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In this paper, the numerical solutions of the Maung-Norbury-Kahana equation which has the complicated form of the eigenvalues are pre-
sented. Taken as examples, the bound statese+e−, µ+µ− andµ+e− are discussed by employing the Maung-Norbury-Kahana equation with
the Coulomb potential.
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1. Introduction

The Bethe-Salpeter equation [1] is based on the relativistic
field theory and is an appropriate tool to deal with bound
states. In comparison with the four-dimensional Bethe-
Salpeter equation [2–5], the three-dimensional reductions of
it are relatively easy to be handled [1, 6–11]. In Ref. [12],
it was shown that there exist infinite versions of the re-
duced Bethe-Salpeter equation. One of them is the Maung-
Norbury-Kahana (MNK) equation [8].

The MNK equation is covariant, obeys the unitarity rela-
tion and possesses a one-body limit. It is a proportionally off-
mass-shell equation and is a relativistic, three-dimensional
equation for bound states with two constituents. Moreover,
the MNK equation gives a physically meaningful prescription
of how the constituents go off-mass-shell in the intermediate
states. The MNK equation allows the components of bound
states to go off-mass-shell proportionally to their masses. In
this paper, the MNK equation is solved numerically and is
applied to discuss the equal-mass systems (positronium and
true muonium) and the unequal-mass system (muonium).

The paper is organized as follows. In Sec. 2, the MNK
equation is reviewed and the spinless MNK equation is de-
rived. In Sec. 3, the spinless MNK equation is solved numer-
ically and the discussions are presented. The conclusion is in
Sec. 4.

2. Maung-Norbury-Kahana equation

In this section, the MNK equation is reviewed and the
spinless MNK equation is derived. To discuss the bound
states,e+e−, µ+µ− andµ+e−, the MNK equation with the
Coulomb potential is needed. The logarithmic singularity in
the momentum-space Coulomb potential is removed by the
Land́e subtraction method.

2.1. Reduction of the Bethe-Salpeter equation

The Bethe-Salpeter equation in momentum space reads [1,6]

χP (p) = SF
1 (p1)

∫
d4p′

(2π)4

×K(P, p, p′)χP (p′)SF
2 (−p2), (1)

where

p = η2p1 − η1p2, P = p1 + p2. (2)

In order to have a correct one-body limit in three-dimensional
reduced equations, the Wrightmann-Gordon choice [13] of
η1 andη2 should be applied,

η1 =
s + m2

1 −m2
2

2s
, η2 =

s−m2
1 + m2

2

2s
, (3)

wheres = P 2. In Eq. (1),SF
i (pi) are the full fermion prop-

agators. We will approximate the full propagatorsSF
i (pi) by

free propagators [5]

Si(pi) =
i

6pi −mi + iε
, (4)

wherem1 andm2 are interpreted as effective masses for the
fermion and antifermion.

We introduce components of the relative momentump =
p‖ + p⊥ parallel and perpendicular to the bound-state mo-
mentumP by [11,14–16]

P̂ =
P

M
, M =

√
P 2, pl = p · P̂ , p = p‖ + p⊥,

p‖ = plP̂ , p⊥ = p− plP̂ , d4p = dpld
3p⊥, (5)

wherep‖ is the longitudinal part andp⊥ is the transverse
part. In the rest frame of the bound state with momentum
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P = (M,0), pl = p0, p‖ = (p0,0) andp⊥ = (0,p). The
projection operators can be written in covariant form

Λ±i (p⊥) =
ωi ±Hi(p⊥)

2ωi
, Hi(p⊥) = 6 P̂ (mi− 6p⊥),

ωi =
√

m2
i + $2, $ =

√
−p2

⊥ (6)

with the properties

Λ∓i (p⊥)Λ±i (p⊥) = 0, Λ+
i (p⊥) + Λ−i (p⊥) = 1,

Λ±i (p⊥)Λ±i (p⊥) = Λ±i (p⊥),

Hi(p⊥)Λ±i (p⊥) = ±ωiΛ±i (p⊥). (7)

In this paper the covariant instantaneous approximation
is employed [14], in which the approximated kernel is inde-
pendent of the change of the longitudinal component of the
relative momentum,

K(P, p, p′) → K(p⊥, p′⊥) = iV (p⊥, p′⊥). (8)

It is a good approximation for a system composed of heavy
and light constituents or of two heavy constituents which can
move relativistically as a whole. It will reduce to the instan-
taneous approximation in the rest frame of the bound state.

