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ABSTRACf

The work developed by the author and his collaborators leading to
a theoretical equation of state for real fluids is reviewed. The topics
covered in this article are: 1) The van der Waals model and kinetic theorYi
the mode1 of VDW, molecular collisions and free-volume theory. 2)Perturba
tion theory and equation of state: perturbation methods in liquids and it~
relation to the VDW model, exact deduction of the VDW equation and its
connection to real fluids. 3) The VDW model and real fluids: intermolecular
forces, the inverse problem, the square-well perturbation method, effective
parameters and kinetic theory. 4) Corresponding states and systems:
generalized corresponding states and systems, their application to real
substances and development of the square-well equation of state. And
5) equation of state, fluid mixtures and solutions: solution models, the
VDW equation. the square-well perturbation method for mixtures and mixing
rules. The main conclusions to be derived from this work are also stated
as well as the perspective for future work.

+Presentacto en la asamblea. general ordinaria de la SMF el 29 de marzo de1984.
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RESLNEN

Se revisa el trabajo realizado por el autor y sus colaboradores
que ha llevado a una ecuación teórica de estado para fluidos reales. En
este artículo se cubren los siguientes tópicos: 1) El modelo de van der
Waals y la teoría cinética: el modelo de VDW, las colisiones moleculares
y la teoría del volumen libre. 2) La teoría de perturbaciones y la ecua-
ción de estado: métodos perturbativos en líquidos y su relación con el mo
dele de VDW, deducción exacta de' la ecuación de VDW y su relación con flu~
dos reales. 3) El modelo de VDW y los fluidos reales: fuerzas intermolecu
lares, el problema inverso, método perturbativo con pozo cuadrado, paráme~
tres efectivos y teoría cinética. 4) Estados y sistemas correspondientes:
generalización de estados y sistemas correspondientes para sustancias rea-
les, desarrollo de la ecuación de estado de pozos cuadrados. y 5) ecuación
de estado. mezclas y soluciones: modelos de solución, la ecuación de VDW,
método perturbativo de pozo cuadrado para mezclas y reglas de mezclado.
Se establecen también las principales conclusiones de estos trabajos y se
describe brevemente la perspectiva actual en el tema.

PROLOG1JE

This is the story oí the rescarch that lcu to the ucvclopmcnt of
a theorctical equation oí statc for real fluids. It began in 1969, has
invo1ved a score oí characters and took place in severa1 laboratories anJ
offices of the Instituto ~~xicano del Petr61co (IMP), the Instituto de In-
vestigaci6n en ~nteriales (11M) and the Universidad Aut6noma ~~tropolitana
(UAM) at ¡ztapalapa. The background and setting of the story are dcscribcd
in thc lntroduction, whereas in the latcr sections the rcsearch itsclf is
reviewed. lne rcader who is not interested in the charactcrs is adviscd
to skip the Tntroduction and st3rt with the subjeet matter in scetion II.
A~many stories, this one has not come to a real end. Thc epilogue is
still to be written. ••

1. INTROoucr ION

By the summer oí 1969, I had spent ayear at the IMP after
my PhD in Berke1cy with a thcsis on the statistica1 mcchanies oí
~~ first job was to find out what a physieist is supposed to do

a place. This question might sccm preposterous if the eireum-
are not taken into account. Onc ycar had been spcnt to find outstanees

obtaining
plasmas.
in sueh
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that nobody living within 2 000 kilometers kncw the answer
dared to say thcy did- and talking to the people that had
thc cnginccrs.

A oornmon sense answer to thc question was easily confirmcd in thc
literaturc: Tn the petroleum and cheroical industries there was. and still
is, a broad ficld open to the applications oí thcrmodynamics and statisti-
cal mechanics of fluids. By that time, a young physicist had joincd in my
worrics. Togcther, Luis Ponce and 1 were able to clear out a few basic
things: 1st, the real scientific and practical problcms concerned dense
fluids. ~.e .• liquids; 2nd, to tackle these problems a combined theoretical
and experimental efíort was nceded; 3rd, it was indeed not a one manIs job,
and 4th, it was obviously necessary to cstablish a foreing connection.
Thesc fOUT points led to four inmediatc actions: study the physics oí
liquids and cheroical cngineering thenmodynamics, start a thermodynamics
lab, launch a crash program on recruitcrncnt and training, and go abroad!

By 1970 the perspective was clearing up. Jakob de Swaan, whom
had met at a thermodynamics confercnce in Cardiff and was then with thc
Koninklijke-Shell Laboratorium in Amsterdam, had gallantly scouted our
survcy of thc field of applicd thermodynamics, including a brief course
that he taught at the It-1P. O1r "groupll had grown in 50% when another
physicist, ~mnuel Guerrero, joined the initial two. I had a1so obtaincd
a part-time appointrnent, at the Centro (later Instituto) de Investigaci6n
de ~1.:'terialcsoí the Nationa1 University. For several years, thc CI~l V.'as
going to play an important role bccause it was clase to the studcnts we
wantcd to proselitize.

Wc had starteJ late but at an cxciting time. Fluid-statc
thcrmoJynarnlcs has two well-dcfincd approachcs: on the one side, the
statistical mcchanics oE liquids and gases, and on the other, the thermo-
dynamics equations and data uscd by the engincers. 80th ways were quite
developed when we started to look into thcm, but ours was a peculiar
situation. Engincers \áth experience accumu1ated in years oí design work
-plus that of several generations oí tcachers- can safcly, though not
wisely. forgct about the advances of statistical mcchanics and gct along
with it. A chcmical physicist or physical chemist without thc direct
responsability oí pressing practical necds can a1so forget the more nitty-
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gritty rcalities oE empiricism and survive. OUr case was difíerent: wc
didn't have the practical experience but hao the responsability. We couldn't
forget ncither, and a150 as importantly, wewcrc physicists by training and
couldn't forget it eithcr.

Starting a laboratory fTem scratch proved to be a difficult and
slow endeavour. The main experimental lines had been decided on information
gathered on a tour oí British labarataries and universitics (sponsorcd by

the British Council), the Institut Francais du Petrole and the Royal Dutch
$hell labarataries. Between 1970 and 1973 several students joined the
team. Miguel l..eiva and Esteban ~tartina weTegoing to work on a PVf
apparatus, although lack oí resources redirected thciT effort to theory,
and in particular to the study of the van der WaaIsmodel; t-laría Trigueros
also stal'ted work in the same direction, Francisco Guzmánand Luis Miel' y
Terán nndertook the study oE fluid mixtures. Since at the CIMthe minimum
experimental resources were madeavailable to us, Ricardo Tsunmra started
the work on PVTthat at the time wasn't feasiblc at the It-W.

In a couple oí years the picture had(:hangcd completcly. WC had

identifico the ~lin specific problems, both basic and practical, and had
an infonmed understanding of them; we had dcvelope~ an indcpendent view oE
the fields involved and thc first few pieces of rcsearch werc coming out.
Experiments were final1y lmder way at thc CIM,where f>'l.artín01ávez had
started work on ultrasonic absorption and Jc;m ('ierre ivklr.fort had arrived
after being a student of Ilenri Renon in P;lris. 111ework on ultrasonics \'<"as
possible thanks to a grant from the Fund for Overseas Devclopmentand
Education, and t-1onfort's visit was supported by thc c()(¡pcration program
betwecn France and ~1exico. ~~nfort started our expcriments .•\'i th mixtures
in colaboration with Guzmán. Our theo1'etical flank ~ms reinforccd by
t-larcelo Lozada and also by Carlos Arzola, whocame from thc Universidad de
San ~mrcos at Lima.

During thcse years the necd of sccuring the assistance of an
expert experimental thennodynamicist hao bccomeurgen!. A most fortunate
happening for the success of our' endeavoilrs \'las thc arrival of Tanr,'lcLurc
at the HfP by the end of 1973. M::Lurevisitcd us foy six months with the
sponsorship of the Bri ti sh Council. His rrogramnc had becn carcfully
planned and thrce new studcnts had been sclcctcd and prepared to join him
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in the laboratary at Ir.¡P -which \~'as finally bcen equiped: Fnriquc Fcrnán-

dez Fassnacht, Rubén Lazos and Arturo Treja. 'Iñus, several experiments cE
intcrcst to the petrochcmical industry were started and eventual] y
completcd. A clase intcraction between experimental thermodynarncicists in
~1éxicoand ~IcLure's Laborata!)' in Sheffield has continued to the presento

The story took a different pace by the middle of 1974, and its
dcvelopment was going to be altercd. It was time [01' sorne tearnrnotes to go
abraad and pursue diffcTcnt but complcmcntary lines of training. ~brtina

left for r.UT where he has going to work with John Dcutch in statistical

rncchanics. Leiva went to the University of Binningham to do experimental

thcrmodynamics. Guzmán joincd McLure in Shcffield. Trigueros 'n'cnt to

Bcrkelcy and did ••.•,ork wi th Bernie Alder. Tsumura h'ent to the NBS Labaratory

in Boulder to do lo"-tcmperature experimental rescarch.' Ponce had left for

Paris to \,'ork with Ilcnri Renon at the EJ'iSTA,and Guerrero had gone to John

Rowlinson, then at the Imperial College, to work on statistical mechanics.

