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Numerical solutions of the Maung-Norbury-Kahana equation
with the coulomb potential in momentum space
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In this paper, the numerical solutions of the Maung-Norbury-Kahana equation which has the complicated form of the eigenvalues are pre-
sented. Taken as examples, the bound states, ™~ andute™ are discussed by employing the Maung-Norbury-Kahana equation with
the Coulomb potential.
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1. Introduction 2.1. Reduction of the Bethe-Salpeter equation

The Bethe-Salpeter equation [1] is based on the relativistia—he Bethe-Salpeter equation in momentum space reads [1, 6]

field theory and is an appropriate tool to deal with bound

4.1
states. In comparison with the four-dimensional Bethe- xp(p) = Sf(pl)/d—p4
Salpeter equation [2-5], the three-dimensional reductions of (27)
it are relatively easy to be handled [1, 6-11]. In Ref. [12], % K(P,p,p')xp(p')sf(—pa), (1)

it was shown that there exist infinite versions of the re-
duced Bethe-Salpeter equation. One of them is the Maungyhere
Norbury-Kahana (MNK) equation [8].

The MNK equation is covariant, obeys the unitarity rela- p=mn2p1 — Mmp2, P =p1+po. (2)
tion and possesses a one-body limit. Itis a proportionally off-
mass-shell equation and is a relativistic, three-dimensiondh order to have a correct one-body limit in three-dimensional
equation for bound states with two constituents. Moreoverfeduced equations, the Wrightmann-Gordon choice [13] of
the MNK equation gives a physically meaningful prescriptionn; andn, should be applied,
of how the constituents go off-mass-shell in the intermediate
states. The MNK equation allows the components of bound s+ mi —m3 5= mi +m3
states to go off-mass-shell proportionally to their masses. In . 2s R 2s ’
this paper, the MNK equation is solved numerically and is
applied to discuss the equal-mass systems (positronium aferes = P2. In Eq. (1),Sf (p:) are the full fermion prop-

true muonium) and the unequal-mass system (muonium). agators. We will approximate the full propagatsi$(p;) by
free propagators [5]

©)

The paper is organized as follows. In Sec. 2, the MNK

equation is reviewed and the spinless MNK equation is de- i

rived. In Sec. 3, the spinless MNK equation is solved numer- Si(pi) = P A—— 4
ically and the discussions are presented. The conclusion is in ’ ’

Sec. 4. wherem, andms, are interpreted as effective masses for the

fermion and antifermion.
We introduce components of the relative momenjum
p| + p. parallel and perpendicular to the bound-state mo-
2. Maung-Norbury-Kahana equation mentumP by [11,14-16]

. . . . . . P .
In this section, the MNK equation is reviewed and the P = i M=vVP? p=p-P, p=p+pL,

spinless MNK equation is derived. To discuss the bound R R

statesete, ptpu~ andpte—, the MNK equation with the pi=pP, pL=p-pP, d'p=dpd’p., (5)
Coulomb potential is needed. The logarithmic singularity in

the momentum-space Coulomb potential is removed by thevherep is the longitudinal part ang, is the transverse
Landé subtraction method. part. In the rest frame of the bound state with momentum



NUMERICAL SOLUTIONS OF THE MAUNG-NORBURY-KAHANA EQUATION WITH THE COULOMB POTENTIAL. .. 9

P = (M,0),p = p° p = (p°,0) andp, = (0,p). The Inthe above equation,is the parameter describing the rela-

projection operators can be written in covariant form tive virtuality of two components in bound state. Whea 1,
L H the constituent 1 is on-shell and constituent 2 are off-shell ar-
AE(py) = Mii(pﬂ, Hi(py) =P(mi— $.), bitrarily; vice versa, whem = —1, the constituent 2 is on-

shell with another constituent’s virtuality arbitrary. For the

2&)1‘
MNK equation,
wi =\/m?+w?, w=4/-p% (6) q

mip — Mo
. . = —=. 15
with the properties e, (15)
AF(p)AF(pL) =0, Af(pL)+A; (pr) =1, Eq. (13) can be simplified as
AE(pL)AE =AF(py), 0 —p) /W
i (pJ_) i (pJ-) i (pl-) go(P,p) — _9mi . _(7;2 +l )2/_m27 (16)
Hi(pL)AF (pr) = +wihi (pL). (1) P1 1T P2 2
where