Introduce the notation for later convenience

ψP (p⊥) =
∫

dpl

2π
χP (p),

Γ(p⊥) =
∫

d3p′⊥
(2π)3

V (p⊥, p′⊥)ψP (p′⊥), (9)

whereψP (p⊥) is the Salpeter wave function. Using Eqs. (4),
(6), (8) and (9), the Bethe-Salpeter equation (1) becomes

χ(p) = G0(P, p)iΓ(p⊥), (10)

where

G0(P, p) = g0(P, p)
[
Λ+

1 (p⊥)(p10 + ω1)

+Λ−1 (p⊥)(p10 − ω1)
] 6 P̂⊗ 6 P̂

× [
Λ+

2 (−p⊥)(p20 − ω2)

+Λ−2 (−p⊥)(p20 + ω2)
]

(11)

and

g0(P, p) =
1

p2
1 −m2

1 + iε

1
p2
2 −m2

2 + iε
. (12)

In Refs. [7] and [8],g0(P, p) is given as

g0(P, p) ⇒ −2πi
δ+ [f(ι)]

p2
1 −m2

1 + p2
2 −m2

2 + iε
, (13)

wheref(ι) is defined as

f(ι) = (p2
1 −m2

1)
1 + ι

2
− (p2

2 −m2
2)

1− ι

2
. (14)

In the above equation,ι is the parameter describing the rela-
tive virtuality of two components in bound state. Whenι = 1,
the constituent 1 is on-shell and constituent 2 are off-shell ar-
bitrarily; vice versa, whenι = −1, the constituent 2 is on-
shell with another constituent’s virtuality arbitrary. For the
MNK equation,

ι =
m1 −m2

m1 + m2
. (15)

Eq. (13) can be simplified as

g0(P, p) = −2πi
δ
(
pl − p+

l

)
/W

p2
1 −m2

1 + p2
2 −m2

2

, (16)

where

W =
√

(1− ι2)M2 + 2ι [(1 + ι)ω2
1 − (1− ι)ω2

2 ] (17)

and

p+
l =

{
[− (1 + ιη1 − ιη2)M + W ] /(2ι),

[− (1 + ιη1 − ιη2)M −W ] /(2ι).
(18)

If constituent 1 takes positive energy as0≤ι≤1 and con-
stituent 2 takes positive energy as−1≤ι < 0, p+

l should be

p+
l =

W − (1 + ιη1 − ιη2) M

2ι
, −1≤ι≤1. (19)

After integrating overpl, we have from Eq. (16)

g̃0(P, p⊥)=
−i/W[

(η1M+p+
l )2−ω2

1+(η2M−p+
l )2−ω2

2

] , (20)

From Eqs. (11), (16) and (20), we have

G̃0(P, p⊥) = g̃0(P, p⊥)
[
Λ+

1 (p⊥)(η1M + p+
l + ω1)

+Λ−1 (p⊥)(η1M + p+
l − ω1)

] 6 P̂⊗ 6 P̂
× [

Λ+
2 (−p⊥)(η2M − p+

l − ω2)

+Λ−2 (−p⊥)(η2M − p+
l + ω2)

]
(21)

Using Eqs. (9), (19) and (21), Eq. (10) reduces to the MNK
equation

ψP (p⊥) = G̃0(P, p⊥)
∫

d3p′⊥
(2π)3

iV (p⊥, p′⊥)ψP (p′⊥). (22)

The MNK equation has been understood physically mean-
ingful: when masses of constituents are not equal but com-
parable, this kind of choice ofι [Eq. (15)] promises that the
heavier particle is less virtual while the lighter massive parti-
cles is further off-mass-shell. For the bound states composed
of equally massive constituents, the constituents will be put
equally off-mass-shell.

Assuming

η1M + p+
l + ω1Àη1M + p+

l − ω1,

η2M − p+
l + ω2Àη2M − p+

l − ω2, (23)
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we have from Eq. (22)

W
[
(η1M + p+

l )2 − ω2
1 + (η2M − p+

l )2 − ω2
2

]

(η1M + p+
l + ω1)(η2M − p+

l + ω2)
ψP (p⊥)

= Λ+
1 (p⊥) 6 P̂

∫
d3p′⊥
(2π)3

V (p⊥, p′⊥)

× ψP (p′⊥) 6 P̂Λ−2 (−p⊥). (24)

Neglecting any reference to the spin degrees of freedom of
the involved bound-state constituents, we have the spinless
MNK equation from Eq. (24)

W
[
(η1M + p+

l )2 − ω2
1 + (η2M − p+

l )2 − ω2
2

]

(η1M + p+
l + ω1)(η2M − p+

l + ω2)
ψP (p⊥)

=
∫

d3p′⊥
(2π)3

V (p⊥, p′⊥)ψP (p′⊥), (25)

whereι is in Eq. (15). Eq. (25) describes the semirelativis-
tic bound states composed to two spinless constituents which
are virtual according to Eqs. (14) and (15). Following the
approaches in Refs. [6] and [24], the spin-independent terms
and spin-dependent terms can be obtained from Eq. (24).