10e sccond important event was the creation oí the l.hliversidad

Aut6nomn, t-Ietropolitam.l as an alternativc to the traditional higher-

education institutions in f\.1cxico. The importance of the birth of the UPJ.l

[or this 5t01)' hall also to do with timing. Our vision oE the field told liS

that a lot of research had to be done and that sorne oí i t h<lS of rather

long rangcd airns. Neverthcless, the conditions then existing at the If\.IP

made it vcry difficult to do this typc of rescarch; even if it hTIS considered

important by international oi1 companies. lIence, for those oE liS ""ho had

a stronger interest in long tenn researchJ the Uf\r\1at Iztapalapa offcred the

opporttmity to pursue it. Fortunately, sorne staye~ or \..;ere to rcturn to

the 1Nr and playa lending role in its development, alrhough their

activities there fall outside the line oE this story.

Thus, by the middle of 1974 ~Iier y TerSn. O1ávez, Fernández
Fassnacht. Dolores Ayala and 1 joined the UMl at Iztapalapa. Ayala had

becn my student at the UN~l and becamc a oice reinforcement of our team.

Others jained us later after thcir stays abraad: r,k'1rtina, Guzmán ~:md

Gustavo Chapela. Chapela had been a stuJcnt of Tom LelanJ in Texas and of

H.cn.,¡linson at the le, \,'C had met a fc\.,; years before \,'hi1e 1 ••.•'as at the If\.fi.'

and he at Pernex.
At about this time, "c started "hat "as to become a continuing
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and fruitful relatían with Doug Henderson from the IBM lab at San Jose.
Newer students and later colleagues at Iztapalapa were Jacqueline Quintana,
,.:ha started work on mixtures, sergio ~lartínez and Ana l.aura Benavídes.
~.artínez has been doing simulatían work with Chapela aml Benavides \\;orked
with ~nrtina befare playing a role in this story. Still latcr, Víctor
Romero, Leonel Lira and Antonio ~!uñozhave a1so contributcd as students.

A fruitful contribution to this story was made during a sabbatical
leave 3t the School oí Cheroical Engineering DE Cornell University whose
hospitality 1 enjoyed. There 1 had the change oí profiting from many
discussions with Keith Gubbins, Bil! Strcctt and Bcn Widom. The visit to
Corne!l was sponsored by a Fulbright fellowship.

In the last few years, most of the memhcrs of the team have
matured as independent researchers, and sorne have moved to other
institutions and endeavours. Thc original goal is still being pursued with
their enthusiastic, albeit part-time, supp0r!.

1 I. TIlE Vf>J' OER WAALS mOEI. AND KINETIC l1lEORY

A. The mode.t o 6 van deJt WaaL6

Our first job, back in the begiJUling of the 70's, was COJUlccted
to the van der Waals (VDW) equation oí state. We had been working with
several equations of state (EaS), generally called "semi-empirical", which
were of ,,"'ideuse in chernical engineering. lhese equations consist of
empirical modifications oí VDW equation derived on his thcsis of 1873(1),
and pretend to improvc the quantitative accuracy of the original VDW-EOS.
A particu1ar1y popular series of semi-empirical equations originate in the
Red1ich-Kwong equation (2). An initia1 aim W;1S to [inel out whether such
(or similar) modifications to the VL~-rflS could be unuerstood by physical
argumcnts, so that theoretical improvemcnts could he incorporatcd. It was
socn clcar that the formal mcthods that had led to a rigorous dcrivation
of VDW_EOS(3,4) could not account for the typc of bchaviour incorporated
into the RK and similar equations. l~ncc, we turncJ OUT attcntion to thc
original anJ more approximatc Jerivations or VDW-EOS. t'l-í..'1nytexttoob contain
approximatc. qua] itat ive or hanJ-\\raving deri vat ioos of vm.'-IDS(S). ~md sorne

. h . h f. (6)rc]y on arguments \'ohlC are elt er con uSlng or wrong .
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The VLJWrnoticl providcs a \\"ay to calculate the thcrmodrnamic
propcrtics of a fluid from the binary intcnnolccular petcTItia] ti hhich

dcpcnds on rhe rclati\'c positions and orientat ions of t\\"O maleculcs. The
csscntial [eatures that define the van del' \\"331$ modcl (VDI\'-M)are: 1st,
a separation of lJ in its short-rangc rcpulsjvc part ur and it5 attractive
part u" of longer rangc,

u = ur + ua (1)

.md 2nd, a corrcsponding separar ion of the prcssurc and othcr cxtcns ive
prcpcrtics in t\'/o parts

(~)

Van del' Waals 31so lIscd a particular forro for the tems in f.q.

(1) and intrexlucctl approximation:-, to obtain the tenns in Eq. (2). t\cvcr-
thclcss, the 1atter are additional to the main fcatures of the VD\f-Hand
th('ir improvcrrcnt lcads to rcvised versions of the original VIW:.[OS.

'Ine most rele\'ant consequence of \1)'" ,,-ork in 1873(1) ,,'as to ShOh'

hOh' the VD\\'-"', t1cfincd by [qs. (1) and (2) I h'ith approxim...te expressions

for Pr and Pi'I' exp13ins the existencc of thc vapour-llquio transition,

incluJing its critical point.

In general, there are t\\'O bro:lo and different \\'a)'5 to deduce (2)

frorn <l given intcraetion ITDdel in (1): TI1e first is the kinctie appro:lCh

in w'hich onc consiJers the inllividual rnolecules, thcír T:lOtions ano

coll isions. 11lC secand rel ies on the statist ical rncch:mic:II riLtun_~

JevL'1opcd by Cihhs anJ is connected \Vith frcc-vohOTlC theory and pL'rturb:ltion

mcthods. '111Coriginal derivatian of viln del' l\'aals himsclf \,'as l:'Iost1)' of 3

k.inctie n3turc ano hased on the virial theoTcm of Clausius(l). ~Iost

contemporar)' textbooks, on the other hand, use the statistical mechanical

h "1 " " I k"" (5.6)approac m1XC<.at t lffiCS \,'11 1 -InettC .1rgwlIcnts .

\\'Cwill deal h'ith thc kinctic and frcc-vollUnc thcorics in this

scct ion ami Icave the cons ider:lt ion of pcrturh:lt ion 1l1cthods for Sl'ct ion

1I I.
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In the original derivatían of the VD\\'-EOS, Ur Kas approximately

reprcsentcd by the interaction bet\,'cen tv.;a han.!. sphcrcs cf dilmlctcr o J

\,"hose ccnters are separatcd a distancc r

(ro, r < a

ur ~UHS 1
(3)

\ O. r > o

Kinetically, the prcssurc in a systcm cquals n;ice the flux cE

momcntum through a surfucc. in Dne dircction. 1hc cffcct of the repulsivc

collisions is to incrc<lsc such flux; when molcculcs on cithcr sidc of the

surface callide. momcntum\\'111 be transfcrred across anJ in cxccss oí the

(ideal) transport due to the strcaming of the particIes. But al5o, the

collisions ineTeasc the flux of paTticIcs through uny surfacc. Thcn, the
nct cfEcet of the repulsivc [orces is to lTk'1kc Pr>Pid>O. The original

VD\\' derivatían, for a systcm oE l\' partic1es .1t temper.1turc T .1nd occupying

a volume V, approxirnatcJ Pr by

PHS - pkT/(l - 4bp) (4 )

ros (7 ,8).

ion (4).

\~'herc p = r\/V and b = 1103/6 i5 the volLune of one particle. 'me VDW

approxirnation (4) becorncs exact for hard spheres on1y .1t 101'"densities,

but it$ qua1 itative behuviour 15 correet over the, \0,'1101e fluid range.

In our initia1 study of the VDW-Mwith Martina, leiva and Trigu~

we obtained kinetieally the generalization of the VDWapproxima!

By rncans o[ simple but rigorou5 arguments, we found that

1'''5 = pkT/(1 n) , (5)

\o,hcre n i5 the mean distance across h'hich momentum i5 tran5ferred

instnntuneou5ly, dlle to the col1isions, per wlit length o[ travel. llüs

quant ity can be written in tcnns o[ the mean free-path Q, and of the diamcter

') of the part ieles as
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Eq. (5) was shown to be valid both for the fluid and for the
sol id. In particular, far a ane-dimensional systcm of hard rods in a box
of length L, n = oN/L exactly. SUbstitution of this value in ['l' (S)
gives the exact EOS found original1y by Herzfeld and ~layer(9).and by
Tonks (10), .ho used more formal argumcnts.