In this paper the covariant instantaneous approximation
is employed [14], in which the approximated kernel is inde- W = \/(1 —2)M? +20[(1+0)w? — (1 —)w3] (A7)
pendent of the change of the longitudinal component of the
relative momentum, and

K(P,p,p') = K(pr,p) =iV(pL,p1).  (8) pf = { [~ (U em = ) Mo+ W1/ (20) (18)
[— (X +up — ) M = W] /(20).
It is a good approximation for a system composed of heavy
and light constituents or of two heavy constituents which carlf constituent 1 takes positive energy as:<1 and con-
move relativistically as a whole. It will reduce to the instan- Stituent 2 takes positive energy as<: < 0, p;” should be

taneous approximation in the rest frame of the bound state. W — (14 i — i) M
Introduce the notation for later convenience P = 2'1 ) <<l (19)
L
Yp(pL) = / %Xp(p), After integrating ovep;, we have from Eq. (16)
7T
—i/W
&y Go(P.pL)= i/ , (20
T(py) = / WV(m,pl)W(pl), ) Go(P.p.) [(mM+p] )2 —wi+(neM—p; )2 —w3] (20)
whereyp(p, ) is the Salpeter wave function. Using Egs. (4), From Egs. (11), (16) and (20), we have
(6), (8) and (9), the Bethe-Salpeter equation (1) becomes Go(P, p1)=Go(P,pL) [Af (p)(mM + pit + wr)
where X [AF (=p1) (M — pi — w2)
Go(P,p) = go(P,p) [AT (pL)(pro + w1) +A5 (=p1) (M = p + ws)] (21)
+AT (p1)(pro —w1)] Po P Using Egs. (9), (19) and (21), Eq. (10) reduces to the MNK
N equation
x [Az (—=p1)(p20 — wa) o
~ p i
+A5 (=p1) (P20 + wo)] (12) Yp(pL) = Go(P,pL) /(QF)J;,ZV(]?L,PLWP(PL) (22)
and The MNK equation has been understood physically mean-
1 1 ingful: when masses of constituents are not equal but com-

9o(P,p) = —

P miticp—mitic (12)  parable, this kind of choice af[Eqg. (15)] promises that the

heavier particle is less virtual while the lighter massive parti-

In Refs. [7] and [8]go (P, p) is given as cles is further off-mass-shell. For the bound states composed
5 1FQ) of equally massive constituents, the constituents will be put
90(P,p) = —2mi——— [J; )] — (13)  equally off-mass-shell.
p1 —mi+py —myte Assuming
wheref () is defined as MM +pf +wrsmM +pF —wi,
1 1-—
[0 =@ —md) -t — - md) . (19) mM = p +wySpM - pf —w,, (23)
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we have from Eq. (22) The Coulomb potential has the logarithmic singularity at
pointp’ = p, and the singularity comes frofy(z).
W [(mM +Pz+) —wi+ (M —p)? — wi] wr(pL) Applying the Lan@ subtraction method [17-21] to can-
(mM +pf + M)(leM —p +wo) cel out the singularity, the singular equation (27) becomes
pJ_ P/ pJ_»pJ_) ap7r
FMot,P)oni(0) = =L T P (1)b(p /B
x1bp(p) PAE(—]?L) (24)
. . Qo(z Pi(7
Neglecting any reference to the spin degrees of freedom of % (;(,) [pa%z (') — Pl((z))pzqi)nl(p) dp’
the involved bound-state constituents, we have the spinless l
MNK equation from Eq. (24) o T
/ / /
IR e + 7/wl—1(z)¢nl(p )p'dp’, (31)
W [(mM +p;")? —wi + (M — p;")? — W3] TPy

