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ABSTRACT

The work developed by the author and his collaborators leading to
a theoretical equation of state for real fluids is reviewed. The topics
covered in this article are: 1) The van der Waals model and kinetic theory;
the model of VDW, molecular collisions and free-volume theory. 2)Perturba
tion theory and equation of state: perturbation methods in liquids and itg
relation to the VDW model, exact deduction of the VDW equation and its
connection to real fluids. 3) The VDW model and real fluids: intermolecular
forces, the inverse problem, the square-well perturbation method, effective
parameters and kinetic theory. 4) Corresponding states and systems:
generalized corresponding states and systems, their application to real
substances and development of the Square-well equation of state. And
5) equation of state, fluid mixtures and solutions: solution models, the
VDW equation, the square-well perturbation method for mixtures and mixing
rules. The main conclusions to be derived from this work are also stated
as well as the perspective for future work.

+Presentado en la asamblea general ordinaria de la SMF el 29 de marzo de
1984.



RESUMEN

Se revisa el trabajo realizado por el autor y sus colaboradores
gue ha llevado a una ecuacidn tedrica de estado para fluidos reales. En
este articulo se cubren los siguientes tdpicos: 1) El modelo de van der
Waals y la teoria cinética: el modelo de VDW, las colisiones moleculares
y la teoria del volumen libre. 2) La teoria de perturbaciones y la ecua-
cién de estado: métodos perturbativos en lquldDS y su relacién con el mo
delo de VDW, deduccidn exacta de la ecuacifn de VDW y su relacién con f1u1
dos reales. 3) El modelo de VDW y los fluidos reales: fuerzas 1ntermolec3
lares, el problema inverso, método perturbativo con pozo cuadrado, pardme-
tros efectivos y teoria cinética. 4) Estados y sistemas correspondientes:
generalizacidn de estados y sistemas correspondientes para sustancias rea-
les, desarrollo de la ecuacidn de estado de pozos cuadrados. Y 5) ecuacidn
de estado, mezclas y soluciones: modelos de solucidn, la ecuacidn de VDW,
método perturbativo de pozo cuadrado para mezclas y reglas de mezclado.

Se establecen también las principales conclusiones de estos trabajos y se
describe brevemente la perspectiva actual en el tema.

PROLOGUE

This is the story of the research that led to the development of
a theoretical equation of state for real fluids. It began in 1969, has
involved a score of characters and took place in several laboratories and
offices of the Instituto Mexicano del Petrbleo (IMP), the Instituto de In-
vestigacién en Materiales (IIM) and the Universidad Auténoma Metropolitana
(UAM) at Iztapalapa. The background and setting of the story are described
in the Introduction, whereas in the later sections the research itself is
reviewed. 71ne reader who is not interested in the characters is advised
to skip the Introduction and start with the subject matter in section II.
As many stories, this one has not come to a recal end. The epilogue is
still to be written.

I. INTRODUCTION

By the summer of 1969, I had spent a year at the IMP after
obtaining my PhD in Berkeley with a thesis on the statistical mechanics of
plasmas. My first job was to find out what a physicist is supposed to do
in such a place. This question might seem preposterous if the circum-
stances are not taken into account. One year had been spent to find out



that nobody living within 2 000 kilometers knew the answer -although some
dared to say they did- and talking to the people that had the problems:
the engineers.

A common sense answer to the question was easily confirmed in the
literature: In the petroleum and chemical industries there was, and still
is, a broad field open to the applications of thermodynamics and statisti-
cal mechanics of fluids. By that time, a young physicist had joined in my
worries. Together, Luis Ponce and I were able to clear out a few basic
things: 1st, the real scientific and practical problems concerned dense
fluids, {.e., liquids; 2nd, to tackle these problems a combined theoretical
and experimental effort was needed; 3rd, it was indeed not a one man's job,
and 4th, it was obviously necessary to establish a foreing connection.
These four points led to four inmediate actions: study the physics of
liquids and chemical engineering thermodynamics, start a thermodynamics
lab, launch a crash program on recruitement and training, and go abroac!