Anothcr result \~'as to show 1hat, at dcnsities high enough to
preven! diffusion oí the particlcs,

n ( 7)

lhis result, v-hcn introouced in Eq. (S), convcrts this equation into the
Salsburg-Wood 80S frorofree-volumc theory(II). &15. (5) and (7) also sho.
that the correet EOS[ar the solid phase should involve the "free-length"
1 1
V3 - ~J3cr instead oE a free voltnnc.

The EOS (5) can be written in tenns of the mean free-path £ by
substitution of Eq. (6). One thus finds the expression due to Enskog(12)

2 P/pk~= I • uQp£.I£ (8 )

whcrc no is the cross
of ~ at zeTa dcnsity.
distribution function
form

section of the particles anu ~o is the limiting value
Further, by introJucing in Eq. (8) the radial
g(r) at contact r = 0, we obtaincd the EOS in the

z I • sng(o)p (9)

In this equation, s is the meancollision di¡lJTX?tC'r proyected along an)'
directian. In particular, for hard rods, squarcs and cubcs 5 = o. For
hard disks s = 7To/4 and for hanl spheres s = 20/3. These values of s give
the corrcct seconu virial cocfficients and makeEq. (9) iucntical to that
obtaincd from the virial thcorcm of Clausius.

These connection bctwcen elementary kin~tic theory, Enskog's
method, Clausius I theorem and the VD\\:-~1,gavc a consistent anu al ternat ive
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method to study the EOS. But thc faet is that, by thc tirrc when thesc
results "erc prcsented, thc approximations far I~s had becn significantly
improved amI a pract ically cxact EOSof thc liS systcm .•..'as knm-.n. 111c
contributions wcrc then mostly oí acadcmic intercst, although thc use oí
kinetic argumcnts and thc mean collision diamctcr 'was latcr going to be
proven of importance. (Seo section IV.C.)

1hc other contribution to the prcssurc, arlslng from the attractivc
[orces, turned out to be more difficult to calculate by kinetic mcthods.
The original VDW approximation far Pa i5

(la)

,,'here ü'. i5 a constant with the diJncnsions oí cncrgy x volume. It was
possiblc to obtain Eq. (10) kinctically(13). but it was not possiblc to
....Tite its gcncralization in te~~ oí thc collision dynamics. Neverthcless,
a kinetic interpretation oí Pa through the virial theorem was later obtained

and wil1 be describcd in section IV.C.

c. FJtee-votume theoJty

An alternative approach for the calculation oí Pr is free-volume
theory(ll) "hich has been mostly used in models of the salid phase(14) .
Ncvcrtheless, the VD\v approximation in Eq. (4) is cOMmOnlyjustificd in
tcnns of the free volumc available to a particlc, or the corresponding
cxc1uded volurre. A mean free vollIDlCcan hc deíined directly froo Eq. (S),

hut an alternativc dcfinition can be made at the level of thc free energy

of a haru-part iele systcm. l.et!J.A be the IIelmholtz free cnerh'Yof thc
s)'stcm in excess over thc iJeal-gas contribution. Then, in a purely
repulsivc systcm, the mean free volU1'l"Cper particle Vf is dcfined as

ln(VE/V) (11 )

so that Vf equals the Nth root of the free VOltUIIC availablc to the N-
particlc systcm in its confi~'Ur:ltion spacc. 'I1lCnone simply finds the
prcssurc in tcrms of the cxcludcJ volurne Ve = V - Vf to be
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\\"hcrc X = Ve/V is nn cxcludct1-\'oltunC' [Taction and y = C~ b a Tcduccd
dcnsity callcd the pa(king fraction(l5). 'nlC foro cf XC)') Kas found as a

po\\'cr series in the dcn5ity

X(y) = 4y - 3y' + o(y') (13)

01' couId be approximatcd by asstuning that the' deo"case in \ Kith y i5

simply proportional to y itsel£. This asslU1:ption 1C'3ds to the equation

for P
HS

proposcd carlicr by Scott (lC:». Agaio, thesc rcsults h'erc going to

fintI application latero (Sec scction VI.A).

111. I'ER'IURBATION Tln'ORY AND I'QlJ,\TIO~¡ 01' S'rATE

Even though van del' Waals used kinctic argtuncnts to deduce his

U)S, the main SOllTce of prcscnt suppart antl popularity cf his modcl COffi{'S

fraID a spccific 5tatistic31 mcchanical tccluliquc: perturbation thcor)' (PT).
Thc use of perturbation mcthods [01' the undcrstanding of the 1i'luid statc

'';.15wcll cstablishcd in the bcgiTming of the 70's. Thc main points in this

ocvelopmcnt ,,,,crc, on one hand. the propo~al of a perturbation exp,msion b)'

Zwanzig(l7) and the extcnsive \,'ork on the h~lrd-sphcre systcm by 5c\'cr.1l

mcthods: computer simllat ions (18,19). \-irial cxpansions (20). scalcd-

particlc theory(21), and integral e'luations(22.23). On the othcr hand. rhe

l¡,'ork of B.1rker and lIenderson (HlI)(24) \.:hieh h'as the first succe..'sful theory

of the 1 iquid 5tate. The rcader may consult the abundant n.'vic\\' 1iterature

on the subject for a acta i led accOlUlt (25-27) .

'me 1Ik1in ideas oC tite I'r oC I iquids conrolT.1 to the Vll'( ""del as

stateo in the prcviou~ section. Perturi)¡ltion mctho"b thus givc to it ;l

formal content ano allow concrete calculat ioos of the..'modcl h"hich can he

syst('mat ically improvcd hy stat ist ical mech,:lIlical rncthods. lile appl icat ion

of I'T' to realistic fluid:; ha=--becn most succcsrul rOl' simph' fluids, \,hosc
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intermolccular potential u(r) ucpcnds only on thc distanee r between two
molecules. The extension to the more complicatcd molecular fluids is also
possiblc(28), but far simplicity hre ,áll restrict ourselves to the case of

simple fluios. 111050 perturbat ion rncthods cons ist of three esscntial stcps:

1) A scparation of the intcraction potential u(r) in a repulsivc and an
attractivc part as in Eq. (1).

2) A first pcrturbation cxpansion of the propertics of thc system with
potential lir about those of the liS systcm, which is used as referencc.

3) A socono cxpansion to lncorporate the attractive forces in which llr
is the refcrcncc and ua is the perturbation.

Those steps separate the thenmodynarnic propcrtics oE the system
in the same spirit of thc \~W-~,F~. (2). TIIUS, the excess Helmholtz free-
energy per particlc becomes separatcd in a repulsive and an attractive
part

(14)

Due to step 2), one finds

(15)

where p* = pa3 is the reduced density and kTaHS 15 the excess free energy
of the HS systcm. Due to step 3), the attractive cnergy is expanded in
terms of thc inverse temperature as

(16)

••..,here T* = kT/E and E is the depth of the attractivc well of u(r).
Actually, there are severa! ways in which any of these steps can

be implemented. l~c reader is referrcd to the literature(25-27) for
details, but a few cornrnentsare in order:

Therc are several ways to take steps 1) and 2), and thercfore the
perturbation tcnns al,o .. in Eq. (15) can take different fonns.
Thc perturbation expansions in 2) and 3) are of a very different



n::lturc: stcp 2) has the cfrcet oC softcning the
stcp 3) incorporates the <lttractive forces as a
first-arder terro 15 the mean ficld
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HSpotcntial J ","heTeaS

5ma!1 cffee! and it5

(17)

\\hcrc gHS(r) is rhe radial distribut ion [une! ion of the rcfcrence liS

fluid.

E"(pansions 2) and 3) a1so diffcr in thC'ir convcrgcncc propertics.

A..r;;, a mattcr of fact, cxpansion 2) nceds a definition of the dia-

J'llCtcr (] of the liS uscd as rcfcrcncc. lhis is conmonly accornplished by

rcquiring that the 1st-arder corrcction tcnn to the free cncrgy, a I in
Eq. (15), vanishcs(2S). Thus. neglcct of the 2nd and highcr-ordcr tenns

makcs

\\'hcrc the HSdüuOC'tcr (] appcars in p.
to the cquation

a'(p,T;o,[ur]) O

(lS)

P03 and is defincd by the solution

(19)

This cquation makcs the HS diamcter JcpcnJent on the state (p,T) :md

(functionally) on the potential ur(r). In the BII tllC'o1'Y, o dcpcnds onl}' on

T anu Eo. (19) gives o explicitl}'(24). 111Ch'ecks-(Jlandlcr-Andc1'scll theoT'}'

(h'CA) givcs o implicitly as a ftIDction of hoth p and T(~9).

It turos out that, fo1' a 1'calistic up the definition of o in

Eq. (19) makes the expansion in Eq. (15) highly convergent. 11111:', Eq. tlS)

hccomcs a very good approximation Jlld it is not nccc:,sal)' to go to highcr

anlcrs in the expansian for mast pract kal puq)O~~s.

