)

as functions of the overlap S = cos y. The coefficients diverge
fer the linearly dependent case 5 = 1.

+ -As ~ and ~ are a1\o.:3Y5 orthogonal,

particular transfonnation Othey correspondo- ,
consider the matrix ~ ~hich diagonalizcs ~-1.

that

one may wonder to which
To that end"c wil1 first
It may be easily verified

-1
¥ s (28)
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Fig. 7. Forminq dO appropriate linear combination of ~+ and $ in arder
to obtajn a symmetrically orthonormalized pai; $i, ~l,requires.+. --giving more and more weight tO! aS!2 becomes antiparallel to
~l.

where

(29)

and " are given by (17). 1t 5hou1d be noticcd that -5 i5 a150 an adrni5-
sible solution, but we need not consider it separately. Choosing
U 5inEq. (7),

o -j 5g • (30)
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from (S) we obtain

(31)

which correspond to Lowdin's canonical orthononmalization(2). Its out-
standing peculiarity is that it gives equal ~eight to both primitive
vectors in the construction oí the new anes, that is

~' I_1 ~' I_1
(32)

~' I-' ~'I=IA-"zl-'
Due to its consequence far the localization this property should be com-
pared with the one

(33)

corresponding to thc symmctric orthonormalization.
~hcn $1 and ~2 are atomic orbitals ccntcred on difíerent sites

the property Eq. (33) imp1ies that the symmetric orthono~,1ization is the
one which incorporates into each ne~ orbital ~~ the maxirnum amount oí $.. ) )

that is compatible with the prcservation oí the point symmetrics, the lat-
ter being a feature oí great importance in molecular and crystalline calc~
lations. One tlnJs obtains thc IOClstlocalized synvrctry-prescnring orthono!.
mal basis. On the othcr hand, the canonical orthonormalization, by giv-
ing equal weight to both primitive vectors in the construction oí the new

ones, is the mest delocalized of all possible orthononmal basis. These
fcatures are illustrated in Figs. 8 and 9 for two hydrogen orbitals
ccntered 1ao apart, ",here ao is the Bohr radius and S = 0.586453. For the
sake of completeness we give in Fig. 10 the overlap S, and the angles y
and a corrcsponding to diffcrent separations R of thc aforementioned
orbitals, where S has been calculated using the standard formulas (6) •
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Fig. 8. Con tour s of the symmetrically orthonormalized orbitals correspond
ing to two hydrogen ls orbitals whose nuclei (black dots) a,e -
2ao aparto The amplitude values are given in units of ao-3 2.
The localization i5 the largest ene compatible with the preservat
ion of the reflection symmetry. -

.1lJ
.1. '" -.1~@)

Fig. 9. Canonical orthono~alization oi two hydrogen 15 orbitals 2ao aparto
Al1 contours are equally spaced except the inner ones of the smal1
lobes whose amplitudes are 0.1. Orbitals are as delocalized as
i5 possible.
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Fig. 10. OVerlap S = cos y, and angles y and a = n/4 - y/2 (symmetric
orthonormalization) far two hydrogen 15 orbitals as a function
of the distance R between centers. R i5 given in Angstroms and
the angles in radians.

3. CONCLUSIONS

When restricting oneself to the plane, it becomcs easy to give
simple geornetric interpretations oí the propertics oí the Gram-Schmidt,
syn¡nctric and canonical orthononnalizations. Taking the primitive nonor-
thogonal vectors to be oí tDli t length, the quantum-rechanical overlap S is
then nothing but the casine oí the angle between vectors.

It is thus shown that too only method which preserves orthogonal
relationships between vectors (as illustrated by a mirrar line) is the s~
metric one. This solution is a150 the ane that minimizes the IIdistancell
between the oId and the new vectors, as given by Eq. (21). It is also
clearly seen why sornecoefficients in the expansion oí the latter in terms
of the former blow up when approaching too 1imits S = ,lo lbis puts into
sharper light the numerical problem oí orthogonalizing quasi-linearly-
depcndent vectors.

The canonical orthonormalization turns out to be the ane such
that each new vector cantains equal amounts of the oId ones, as measured by
the projection of the latter c.ntothe fonner. This corresponds to the
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maximum delocalization property of canonically orthonormalized orbitals,
as opposed to the maximum localization of too s)'111Iletrica11y orthonormali!
ed anes.

These easily grasped geometrical properties may be generalized
to the n-di..nensional case J thus providing a better tmderstanding of the
formerly abstraet orthonormalization problem.
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