Yp(pL)
mM +p; +wi) (M —p + ws .
( ! ) : ) wherez’ = 1, Pj(1) = 1. In the above calculation, we have

d3pl . .
-/ GV (P () (25) ~ Usedthedentity
7 2
where. is in Eqg. (15). Eq. (25) describes the semirelativis- /i,Qo(Z) dp' = . (32)
tic bound states composed to two spinless constituents which p 2

are virtual according to Egs. (14) and (15). Following the 0

approaches in Refs. [6] and [24], the spin-independent termé

and spin-dependent terms can be obtained from Eq. (24). Numerical results and discussions

In this section, the spinless MNK equation with the Coulomb
potential is solved numerically by employing the Gauss-

In this paper, the Coulomb potential is considered. The-€9€ndre quadrature rule. The positronium, muonium and
Coulomb potential reads in the momentum space true muonium are discussed.

2.2. Landeé subtraction method

dra i i i
Vip,p') = — (26) 3.1. Eigenvalue integral equation

(p—p)*
The eigenvalue integral equation (31) can be written formally
wherea is the fine structure constant. The partial wave ex-5

pansion of the spinless MNK equation (25) is expressed as

7 (M, p)ip(p) = | K(p,p")b(p")dp'. (33)
f(Myi, p)pri(p) = (271T)3/Vl(p,p')d)nz(p')p’zdp’, (27) gL PP 0/ PP AP )P
0

Due to the complicated form af( M, p), Eq. (33) cannot be

wheren is the principal quantum numbéris the orbital an-  5qjyeq directly. Rewrite the above equation as [22]
gular quantum numbelf.(M, p) reads

(o)
f(M,p) = ep(p) = —g( +/Kp p)dp’,  (34)
(mM +pf JrWl)(772M -p +W2) where M is a trial value. IfM = M, ¢ will be equal to
zero. The eigenvalue equation (34) can be solved by standard

! i i i
V*(p,p’) is the partial wave expanded Coulomb potential, method.

Vip,p) = —871'204QZ(Z> z = P47
’ pp’ 2p'p

whereQ,(z) is the Legendre polynomial of the second kind, Rewrite the subtracted integral equation (31) in the form of
Eq. (34), then apply the Gauss-Legendre quadrature rule to
1. z+1 ; ; ; ;
Qi(2) = P(2)Qo(2) — wi—1(2), Qolz) = =In——, the regular integral [21]. Finally, a matrix equation can be
2 z-1 obtained from Eq. (31) by employing the Ny&tn method
and it can be solved easily.
wi—1( Z Pz m(2) Pr—1(2). (30) At first, we map the semi-infinite intervadd, oo) onto
some standard finite intervak,b] which we take to be

; (29) 3.2 Gauss-Legendre quadrature rule
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[-1,1). In this paper, we may take the rational transforma-smaller than that of the spinless Salpeter equation and the
tion, Schibdinger equation, see Tables I, Il and Ill. It means that
14 - the virtuality effe_ct of consFituer)ts results_ in stronger binding.
p=E , P =&——, (35)  For the positronium, the virtuality effect is about of the same
1-s L order as the relativistic effects. For the muonium, the virtual-
where¢ is a numerical parameter providing additional controlity effect is smaller than the relativistic effect. The data show

of the rate of convergence. Then we have that the virtuality effect varies with the virtuality parameter
¢. For more general cases, the relation between the virtuality
2¢ ;
dp) = —=> . (36) effect and. will become complex [22].
(1—-1)? The spinless MNK equation (25) describes the bound

states composed of the spinless virtual constituents. By em-

The Gauss-Legendre quadrature formula for regular |nteploying the approaches applied in Refs. [6] and [24], the

gral reads spin-independent terms and spin-dependent terms can be ob-
1 N tained from Eq. (24). Then spin effects can be included ac-
/f(a:)d:v ~ Z w; f(x;), (37)  cording to the discussed problems.
e i=0
where TABLE |. Binding energieg,;, = M,;, — m1 — m2 (in eV) for a
9 spinless electron-positron bound state (positronium) calculated by
w; = 5. (38) solving the spinless MNK equation [Eq. (31)], which are compared
(1- :z;f) [PJ’\,Jrl (xi)] with the eigenvalues of the spinless Salpeter equation (SSE) and the
Schibdinger equation (SCH) is the principal quantum numbér,
In Eq. (38), prime stands for the derivative. is the orbital angular quantum number. A negative sign before the

energy has been omitted everywhere.