For real istic potent jais t I1.mcation oC the sccond C'xpmlsjon, Eq.

(16). after the 1st-arder mc¡m-fielJ tcnn, :11, is not cllough to givc

ílccurately the themKX1yníllllic propertics bc110\\' the critical tem¡X'I'aturL~.

A brief statement IIIUSt be adJcd ahollt tlll' rnethods that (:ombine
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perturbat ion and variat lonal metholL,;; (30,31). These ffiethods cstabl ish the

first-order PT approximation 35 3n upper bolUldto the free cnergy of the
repulsi ve systcm and uetermine the "best" val uc of the liS diamctcr o by

minimizing the pcrturbcu free cncrgy, Eq. (15) with rcspcct to o. These

procedure gives 3n implicit dcfinition of a which may be exprcsscd in a

form similar to Eq. (19), ano the vulucs of o(p.T) behavc in general as

those obtaincd from the BHand "'CApcrturbation cxpansions.

B. PeJ"J:U!lbaúon mUllOCÚ> aHd -Che VVWmode1

l11C perturbation mcthous outlincd in the last scction allow a

systcmatic improvcmcnt of the VDI\'-005. This possibility has given rise to

a whole series of "augmentcJ", "corrcctcd" OY "gcneralized" VIMthcorics
thcories(32-34) o All these ucvclopments have several commoncharactcris-

tics:

1) Thcy start by assuming a particular [onn of the intennolecular potential

u(r) 3S, e.og., the 12-6 Lcrmard-Joncs potential.

2) They separate this potential as in r~. (1), which is usual1y done at
the distance rm whcre u(r) is minimum; this scparation has been sho"TI

to prQluce a more convergent expansion in Ego (10)(26,27) o

3) They calculate the cffective diamcter by Eqo (19) or its equivalent,

which in thc more convergent WCAthcory(29) makcs o to uepcnd on

tcmperaturc ami dcnsi ty o
4) They use an accurate cxpression for the f6 frec-cnergy in Eq. (15) and

neglect highcr-oruer teTIQ~.

S) They calculatc the mean-rield tenn al' given by Eq. (17).

6) In many cases, these mcthods calculate the second-order tcrm a2 of

cxpansion (tú) o Although [or sorne model systems, like thc $\\1 potcntial,

a
3

and a~ ~JVC becn calculated(35).

Calculation of thc thcnncxlynamic propert ies of simple fluids by

mcans of thcsc corrcctcd VDWthcories has an eror of only a few pcrcent.

To rcach this accuracy, it 1S ncverthelcss neccssary either to use effcctive

binary potcntials, which dcpcnd on thc thcnrodynamic state. or to take ioto

aCCOlmt the non-additivc threc-bouy fOTccs(36,37) o purthcrmore, thcse

appl ications of the pcrturbation mcthods do not really produce true
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equ..1.tionsof statc bccausc it has not becn possible to obtain al, Eq. (17),
analytically fay a givcn petential Ua; to incorporate analytic expressions
[ay the ~econd arder tcnn 32, and far the effect of the thrcc-body forces
i5 even more difficult. 'nlUS, thcsc methods produce tabIes of thermo-
d)namic properties instead of equations, although sometimcs they are
referred to \áth the latter name.

C. E,act dedu~o" 06 the VVW-EOS

A very important development concerning the VDW model ""as the
~ork of van fu~en(38), Kac et at~3)and Lebowitz and Penrose(4). They
have shCJ'r.TIhaw to obtain rigorously aneI exactly the (rrD<lified) VDl\'-OOS

fur a general c1ass of potentia1s of the type referred to by Eq. (1). For
a HS core thciT work lcads rigorously to

tJ\(p,T)/NkT = a"s(p') - a p (20)

"•.here 3HS is the exact HS cxceS5 free-encrgy per particle. Fromthis
relation, Eq. (lO) follows imncdiately. Kac U ato and Lebo~itz and Penrose
found that Eq. (20) is exact for a potential consisting oí a HS repulsive
part plus an attractive part which is infinitcly weak and long rangcd.
This attractive potential "~s represented by the Kac (or Yukawa) form

udr) -CYexp( -Yr)/r (21)

in the limit ""hen thc inverse rangc Y-+ O. Lcbo\\itz and Pcnrose(4) further
showcd how to obtain rigorously the vapour-liquid equilibrium line,
including the Max\..:ell construction, in thc same limito

Ncverthelcss, a word oí caution is in o~er about this point:
Eq. (20) is exact for the Kac potential (21) in the lirnit just rnentioned,
but this is not the actual potential of intcraction betwecn real molecules,
t.e. there is no real fluid for ""hich Eq. (20) is accurate over thc whole
fluid region.

It is oí historical intcrest that Boltzmann guesscd this rcsult
around thc year 1900(39). In a lettcr to van dcr Waals, Boltzmann argucd
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that far the VDW-EOSto be correet, the intenoolecular [orces should not

be as van der Waals proposed, but that thcir attractive part had to be
infinitely weak and long ranged! f~ was proven to be right 6S years latero
Actually. van der h'aals argued back that he thought the real intennolccular

potential had to be oí firrite range and depth. ~~ was a150 right!

V. The VVW-EOS and !l.ea.{ 6{uicú>

From the discussion in the last sections it is clcar that the
modificd VDW-EOS given-in Eq. (20) is an approximation to the behavlour oí
real fluids. Actually, if an improved HS-EOS is uscd far the [irst term
oí Eq. (20), instead oí the original VDW approximation leading to Eq. (4),
the resulting EOS is in good overall agrecment with experimental results
far argon when the VDW parameters b and a are choscn appropriately (Longuct-
Higgins and Widom(32)). But thcn the following qucstion arises: are there
any conditions where the improvcd VDW-EOS becomes quantitativcly exact for
real fluids? The answer to this question wa.s considered in a papel' with
Arzo1a (40).

The extensive work with perturbation methods has ShOhTI that the
repulsive part ar can accuratcly by represented by a HS tenm with suitably
chosen diameter o, hence, the question aboye really conccrns the validity
of the VDW approximation for the attractive part, Eq. (10), equivalent to
Eq. (20). In order to test this approximation, one can first writc the
repulsive contribution by means of the highly accurate approximation in
(18), 50 that the fu11 exce55 free energy in [~. (14) bccomcs

~A/NkT= a (po') + a (p,T) (22)HS a

and then ask about the form oí the attractive energy aa(p,T). "nen is na
proportional to p? Of course. perturbation thcory givcs a way to answcr
this qucstion by explicitly allowing the calculation of 3a by the series
in Eq. (16). But this can only be done if the fonn oí the intermolecular
potentia1 is known. lbwevcr, such is not the case for the grcat rnayority
oE real substances.

When the potential u(r) is unkno"TI, Eq. (19) cannot be uscU and
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Dne nceds to determine the effectivc diameter o from the knowledgc oí the
thcnncxlyn~unicpropert ies oí a substance. Thc problcm oí dctennining the
parameters oí an EOS from purely thcnoodynamic data is an cId question
confrontcd in practica! cases hy chemical engineers. lhe two mast cornmon

answers are: obtain o and othcr paramcters by fitting the EOS to a wide se!
of experimental data of the substance, or altematively. obtain the
parametcrs from the experimental resul t5 at a few sclccted points, e.g .•
the critical or the triple points. In arder to test the modificd VU~-EOS
nDne of thcse mcthods is liseful. For, an empirical £it will nevcr decide
a question oí validity. and ene cannot use info~~tion about a particular
point i f the val idity of the EOS 3t that point is in doubt. ~breover, the
VDI\'approximation is certainly hTong at the critical point, \o.'hichis the
mast popular in fitting. In conclusion, ~e had to look for a way in "TIich
both the value of O" could be fOlUld and the validity of the VD\\' approximation
(10), could be tested. The way to do this was inspired by the pcrturbation
results.

The first point was to look at the high temperature region, for
in that case the inverse tempcrature expansion, Eq. (16). gives

(23)

l~e next point is then to consider when is al, given by r~.(17)
proportional to the density, as in the VD~ equation (20). The integral in
Eq. (17) is roughly proportional to the number of particles within the
attractive well of a given one. Since for real fluids the potential ua is
of rather short range, that number will be constant at high densities.