By 1970 the perspective was clearing up. Jakob de Swaan, whom I
had met at a thermodynamics conference in Cardiff and was then with the
Koninklijke-Shell Laboratorium in Amsterdam, had gallantly scouted our
survey of the field of applied thermodynamics, including a brief course
that he taught at the IMP. Our "group" had grown in 50% when another
physicist, Manuel Guerrero, joined the initial two. I had also obtained
a part-time appointment, at the Centro (later Instituto) de Investigacién
de Materiales of the National University. For several years, the CIM was
going to play an important role because it was close to the students we
wanted to proselitize.

We had started late but at an exciting time. Fluid-state
thermodynamics has two well-defined approaches: on the one side, the
statistical mechanics of liquids and gases, and on the other, the thermo-
dynamics equations and data used by the engineers. Both ways were quite
developed when we started to look into them, but ours was a peculiar
situation. Engineers with experience accumulated in years of design work
-plus that of several generations of teachers- can safely, though not
wisely, forget about the advances of statistical mechanics and get along
with it. A chemical physicist or physical chemist without the direct
responsability of pressing practical needs can also forget the more nitty-



gritty realities of empiricism and survive. Our case was different: we
didn't have the practical experience but had the responsability. We couldn't
forget neither, and also as importantly, we were physicists by training and
couldn't forget it either. ‘

Starting a laboratory from scratch proved to be a difficult and
slow endeavour. The main experimental lines had been decided on information
gathered on a tour of British laboratories and universities (sponsored by
the British Council), the Institut Francais du Petrole and the Royal Dutch
Shell laboratories. Between 1970 and 1973 several students joined the
team. Miguel lLeiva and Esteban Martina were going to work on a PVT
apparatus, although lack of resources redirected their effort to theory,
and in particular to the study of the van der Waals model; Maria Trigueros
also started work in the same direction, Francisco Guzmin and Luis Mier y
Ter4n undertook the study of fluid mixtures. Since at the CIM the minimum
experimental resources were made available to us, Ricardo Tsunura started
the work on PVT that at the time wasn't feasible at the IMP,

In a couple of years the picture hadchanged completely. We had
identified the main specific problems, both basic and practical, and had
an informed understanding of them; we had developed an independent view of
the fields involved and the first few pieces of research were coming out.
Experiments were finally under way at the CIM, where Martin Chivez had
started work on ultrasonic absorption and Jean Pierre Monfort had arrived
after being a student of Henri Renon in Psris. The work on ultrasonics was
possible thanks to a grant from the Fund for Overseas Development and
Education, and Monfort's visit was supported by the cocperation program
between France and Mexico. Monfort started our experiments with mixtures
in colaboration with Guzman. Our theoretical flank was reinforced by
Marcelo lozada and also by Carlos Arzola, who came from the Universidad de

San Marcos at Lima.
During these years the need of securing the assistance of an

expert experimental thermodynamicist had become urgent. A most fortunate
happening for the success of our endeavours was the arrival of Ian Mclure
at the IMP by the end of 1973. McLure visited us for six months with the
sponsorship of the British Council. His programme had been carefully

planned and three new students had been selected and prepared to join him



in the laboratory at IMP -which was finally been equiped: Enrique Fernin-
dez Fassnacht, Rubén Lazos and Arturc Trejo. Thus, several experiments of
interest to the petrochemical industry were started and eventually
completed. - A close interaction between experimental thermodynamicists in
México and Mclure's Laboratory in Sheffield has continued to the present.