3.3. Numerical results and discussions

nl MNK SSE [17] SCH

By employing the methods discussed above, the spinless 10 6.8031496 6.8029616 6.8028490
MNK equation [Eq. (25)] with the Coulomb potential 20 1.7007687 1.7007306 1.7007122
is ?rOIEFd r:urlnlerlcglli/”ar_lrdh thg nutmerlcal rssultz{;re listed 5q 1.700726 4 17007155 17007152
n fabies 1, an ' -e input parame ers_ — 30 0.7559162 0.7558780 0.7558721
180, ¢ = m;a wherem,; is the mass of the lighter con-

stituent. For comparison of the eigenvalues obtained in 31 0.7558938 0.7558735 0.7558721
this paper with the eigenvalues obtained in Ref. 17, the 32 0.7558690 0.7558726 0.7558721

electron massn. = 0.51099906 MeV/c?, the muon mass
m,, = 105.658389 MeV/c? and fine structure constant=
1/137.0359895 are used [23].

In the spinless MNK equation (25), the virtuality param-

TABLE Il. Same as Table |, except for a spinless muon-antimuon
bound state (true muonium).

eter. is expressed in Eq. (15). Asl < ¢ < 1, con- nl MNK SCH
stituents are virtual. As = =1, regardless whether the 10 1406.6754 1406.6133
constituents are light or heavy, the spinless MNK equation 20 351.664 99 351.653 32
(25) reduces Fo the spinless Sal_peter equation [17] in yvhwh 21 351656 24 351 653 32
both of constituents are on their mass shell. The spinless

Salpeter equation is a well-defined standard approximation 30 156.29949 156.29036
to the Bethe-Salpeter equation and a relativistic extension of 31 156.294 84 156.290 36
the nonrelativistic Sclidinger equation. By comparing the 32 156.289 73 156.290 36

binding energies of the Sabdinger equation and that of the
spinless Salpeter equation, we can obtain the relativistic efs
fects because the constituents are also put on-mass-shell

the Schédinger equation as in the spinless Salpeter equatiorP.

ABLE Ill. Same as Table |, except for a spinless muon-electron
ound state (muonium).

From Tables |, Il and Ill, we can see that the relativistic cor-  nl MNK SSE [17] SCH
rections are the differences in energies which occur after a 19 13.541 104 13.541 092 13.540 213
few decimal places. 20 3.3852136 3.385196,3 3.385053,2

The spinless MNK equation includes not only the rela-

L . . . 21 3.3850825 3.385078,7 3.385053,2
tivistic effects but also the virtuality effects. By comparing

the eigenvalues of the spinless MNK equation and that of 30 1.5045444 1.504513,5 1.504468,1
the spinless Salpeter equation, we can obtain the virtuality 31 1.5044969 1.504478,5 1.504468,1
effects. The eigenvalues of the spinless MNK equation are 32 1.504 4665 1.504471,6 1.504 468,1
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4. Conclusion
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will be stronger than that of the on-mass-shell constituents

. . _ and the virtuality effect varies with different virtuality param-
In this paper, the spinless Maung-Norbury-Kahana equatiogter, and different mass ratio; /ms.

is derived and is solved numerically. Taken as examples, the
positronium, muonium and true muonium are studied by em-
ploying the spinless MNK equation with the Coulomb po- Acknowledgements
tential. The MNK equation allows the constituents of bound
states to go off-mass-shell proportionally to their masses. Th¥/e are very grateful to the anonymous referee(s) for the valu-
numerical results show that the binding of virtual constituents2ble comments and suggestions.
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