With those elewents, it was possiblc to look at the high density
part of the high-temperature isotherms, and see if thcre exists a value oC
o that makes aa (p, T) constant in Eq. (22) whcn the left-hand side is
obtained frem experimental results. The answer was affinmative(40): the
VD\\'approximation for A becomcs exact at high tempcratures and dcnsities,
and the values of (1 found by this "bootstrap" method were in rough
agreement with the sizes oE the malccules as obtained by molecular and
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statistical
studics was

mechanical ~ethods.
argon(40) anJ later

The substance used initially
othcr nohIc gascs(41).

in thesc

[v. TIlli vnl\' mOEL M'D RFAL FLUIIlS

~IDst knowledge and insight about classical fluids, gaincd by
statistical mechanics, has beco achicved by assuming particular forms DE
the intermolccular potential. These potential models have been oE cnOI~US
importancc in statistical n~chanics and have led to discovcr ~Alich [eatures
o[ real intenmolecular [orces are mas! relevant in thc thermodynamic
behaviour oE real fluids. Ncvertheless, in arder to calculate accurately
the thcrmodynamic propcrties of real fluids, it is ncccss3D' to start with
accurate intcnmolecular potcntials. Bu!, since these are presentIy unknown
fay thc vast majority of subst,mces, onc has to look for altcrnativc
approaches. 15 it possiblc to construct an EOS of a real substancc that
is bascd on statistical mechanics but docs not require the intenmolecul3r
forces to be known? TI1C affirmative answcr is wel1 exemplifi~ú by the
virial EOS for gases: it can bc constructcd from purely thcrmouynamic
measurcments, has a wide applicability and is theoretically derived fron
statistical mcchanics(42). This question is closely rclated to the so
called inverse problem: Can wc leam anything about the molcculcs ano thcir
interactions by an appropriate analysis of thennodynamic data?

A possible approach to construct a theoretical BDS(Tr~S) [or dense
real fluids is found in perturbation methoJs theMsclves. Thc expansion
used to exprcss the propcrties oí the repulsivc system ur in tcnms of the
liS reference, Eg. (15), actually allows to write an EOS: precisely the EOS
of a lIS systcm 'vith a di<lIT1Ctera that dcpcnds on tempcrature and (51 ightly)
on density. All systems with purely repulsivc potentials ur(r) will have
an approximate ros, Eq. (l8), oí the sama fonn; the detailed differences
in u (l')bet\\'eensY5tems give rise to diffel'cnt depenucnces of o with T andr
p. So far so good. Hm ..rever, the tl'catrnent of the attractive part in Eq.
(16) is quite different: it does not lcad to a thcrmodynamic cquation that
involve,s the variables '1'and p, and sorne par<:lJTlCters.Even thc simplcr

j
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first-on.ler tern, Eq. (17), does not detennine the thennodynamic parameters
",-hichare relevant to describe the effee! oí the intemolecular attractions.

Ilenco • to obta in aTEOS it "",ascsscnt ial to dcvelop a perturbation
theo1)' deal ing with the attractivc interactions in the samcmarmcr as the
repulsivo forces are trcatcd in the usual thcories. Such a theory should
provide nn approximate but closcd-fonn EOSaml determine \,'hich pararnctcrs
are adequatc to describe the cffee! of the attractive forces, in the nanner
that the diamcter o(p,T) daes £or the intenmolecular repulsion. This
develaprnent is describcd in the next section.

B. rile .6quaJf.e.-we1i. pVttuJtbaU.of1 metJlOd

The success oí perturbation mcthods bascd on the liS model is due
to thrcc factors: the grcat similarity beth~en thc cffects of the ~5
interaction and thosc of real rcpulsive forces. thc predominance of
rcpulsive effects on the ~tructure of the liquid, and the simp~icity of the
liS potential. In arder to construct a theory ,~'ith similar virtues and
incorporating the attractive forces, one necds as reference system a model
potential that keeps thc liS repulsion additioned by the simplest typc of
attract ion. AA. ohvious choice is the square-well (5\\') potential

r < o
o < r < R
R < r

(24)

'nlis potcntial was uscd in the hurk with the I~nngi(43) to extend the
pcrturbation mcthods of BH(24) an<l 1\'C,,(29) so as to inelude an attractive
potenti:ll in thc rcfcrenec systCr.l. loe expansion obtained for the total
exccss free encrgy per partiele, Aa(p,T), which takcs thc place of both
&]5. (\S) and (16), is

l'.a(p.n = asw(p*, T*, ,\) + al.r: + al +
a (25)

",flereasw is the excess free energy of thc $\': system, A = R/o and thc
perturbation teIllL-; alr and ala involvc the $\,' distribution functions and



20

the repulsive and attractive parts of rhe potential u(r), respectively. In
the same spirit of rhe liS perturbatian rncthods. the t¡.-,'D SI\' parameters o and

R are chascn by requiring vanighing first-arder te~~:

a' (p,T;o,R,[u]) O
r r

(26)

a'a(PJT;o,R,[ua]) = O

the third parameter ",as chascn equal to rhe depth of the "'cll of u(r).
\I'ith this definitían of rhe S\\' pararnctcrs, amI ncglccting the sccond and

higher-order terms, Eq. (25) becomes

M(p,T) ~ asw(p*,T*, A). (27)

In arder to test the first-arder approximation in (27) with o and
R givcn by Eqs. (26), we applied this expansion to thc LCJU1anl-Joncs 12-6

system(43), which is quite realistic and whose thcrmoJynamic propcrtics are

rather ,,'ell knowTI.
The results found show that the 1st-arder approximation in (27)

is very convergent and in a1l respects competitivc h'ith thc expansions basco

on the pure HS(43). In particular, Eqs. (26) t.U1couple in the 1Oh' density

limit and one can solve them cxp1icitly £or o and R. The rcsults depcnd on

whether the methoo useo is the "b1ip" expansion(29) or thc "a - expansionll(24).

In the latter case ane rccavers, at p = O, thc BII exprcssian for o deduced

fram F~. (19) and the corresponding generalization rOY thc mean rangc R(43).

In the formcr case one gets

rm
03 3f {l - exp[ -8(£ + u(z))J} z'dz

o
o (28)

R; r3 + 3(eBE _ 1)-1 j{exP[ -gu(z)] - 1 } z2dz
m rm

hherc 00 and Ro are thc 10\\' dcnsity values of o and R, respcctively. Thc

behaviour oí a(p,n \...a5 a1so sho .•..n to be similar to that fOlmo in tilc WCi\

theory(29) and, in particular, 00 = 0WCA (p = O).



21

C. E66ecüve paname.teM alld 1U1le.t.ic theany

Thc bchaviour of o anó R with temperature is quite simple for a

realistic u(r) likc the Lcnnnrd-.Jones 12-6 potentia1 (43): o decreascs
monotonically with T. starting from the value a = Trn at T O; on the othcr
hand, R = Tm at T = O and thcrefrom iocreases monotonically with T
rcaching a finite value ,~henT _ oo.

In particular, the dccrease of cr with T has an intu.itive
qualitativc appcal: 50ft-core moleculcs appear to be smaller at higher
temperatures becausc thc larger momentum ~ill reduce the distance of
clases! approach on a C01115ioo. This qualitative faet suggested that the
kinetic approach described in scction IJ.B could be extended to deal with
50ft moleculcs. This cxtcnsion was rigorously proven with de LOIUlgi in a
ve~' simple way(44). If s is the collision diameter for t~u molecules ~hich
collide \vith kinetic cnerg)' E, thc probability density pes) of a given s is
ea5ily obtained from the ~bxwell di5tribution ror E, p(E). One immediately
finds that

<5>(0 O) IrmdS (I - expi-SU(5))l
o

(29)

where the average <> is taken with respcct to E. But the right hand side
of Eq. (29) is just the express ion [or the effcctivc diameter in thc BH
theory as obtained from Eq. (19), A...e. ,

08H(T) = <5>(T,o= O) (30)

I~ter we a1so [ound the connection bet~~cn 00' ~l. (28), "hich is identical
to o~(p O), and an average of the collision diametcr(43):

a;(T) = <5'>(T, O = O) = a'wcA(T, O = O) (31 )

Also. we shm.;edthat thc c[[ect ive rangc R, Eq. (28). is cqual to a mean
rang('

R~(T) <h'>(T, O = O) , (32)
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wherc the range h is the ~~ximum distanee of scparation bet"cen to bound
particIes.

Eqs. (29) to (32) establish a conncction hctwcC'1l t\<.'oapproaches
and gibe a new insight into the parameters used by the pcrturbation
theories. This also~ that the low-density valucs 00 and Ro that entcr
into the BOS of a simple fluid, 6q. (27), are respcctively equal to the
meancollision diameter and the meanattractive rangc.

The rigorous extension of 6qs. (31) and (32) to finite p has not
becn completed yet. It has becn shown that this cxtension relies on thc
use oí collision frequencies in the manner oí Enskog's theory(12) so as to
generalize 6q. (9) for an arbitrary potential (49). "lhe question is being
investigated by rreans oí the molecular dynamics rrcthod as applied to
discontinuous potentials(SO). l\evertheless, by asslU11ing thc validity of
6qs. (31) and (32) at any density it has been possible to interpret
kinetical1y the behaviouT oí e(p,T) and of R(p,T) for a variety of systems,
both spherically symmctric and asymmctric(48.49.S1). "lhe soundoess of
thcse interpretations is in support of the assumption.