The story took a different pace by the middle of 1974, and its
development was going to be altered. It was time for some teammates to go
abroad and pursue different but complementary lines of training. Martina
left for MIT where he was going to work with John Deutch in statistical
mechanics. lLeiva went to the University of Birmingham to do experimental
thermodynamics. Guzmin joined McLure in Sheffield. Trigueros went to
Berkeley and did work with Bernie Alder. Tsumura went to the NBS Laboratory
in Boulder to do low-temperature experimental research.” Ponce had left for
Paris to work with Henri Renon at the ENSTA, and Guerrero had gone to John
Rowlinson, then at the Imperial College, to work on statistical mechanics.

The second important event was the creation of the Universidad
Autbénoma Metropolitana as an alternative to the traditional higher-
education institutions in Mexico. The importance of the birth of the UAM
for this story had also to do with timing. Our vision of the field told us
that a lot of research had to be done and that some of it was of rather
long ranged aims. Nevertheless, the conditions then existing at the IMP
made it very difficult to do this type of research; even if it was considered
important by international oil companies. Hence, for those of us who had
a stronger interest in long term research, the UAM at Iztapalapa offered the
opportunity to pursue it. Fortunately, some stayed or were to return to
the IMP and play a leading role in its development, although their
activities there fall outside the line of this story.

Thus, by the middle of 1974 Mier y Ter4n, Ch4vez, Fernindez
Fassnacht, Dolores Ayala and I joined the UAM at Iztapalapa. Ayala had
been my student at the UNAM and became a nice reinforcement of our team.
Others joined us later after their stays abroad: Martina, Guzmin and
Gustavoe Chapela. Chapela had been a student of Tom Leland in Texas and of
Rowlinson at the IC, we had met a few years before while I was at the IMP
and he at Pemex.

At about this time, we started what was to become a continuing



and fruitful relation with Doug Henderson from the IBM lab at San Jose.
Newer students and later colleagues at Iztapalapa were Jacqueline Quintana,
who started work on mixtures, Sergio Martinez and Ana Laura Benavides.
Martinez has been doing simulation work with Chapela and Benavides worked
with Martina before playing a role in this story. Still later, Victor
Romero, Leonel Lira and Antonio Mufioz have also contributed as students.

A fruitful contribution to this story was made during a sabbatical
leave at the School of Chemical Engineering of Cornell University whose
hospitality I enjoyed. There I had the change of profiting from many
discussions with Keith Gubbins, Bill Streett and Ben Widom. The visit to
Cornell was sponsored by a Fulbright fellowship.

In the last few years, most of the members of the team have
matured as independent researchers, and some have moved to other
institutions and endeavours. The original goal is still being pursued with
their enthusiastic, albeit part-time, support.

II. THE VAN DER WAALS MODEL AND KINETIC THEORY

A. The model of van den Waals

Our first job, back in the beginning of the 70's, was connected
to the van der Waals (VDW) equation of state. We had been working with
several equations of state (EOS), generally called 'semi-empirical", which
were of wide use in chemical engineering. These equations consist Of(l)
35,

and pretend to improve the quantitative accuracy of the original VDW-EOS.

empirical modifications of VDW equation derived on his thesis of 187

A particularly popular series of semi-empirical equations originate in the
Redlich-Kwong equation(z). An initial aim was to find out whether such

(or similar) modifications to the VLW-EOS could be understood by physical
arguments, so that theoretical improvements could be incorporated. It was
soon clear that the formal methods that had led to a rigorous derivation

of VDW-EOS(s’a) could not account for the type of behaviour incorporated
into the RK and similar equations. Hence, we turncd cur attention to the
original and more approximate derivations of VDW-HOS. Many textbooks contain
approximate,qua]itativc(n'hand—wavingcjcrjvationsof VDW-EOS(S), and some

(6)

rely on arguments which are either confusing or wrong



The VDW model provides a way to calculate the thermodynamic
properties of a fluid from the binary intermolecular potential u which
depends on the relative positions and orientations of two molecules. The
essential features that define the van der Waals model (VDW-M) are: 1st,
a separation of u in its short-range repulsive part u, and its attractive

part u, of longer range,
U= u Uy , (1)

and 2nd, a corresponding separation of the pressure and other extensive

properties in two parts
r* Py . (2)

Van der Waals also used a particular form for the terms in Eq.
(1) and introduced approximations to obtain the terms in Eg. (2). Never-
theless, the latter are additional to the main features of the VDW-M and
their improvement leads to revised versions of the original VDW-EOS.