2.2. Landé subtraction method

In this paper, the Coulomb potential is considered. The
Coulomb potential reads in the momentum space

V (p,p′) = − 4πα

(p− p′)2
, (26)

whereα is the fine structure constant. The partial wave ex-
pansion of the spinless MNK equation (25) is expressed as

f(Mnl, p)φnl(p) =
1

(2π)3

∞∫

0

V l(p, p′)φnl(p′)p′2dp′, (27)

wheren is the principal quantum number,l is the orbital an-
gular quantum number.f(M, p) reads

f(M, p) =

W
[
(η1M + p+

l )2 − ω2
1 + (η2M − p+

l )2 − ω2
2

]

(η1M + p+
l + ω1)(η2M − p+

l + ω2)
. (28)

V l(p, p′) is the partial wave expanded Coulomb potential,

V l(p, p′) = −8π2α
Ql(z)
pp′

, z ≡ p2 + p′2

2p′p
, (29)

whereQl(z) is the Legendre polynomial of the second kind,

Ql(z) = Pl(z)Q0(z)− wl−1(z), Q0(z) =
1
2

ln
z + 1
z − 1

,

wl−1(z) =
l∑

m=1

1
m

Pl−m(z)Pm−1(z). (30)

The Coulomb potential has the logarithmic singularity at
pointp′ = p, and the singularity comes fromQ0(z).

Applying the Land́e subtraction method [17–21] to can-
cel out the singularity, the singular equation (27) becomes

f(Mnl, p)φnl(p) = −αp

π

π2

2
Pl(1)φnl(p)− α

πp

∞∫

0

Pl(z)

× Q0(z)
p′

[
p′2φnl(p′)− Pl(z′)

Pl(z)
p2φnl(p)

]
dp′

+
α

πp

∞∫

0

wl−1(z)φnl(p′)p′dp′, (31)

wherez′ = 1, Pl(1) = 1. In the above calculation, we have
used the identity

∞∫

0

1
p′

Q0(z) dp′ =
π2

2
. (32)

3. Numerical results and discussions

In this section, the spinless MNK equation with the Coulomb
potential is solved numerically by employing the Gauss-
Legendre quadrature rule. The positronium, muonium and
true muonium are discussed.

3.1. Eigenvalue integral equation

The eigenvalue integral equation (31) can be written formally
as

g(M, p)ψ(p) =

∞∫

0

K(p, p′)ψ(p′)dp′. (33)

Due to the complicated form ofg(M,p), Eq. (33) cannot be
solved directly. Rewrite the above equation as [22]

εψ(p) = −g(M̃, p)ψ(p) +

∞∫

0

K(p, p′)ψ(p′)dp′, (34)

whereM̃ is a trial value. IfM̃ = M , ε will be equal to
zero. The eigenvalue equation (34) can be solved by standard
method.

3.2. Gauss-Legendre quadrature rule

Rewrite the subtracted integral equation (31) in the form of
Eq. (34), then apply the Gauss-Legendre quadrature rule to
the regular integral [21]. Finally, a matrix equation can be
obtained from Eq. (31) by employing the Nyström method
and it can be solved easily.

At first, we map the semi-infinite interval[0,∞) onto
some standard finite interval[a, b] which we take to be

Rev. Mex. Fis.64 (2018) 8–12
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[−1, 1). In this paper, we may take the rational transforma-
tion,

p = ξ
1 + s

1− s
, p′ = ξ

1 + t

1− t
, (35)

whereξ is a numerical parameter providing additional control
of the rate of convergence. Then we have

dp′ =
2ξ

(1− t)2
dt. (36)

The Gauss-Legendre quadrature formula for regular inte-
gral reads

1∫

−1

f(x)dx ≈
N∑

i=0

wif(xi), (37)

where

wi =
2

(1− x2
i )

[
P ′N+1(xi)

]2 . (38)

In Eq. (38), prime stands for the derivative.