V. CORRESPONDING ~íATES .\ND SYSTI'1>IS

A look at Eq. (27) is enough to :"colize that tloe BOS of all simple
fluids can be written (approximately) ir: thc ::anll"' :mivcrsal fonn if the
appropriatc reference systems and reduccd val' i:ILl es ,II\, uscd. This faet
recalls the PrincipIe of Corresponoing States (-15) [01' classical fluids.
1\';0substanccs S ano SI are saio to follow the PCS\\-h<:n thc thcrmodyn;:unie
propertics of S at any statc (p,T) becomcequ..'11to thosc of S' at anothcr
statc (pi, T') such that the scalc ratios p/p' ano T/TI arc constant,
indepcndent of the 5tate. 1\..'0 such states are then saio to correspond to
each other. The t"'.o substances foIl 0\0.' the res i f thei l' intermolecuIar
potentials u(r) and ul(r) differ only by constant scale factors of distance
and energy. SUchpotentials, al' substanccs, are 31so said to be conformal.
The fact that there are 5CtS of real substances which follow the PCSstems
from the scaling similarity of thcir intennolccular potcntials Hithin each
set(45,46,49). These sets maybe called confonmll sets.



Ilencc, .111substancC's ,,"ithin a given conforma1 set have the sarne
[OS if hrittcn in tcrm..~o[ variabh~s l'cuuccu \\"itl1tlll' appropriate constant
scal ing [:letors. Onc only m'(..'dsto mm," the [OS of on(" substancC' of the
set anu the appropriatc eh.:mgl'sof :,cal", to ohtain thp [OS of 0111 the
otl1er substanccs in that seto A limit in the applieability of the res to
construct OOS i5 the exclusive chal'aetel' of thc notion of conformality:
two substanccs are either confoInal al' not, there is no room fol' tljfferencc5
in....dcgree; it i5 impossible to incorporate the cffeer of a dc\'iation from
conformality.

Actually, rhe perturhation rncthods nl1m..: to tackle the last
problem, a1thouf,h approximate1y. 'l11eBHmethod of softening the hanl core (24)
and the "bUr" expansion of \\'eeks e.t etC.(29), relate the thennod)11amic
propertie5 of 1\,'0non confollanl potentials: tlle liS refel'cnce and the 50ft
ur(r) -Eq. (18)-, 111cextension of these ideas to incorporate the
attractive ua in a similar ,,"ayallohs the SKPT of the Lanngi and del Río(-!3)
to rcIate the full uCr) to i t5 non-confonr.al refcrence lisw in Eq. (2:").
Thi5 is done by a standard 5t.1ti5tical rrethoJ hhich requires lI(r) ~d the
di5tribution ftlllctions oC the Si\' reference to be knOhll, and is done in an
approximate way.

In arder to overcome the 1imitat ions of the PCS to con£on11a1
substanccs, a gencralization of the pes "'as presented several )'ears ago(.1i).
In its gencralized vcrsion. the PCS again dl:mges the sca1e of the t]¡cnno-
dyn;:unicvariables to relate corresponJing state:--, bllt no""the selle [acto1':--
depend in general on the state variables them.~c1vcs.

TI1Cgcneralized pes agrees \\'ith the ShT'T rc:--ult, [q. (2í), in one
important aspect: the BJS of ;111sir.1ple 5ubst:lIlcc:--takc:-- the sarne [onn in
tcnns of the state-depcndent reduced variablcs. a1thollgh tl1e SI\l'T re1:1tion
i5 only an approximation ;md no! :1Jl C\lllality. r\('v('rtlll~ll':--s,the1'(' arl~ t\,"O
great diffcrcnces bct\\'cen tlle epes and tlK' S\\l'T: 1) the rcfe}"ence in the
latter is not a r('a1 substanc('. but a moJel onl', ;:Uld 2) hoth syster.ls S

anJ Ssw are not in "corrcs¡x.mJing" states but in tl1e saml' statc (,','1'),
B..scJ on thcsc considerat iOIlS, a T:lChliricat ion or tiJe CPCS, cJ11ed

"mcthoJ of corresponding :-.ysterns"\,"aspropo~d anJ :lpplkd initiall~' to
systcms \,'ith pUrl'ly rcpulsive potentials(-lll). In this simpler ca:-.e, tile
rcfcrcnce is tlle liS systern. Instl~ad oC the approximatl' ¡x'rtllrh;¡tion



rclat ion (18). onc imposcs thc equal ity betv.:een the propcrties of the
.system S of interest and rhe' referencC' SHS:

The ~lCS ('xpresscs the EOS of S as the f1S-EOS \~'ith an appropriatc
a o(p,T). The latter can be obtaincJ in eithcr of t.....-oKays:

1) \\hcn rhe potential uf) oC S is unkJ1O\\TIbllt its thcrmodynamic propcrtics
have bccn rncasul'ed 01' calculated by eomputcr simulation, o is obtained
froJ!!Eq. (33) for any given P and T.

2) hhen u i5 known, approximatc values of 0(0,'1') can be obtained by

perturbation methods, Eq. (18).

lt must be ndded at this point, that hoth t11cperturbntion methods
and the a:s can be appl ied to other thermodynamic propertics besides the
lIelmholtz free cncrgy. Thus, cxprcssions equivalent to (18) and (33) can
be written [or the prcssurc, the compressihility, etc. Each choice of
thcnnodynamie ftUlction leads to lliffcrent ucfinitions of the effectivc

J iamcter a.
In the ~lCSa11 the particularities of a suhstancc are incorporated

iota the funetional dcpcndcncc of cr(o,T). 111u5, sincc no wüversal 01'

siJTlple form of a(r:,T) has bccn proposcd, a complic.:ltcd behaviour of a(p,T)

,,"ould seriously 1imit the appl ieability o[ the ~K:S. Forttmately it was
found that this 15 not the case. In particular, Cor a \oiide samplc of
rcpuls.ive potentials, including non-spherical ones, it was fOlmd that

b . . .. 1 . (48)a(n,T) can e wrltten Jn a VlrJ3 cxpanslon

a(p,r) =00("0 + o¡(T)p + (34 )

through the complete fl\lid r<1ngeup to rhe solldi fication 1¡neo It was
fOWldthat the cxpansion (34) is highly convergent: lt is only neccssary
to keep thrce or four tenns in order to achicve nn aCCllracy similar to that

. . (48 49) '1'1'" . t .toC pn..'scnt day eomputcr slmulat lOns • . lIS IS <In Important polO ; 1

JJl(':msthat OIlC onlr needs ;¡ rew sclcetcd J;'1ta at ('aeh tempcraturc in order
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to finu o{p,T) in the "hole u('n~ity r;lnge.

111('~ICS,,'as a150 applieu to non-:..:;pherical partic1E's. e.g. harJ

.spheroeylinJcr~ and dtunbcl1g(-l8). lt h'as founJ that the effE'ctive diameter

is tcmpermure ind<.'pcndent, hee;lus(' th<.' particlc~ .J.re haTd, bu! that the11'

cccentricity rn.1kes o to be' dcnsity dependent: the ineTE'aSe in oricntational

orde1'ing of the particles at high densiti<.'s makes the effective diamcter o

to be smaller than at 10\\' density. This faet is casi1y lUlJerstood by

appeal ing to the kinetic ('xprcssion for 0. F..q. (30: the aligr.tcnt of the

molecules in dense states inere,1Scs the coll ision rate for smallcT

düunetcrs.

Thc ~lCS\,¡as furthcl' dcvcloped to cover re~I1 systems by using as

a refcrence the sarne S\\' system as in the 51\Fr(49). \üth the Sl\' refcrence,

the three par,unctcrs E. a and R !lave to be uctcmincd. llIis has to be done

in such a ,,"ay that the phasc d iagram of both systcms S and Ssw are mappcd

into cach other so that <111statcs along ph<lsc lines and criti.cal points

coincide. "Ihe possibility oC using rcfercnccs uifferent from the Sl\' ,,'as

3150 considered ano judgco at this timc impractical (49).

In oruer to test the appl iGlbil it)' of the ~K~5, tog<.'thcr Idth

I-'ernánucz Fassnacht ''>'cappl icu i t to ~l set of monoatomic ano mJlccular

fluids(Sl). '111ecorrcsponuencc uscd in this \,'ork idcntifú ...s thc

orthobaric states of the suIJstance to those of the 511,' sy~tcm. The cfCeet i,"c

5\\' parameters are choscn in the follm..-ing \.:ay:

1) 111c dcpth (. is takc:..'Ilconstant, as in the pcrtu1'bation expansiono anJ its

value obtained from the COnli1rC'ssibility factor =sw = P\"j:-':kTof SS\\' :It

tl1(' critical point.

2) TIl(' value oC the rcduccd range A = R/o at ea eh orthobaric :,tate '''::15

fOlllld froro the equality of tile comprcssihility f:lcto1's

Z("(,"*) = :sw(T*,~)

3) "Ihe me<.lndiametcr el I":¡¡~tl1('11obtained rrom thl'" orthobaric ~1':dl'n~ity
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o'(T) (36

Results \,'cre obtaineu for A, :\2' (Jllt, CFlt, CF~CI, CF2Cl, CFCl3• CCl,. and
CO2• 1ne test of the ~'CS proved to be SllCCl'sful. shmdng in particular the
follmáng points:

a) 'nle method Is [easlble, .c.e., Eqs. (34) and (35) have real solutions
for o and A.

b) The behaviour oí o ami R \-dth pano T. agree qualitatively \áth
a11 predictions based on the flS ano Sh'perturbat ion mcthods and \'o'ith
their kinetic interprctation. The exccption are the second
derivatives of o and Rwith n, \\'hich are of oppositc sign from the
£~FTcalculations.

c) 111epresent kno\\'ledge of the SI\' reference fluid is sufficient to
make the ~X:S"ork.

<1)A conformality bctween dif[erent subst;mces was (.~xhibited expli..:itly
in a11 cases \\here it was cxpccteo (e.g. argon and mcthanc). Also,
a partial confontt~lity, {.e. betwecn the repulsivc parts of the
potential, was found for the Cr:4 family. This inuicates a similarity
of thcir repulsive forces \.¡hich is commonlyhidden by the non-
confonnality of their attractive potentials.

e) 1he EOStakes the generalized VD\( [onn, as Eq. (14).

C. Veve£opmen.t 06 tilO sw fOS

In both SWI'Tano ~lCSone needs the knowlcuge of the propcrties oí
the 5\\' system. Thc t-1CSrelies on the thcnnodynamic propcrties, \\hereas the
5\\11T also nceds the radial distribution function gsw(r). -Ine sourccs of
informat ion about Ssw are of thc samc types as for lIS: integral equations
[or the distribution functions(S2), perturbation mcthods(S3), and Monte

d ' . I ' (54 ,35) 1'}' tCarla or molecular ynamlcs Slmu at10ns . lcrc 15 no accura c
analytic theory for thc S\\'g(r) and the bcst numerical rcsu1t~ are provided
by sirrulations(S4.~S). Thus. ue Lonngi anJ Jel Rio proposeo an anal ytic

. '( b d } . l' I (55,56)and empineal rcprcscntatlOn of gsw r) ase on t le SlJTUl atlon resu ts .
This ••...as the rcpres<.'ntation useu in thc SWlyr(43).

-nlC thenncxJynamicpropcrt ¡cs of Sswdescrve sorne discussion. The



SI\'-EOS can be \\Tritten by mean~cf a
simj1ar to that in Eqs. (14-16), in
EOS o[ the VDW type:

-asw = "Hs (p*) , "a (p', T*, A)

high-temperature perturbat ion expans ion,
tenn~ of a HS referC'nce, to obtain an

(37)

h'here again aa is expanded in tenns of the ¡nverse tempcrature by Eq. (16).
Hcnderson e...tal. (54) calcu1atcd the first t\\'o tenns in this C'xpansion, al
and a2 J by the Monte CarIo mcthod Cor SW systems for several values of ;\
betwcen 1.125 and 2. Fernández Fassnacht llsed these resu1 ts to obtain the
vapour-liquid equilibritun including the position of the critical point(57).
These orthobaric Jata Nerc then used in the app1ication of the ~K:S to real
fluius(51,57). 1-=01' Eq. (35) to have a $Ol11tionat the critical point,

Ze(A) should take the value Ze = 0.29, char,lCteristic of real simple fluids.
The exact resll1t for A = 1.5 gives Ze(1.5) = 0.29, Khich is an cncouraging
value(:'íS), but the second-order approximation to aa gives larger values of
Ze for al) 1.(54,57). This 1imitation prevents the prcsent usc' of the i-K:S
1 h" " 1 " (51,57) ¡ 1 ¡" 1"" "e ose to t e cntlca pOlnt . n ore el' to rcmov(' t l1S lmltatlon,

and aIso to obtain an analytic exprcss ion for asw, \\'C'have dcvcloped
theorics in the long (A» 1) anJ short range (A -::;;1) limiting cases.

Thc long-rangc case was first anal izeJ by ronce and Renon(58) •
lne first-ord~r term [01' the SWsystcm is

R

al = -2np fuI' r2gHS(r,p*)
o

which becomcs, \lihenA.» 1,

(38 )

with

2np

3
R' - [~s (p*) - 1] , 2np B(p*, A)

2p
(39)

-1~s(p*) = ~ (ap/dp)

\\o'hcreB(p*, ;\) -->. () when A -~ro t)nc no! iCl..•.s th<lt the fil"st tcrm in
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Eq. (39) ls JUS! the VD\\'tcnn with a = 1~3£. lhe sccond tCllTl \\'35 the ane

calculatcd by Ponee and RCTIon(S8). Tlle long range approximation has
rcccntly bcing extended to thc higher-ordcr tcnm~ 32 and a] by Benavidcs
to providc close-form exprcssions and thc accuracy of thc ¡lpproximat ion is

presentIy being tC5tod(59).
The short-r:lI1ge approximation, A - 1 --~ 0, has becn studied in

collaboration with Lira (60) by mcansof standard pcrturbation techniques.
Onc obtains again analytic expressions in this 1imit, in tcrms of powcrs of
A-l. Those rcsults are also bcing testcd and useo to prcdict the vapour-
liquid equilibrium of the 9~ fluid in this limito

A furthcr extension of the study of thc refercncc systcm involvcs
thc simultaneous use of a ~~ attraction. introduccd to model the dispersion

forces, plus multipolc terros introduced to model the electrostatic
interactions. In this wayone finds the effcet of the non confonmality of
the dipolar and quadnlpolar tenns on the vapour-l iquid cquil ibritun(59) .

VI. EOS, FLUID mXl1JRES ANll SOLlITIONS

A. Sofution theoJÚeJ.> and the VVWmode.f

The problem of dc~~e fluid mixtures diffcrs at high and at 10w
prcssures. In the latter case, it is very convenicnt to separate the
contributions to thc chernical potential ~a of the a-th specics in a 1iquid
phase in several parts. In a first stcp, ~a is written in terms oí ~oa'
thc chemieal potential of thc samcspecies as a pure fluid at the same P and

T as the mixture.

(40)

wherc the composition of thc mixture i5 givcn by thc mole fractions
x .,. n /n n is the total numberof moles. and 6\..1is mcasures the change
a a' a
in \-1 due to thc faet that the a 5pcciC's is not in its pure state but in a

o-mixture. At low prc5surc5. p« Pe: thc critical pressure, uOa i5 readily
accesible to experimental dctcrmination aml thus 6uoai5 thc property to be

predicted. lhis is usually done by rrcans of solution modcls.
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Ir X(P,T, {na}) 15 an C'xtensi\'C' thermod)TInmic prOpl'rty of the sy~tem, ene

defines the flffict ion of mixing lImXby

(41)

\\"hcrc th" sccond tcm on the right-hand sidc i5 rhe V.:Iluc of X for the
systcm heforc mixing XO i5 calculatcu for the Ct spccics in its rUTe state.

(}

'111('goal of a solution theor)" i5 to predic! the (;ibbs cnergy of r.tixing LmG
by asswning a molecular mOl.icl. Sincc the mixing proc('ss in Eq. (41) is
corrunonly defineJ at constant P :Ind T, one can l\ritc tlmG in tcnn:; of the

entrap:, ano enthalpy of mixing, i\mS and ~mJI, by

(12)

Thcsc qu..'lntltlcs ma)' be obtaincJ from an ('quat ion oC statc for the mixture,
al' from a spccific mode} of the saJutian.

At high )1IT"ssurcs, on the other hand, h¡. (.JO) i5 not too p.1<.~;mingful
anu the cmphasis is mIde in obtaining an fOS fol' the mixture, :md in d('ducing

from it all the relevant qwnt it ¡(,so j>erhaps the st rong('st test of .U1 r.:üs
rOl' mixtures is to ask \\'hC'ther it prcdicts corre('tly the phasc-l'quil ibrium

phcnor.J.ena. 111ese are of great thcoretic;¡l intl'rcst and also oC \\'ide

practical impol'tance(Só)o In :111 ('ases, of 10\\' or high prcssul'Cs :Ind of

soIution modcls 01' fDS, most actu:II appIicatiOJ1s arc 5ti11 done b~' 1TK.':lJls
of empi rica 1 (()1 ,(2) 01' semi -emp ir kaI (63,64) fl.'t hods o

On the thcoretical sitie, the VD'" mü<.lc1has bcen uscd both to

obta.in the fnnctions oC mixing and to constl'uct ros for the mixture. \,Oc

wi I I mestly refcr herc to the low-pressure case, hut he r.1USt filent ion that

the VDW model and EOS are able to predict and cJ:¡ssify ('orreetly most phasc-

c(luiI ibnml phcnomcna, as ",as ShO\\11hy SCott and V.lll l\on)11Cnburg in thcir

funllarrntal ",'ork((IS). On thl' 100.,r-prcssurc rcgiml', SlIlC(, thc \\'ork of \'an

!.aar rhe original VDIV-EOS ",as uscd to ol1tain (1:.11 (01' its C'qUiV;lll'llt
a

"activity cocfficicnt") from \dlich the' mixing Cihhs cTll'rgy L\nCcm be
dcrivcd (66) o

Our first h'ork in this Jirect ion, togcther \\'ith Cllzm.ín :md ~lier

)' Tcrán, \.,ras to obtain the propert ¡es of mixing from a general i:Ctl
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VD\"'_EOS(67 ,69). Jn thi5 hork \\.Crrnde use of thc VDW one-f1uio-theory (OFf),

in \\'hichth(' propcrties of the mixture are rcpre~cnted by those oí a
(h)1")otllctiea1)pu1'e fluid, \\hosc char<.lctcristic par<lJreter5 are \\'ritten in
terms o[ the iote1'act10n parumctcr~ of thc componcnts by means of "mixing
rU1es,,(70) .