3.3. Numerical results and discussions

By employing the methods discussed above, the spinless
MNK equation [Eq. (25)] with the Coulomb potential
is solved numerically and the numerical results are listed
in Tables I, II and III. The input parameters areN =
180, ξ = miα wheremi is the mass of the lighter con-
stituent. For comparison of the eigenvalues obtained in
this paper with the eigenvalues obtained in Ref. 17, the
electron massme = 0.51099906 MeV/c2, the muon mass
mµ = 105.658389 MeV/c2 and fine structure constantα =
1/137.0359895 are used [23].

In the spinless MNK equation (25), the virtuality param-
eter ι is expressed in Eq. (15). As−1 < ι < 1, con-
stituents are virtual. Asι = ±1, regardless whether the
constituents are light or heavy, the spinless MNK equation
(25) reduces to the spinless Salpeter equation [17] in which
both of constituents are on their mass shell. The spinless
Salpeter equation is a well-defined standard approximation
to the Bethe-Salpeter equation and a relativistic extension of
the nonrelativistic Schrödinger equation. By comparing the
binding energies of the Schrödinger equation and that of the
spinless Salpeter equation, we can obtain the relativistic ef-
fects because the constituents are also put on-mass-shell in
the Schr̈odinger equation as in the spinless Salpeter equation.
From Tables I, II and III, we can see that the relativistic cor-
rections are the differences in energies which occur after a
few decimal places.

The spinless MNK equation includes not only the rela-
tivistic effects but also the virtuality effects. By comparing
the eigenvalues of the spinless MNK equation and that of
the spinless Salpeter equation, we can obtain the virtuality
effects. The eigenvalues of the spinless MNK equation are

smaller than that of the spinless Salpeter equation and the
Schr̈odinger equation, see Tables I, II and III. It means that
the virtuality effect of constituents results in stronger binding.
For the positronium, the virtuality effect is about of the same
order as the relativistic effects. For the muonium, the virtual-
ity effect is smaller than the relativistic effect. The data show
that the virtuality effect varies with the virtuality parameter
ι. For more general cases, the relation between the virtuality
effect andι will become complex [22].

The spinless MNK equation (25) describes the bound
states composed of the spinless virtual constituents. By em-
ploying the approaches applied in Refs. [6] and [24], the
spin-independent terms and spin-dependent terms can be ob-
tained from Eq. (24). Then spin effects can be included ac-
cording to the discussed problems.

TABLE I. Binding energiesεnl = Mnl −m1 −m2 (in eV) for a
spinless electron-positron bound state (positronium) calculated by
solving the spinless MNK equation [Eq. (31)], which are compared
with the eigenvalues of the spinless Salpeter equation (SSE) and the
Schr̈odinger equation (SCH).n is the principal quantum number,l
is the orbital angular quantum number. A negative sign before the
energy has been omitted everywhere.

nl MNK SSE [17] SCH

10 6.803 149 6 6.802 961 6 6.802 849 0

20 1.700 768 7 1.700 730 6 1.700 712 2

21 1.700 726 4 1.700 715 5 1.700 715 2

30 0.755 916 2 0.755 878 0 0.755 872 1

31 0.755 893 8 0.755 873 5 0.755 872 1

32 0.755 869 0 0.755 872 6 0.755 872 1

TABLE II. Same as Table I, except for a spinless muon-antimuon
bound state (true muonium).

nl MNK SCH

10 1406.675 4 1406.613 3

20 351.664 99 351.653 32

21 351.656 24 351.653 32

30 156.299 49 156.290 36

31 156.294 84 156.290 36

32 156.289 73 156.290 36

TABLE III. Same as Table I, except for a spinless muon-electron
bound state (muonium).

nl MNK SSE [17] SCH

10 13.541 104 13.541 092 13.540 213

20 3.385 213 6 3.385 196,3 3.385 053,2

21 3.385 082 5 3.385 078,7 3.385 053,2

30 1.504 544 4 1.504 513,5 1.504 468,1

31 1.504 496 9 1.504 478,5 1.504 468,1

32 1.504 466 5 1.504 471,6 1.504 468,1
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4. Conclusion

In this paper, the spinless Maung-Norbury-Kahana equation
is derived and is solved numerically. Taken as examples, the
positronium, muonium and true muonium are studied by em-
ploying the spinless MNK equation with the Coulomb po-
tential. The MNK equation allows the constituents of bound
states to go off-mass-shell proportionally to their masses. The
numerical results show that the binding of virtual constituents

will be stronger than that of the on-mass-shell constituents
and the virtuality effect varies with different virtuality param-
eterι and different mass ratiom1/m2.
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