Jn a11 mixing proce~ses. one may separate the contribution froID
the "idca1 mixing". In the mixing of ideal gases one finds

.d6' g = RT ¿ x 1n x (43)m a a
a

\\'hc1'cg = G/n i5 the molar Gibb5 energy. ¡[enee, one defines an "excess"
function of mixing by substraeting the ideal contribution in Eq. (43):

and similar1y for the othe1' mixing propcrties. ro introduce thc invroved
VDW-r~S, Eq. (14), to thc mixture problem, one uses the expression involving
the free volumc, Eq. (11), to define a free-vo1tunc fraetion 4> for the aa

species as

'" =Va/V (45)
'a f f

where V
f

i5 the free vo1umc of one particlc in the mixture and ~ i5 the
frce vo1unc of a particIe of typc a befare mixing. One a1so needs the
~~ attractivc energies per mole for the a spccics

a = N, V a (46)
a a

In Eq. (46), va is thc molar vo1umc of the a species ano a i5 defincd in
r~. (14) writtcn for thc samc component. In thc original VDW approximation,
na is a constant. The resulting exce" Gibbs encrgy oí mixing 1, then(69)

g' = l' x [RT 1n('" Ix) + r(v- v) - alv + a Iv J¿ a 'i'a a Ct a a
a

(47)

froID \<,:hich5£ and he are readily ca1culated and involve the changc5 of the



80S effcctivc parameters, the
componen!, Hith tempcrature:

I -[a Ina' /a In T]o o

and

m = - [a Ino /a In T]
o

diameters o and vrn~energics a of the a
o

(48)

(49)
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~~5tsolution models, since they are used at low pressures. assume
that P = O. A particular type of models describe the properties of the
so-cal1cd athermal mixtures, for "hich hE = O. In this case, the Unpürtant
quantity becomes SE. Imposing these conditions on Eq. (47), and assuming
the VD\\'approximation for the free volumes, given by the first tClTol in Eq.
(13), we fmllld thc following set oí resul ts, \V'hichare equivalent to each
other within tlleassumptions (67-69):

se = - R lXo Inl (vo - 4bo)/(v - 4b)]

R L Xo In(va/v)
o

R L Xo In(bo/b)
o

(SO)

(SI)

(52)

These equations are identical to thosc ohtained by well-known
models for athennal solutions: Eq. (SO) is the result of Hildebrand(71),
and Eqs. (SI) and (52) are those of the models of Flory(72), Guggenheim(73)
and f~ggins(74). I~nce, the generalized VDW result expressed by Eq. (47)
ineludes these modcls as particular cases.

A second re,ult of tllewark with Guzmán and ~liery Terán was to
,how that Eq. (47) al,o includes as a particular case tIlemodel of
Scatchard and Hildebrand for the so~called "regular" solutions. These are
mixtures for which thc excess entropy of mixing se: vanishes and the ürportant
quantity becomes h£. Again, letting P = O and SE = O, and assuming the
original VD\,¡,approximation a = constant, we fOlUld that
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- v[(I 6 ~ )' - I 6' ~ 1
a a a aJa a

where the "solubility paraneters" óa. are givcn by

(53)

6'
a

- (1 + m - 1 )0 Iv
a a Ct Ct (54 )

Then, if the exccss voll~c of mixing vE = O. as is implied by thc 501ution
being regular, ane gets from (53) the Scatchard-Hildehrand rcsult(7S).

The generalization of the SHtheory "'as used with Lazada ano
~lonfort to obtain values of the sOlubility parameters \oihich are consistent
with measurements both of thc EOS, through Eq. (54), ond of the hcat of
mixing hE, through Eq. (53)(76). Thesc different types of mcasurcments had
prcviously led to inconsistencics.

All these results shov.~d that the problem of mixtures 3t lo"
pressures can be systematically treated by nn EOS of the VDW typc and that
such treatment contains as particular cases 501ution thcorics previously
obtained by restricted particular models. Thus, Eq. (47) should be bcttcr
than the oId models. Nevcrthe1es, the extensive app1ication of this
extended VDW theory of solutions was prevented at the time by the peor
knowledge of the appropriate generalization of the VDW-EOS, and by the
corresponding ignorance about the correct effective V1)W parameters. The
later developrncnt of the SW-EOS and its application to pure fluids, which
1S wi thin the framework of the VDW modcl, as dcscribed in the previous
sections of this article, has make it worthwhile to use Eq. (47) ano a SW
EOS to calculate excess functions. This ~ork is currcntly unocr way in
co1laboration with Guzmán and ~~ñoz(77).

Besides the developrncnt oí an EOS for mixtures, and to fumish it
with a statistica1 basis, the S~lyr was gcncralized to the multicomponent
case in collaboration with Monfort(78). lhe generalization of th~ SW
expansion, Eq. (25), to the multicomponent system is straightforward anu
leaos to a definition of an effectivc diametcr GaS and range RaS for the
interaction of species a with 8. In its simplest form the S~PT [or mixtures
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(61)

(60)

a-expansion and leads to

(00

RaS = r~S - [exp (-SEaS) - 1)-' Jm [exp (-SllaS) - 1) dz .
raS

These expressions wcre used, together with the 9v-EOS, Eq. (36),
to predict the excess functions of mixing far the systems Ar + Kr and
Ar + CH(78). The 9V 80S was taken to sccond arder and the terros al and a2
calculated from the Henderson et al. expressions(S2). The theory was sho\\.n
to predict correctly the excess functions gC and hE if the eros sed interac
tion energy £aS was fitted by mcans oí an adjustable parameter.

Essential ingredients of the \TIW-OFT are the mixing rules that
define the parameters oí the pure fluid that represents the mixture. The
joint use oí the 5\\'1'1'and the ~ICSwere sho\\.TI to produce essentially exact

mixing rules. In arder to make the pressure oí the mixture equal to that
of its equivalent fluid, it is sufficient to make

uses the

(57)

(58)

and

E = r x XoE o
aS a 1-' al-'

(59)

These exact ffilxlngrules require, for their practical application, to
approxirnate the 5"1 radial distribution functions gsw. At low densities and
high temperatures gsw ~ 1 and one recovers the popular VDW mixing rules

o' = r x x o'
a, S a S aS

(60)

and

ER' (61)
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Thus, Eqs. (57-59) allow a systematic improvement of the VDI, rules, (60)
and (61), and involve a local composition effect through the rdf gsw'
Again, the systematic study cf thc @~mixing rules rcquires a good enough
SW EOS.

VI1. CONCLUSIONS AND PERSPECflVE

The work which has been reviewcd in these pages has lead to a
theoretical equation of state with the following charactcristics:
1) It is of the generalized VDW type, with a repulsive HStenn and an

attractive term of the SW formo
Z) The paramcters of the EOS have a physical meaning: they are related to

the intermolecular potcntial through the (approximate) PT rclations,
and al10w a kinetic intcrpretation as mean collision parrumeters; this
interpretation has been proved rigorously at the zera dcnsity limito

3) The EOS parameters can be calculated approximately by means of pertur-
bation rnethods from the intcrmolecular potcntial, and, whcn the lattcr
is unknown, by means'of the phenomenological method of corrcsponding
systems from thermodynamic data.

4) The EOS can be applied te mixtures in the context of a VDW one-fluid
modelo It incorporates as particular cases sorne well-known solution
models and leads to exact mixing rules in terms of radial distribution
functions defining local compositions.

In order to rcach fuU applicability, the approach to aTEOS
revicwed here requires the development of several points, sorne of ~hich are
currently under way: a more accurate SW EOS in closed-form expression is
needed; non-spherical reference systems have to be incorporated in order to
cope with more complicated MOlcculcs; the kinetic interprctation of the 80S

paramcters has to be extended to higher dcnsitics, and finally, the ~CS has
also te be extended away from the orthobaric states. AII thcsc develop-
ments are well-defined research problems whosc solution would produce a
physical1y sound and useful TEOS fer real fluids.
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