The most relevant consequence of VDW work in 1873(1) was to show
how the VDW-M, defined by Eqs. (1) and (2), with approximate expressions
for P and P_, cxplains the existence of the vapour-liquid transition,
including its critical point.

In general, there are two broad and different ways to deduce (2)
from a given interaction model in (1): The first is the kinetic approach
in which one considers the individual molecules, their motions and
collisions. The second relies on the statistical mechanical picture
developed by Gibbs and is connected with frec-volume theory and perturbation
methods. The original derivation of van der Waals himself was mostly of a
kinetic nature and based on the virial theorem of Clnusius(l). Most
contemporary textbooks, on the other hand, use the statistical mechanical
approach mixed at times with kinetic argummnts(s’b).

We will deal with the kinetic and free-volume theories in this
section and leave the consideration of perturbation methods for section

ITIs



B. Moleculan collisions and the pressure

In the original derivation of the VDW-EOS, u,. was approximately
represented by the interaction between two hard spheres of diameter o,

whose centers are separated a distance T

Uy = Uyg = (3)

Kinetically, the pressure in a system equals twice the flux of
momentum through a surface, in one direction. The effect of the repulsive
collisions is to increase such flux; when molecules on either side of the
surface collide, momentum will be transferred across and in excess of the
(ideal) transport due to the strcaming of the particles. But also, the
collisions increase the flux of particles through any surface. Then, the
net effect of the repulsive forces is to make P> P,;53>0. The original
VDW derivation, for a system of N particles at temperature T and occupying

a volume V, approximated P, by
Pyg = okT/(1 - 4bp) . (4

where ¢ = N/V and b = 76%/6 is the volume of one particle. The VDW
approximation (4) becomes exact for hard spheres only at low densities,
but its qualitative bchaviour is correct over the whole fluid range.

In our initial study of the VDW-M with Martina, Leiva and Trigue
ros[7’8), we obtained kinetically the generalization of the VDW approximat

ion (4). By means of simple but rigorous arguments, we found that

Bog = okT/(1 - n), 7 (5)

where 1 is the mean distance across which momentum is transferred
instantaneously, due to the collisions, per unit length of travel. This
quantity can be written in terms of the mean frec-path ¢ and of the diameter

o of the particles as



= gie + 5 . (6)

Eq. (5) was shown to be valid both for the fluid and for the
solid. In particular, for a one-dimensional system of hard rods in a box
of length L, n = uN/L exactly. Substitution of this value in Eq. (5)
gives the exact EOS found originally by Herzfeld and Mayer(g}, and by
Tonks(lo), who used more formal arguments.

Another result was to show that, at densities high enough to
prevent diffusion of the particles,

n =opt/? . (7)

This result, when introduced in Eq. (5), converts this equation into the
Salsburg-Wood EOS from free-volume theorycll). Eqs. (5) and (7) also show
t?at tbe correct EOS for the solid phase should involve the 'free-length"
V3 - N3g instead of a free volume.

The EOS (5) can be written in terms of the mean free-path g by

substitution of Eq. (6). One thus finds the expression due to Enskog(lz)

Z = P/pkT = 1 + oQple/R . _ (8)

where 2, is the cross section of the particles and 2, is the limiting value
of 2 at zero density. Further, by introducing in Eq. (8) the radial
distribution function g(r) at contact r = g, we obtained the EOS in the
form

Z=1+530g@)p . (9

In this equation, s is the mean collision diameter proyected along any
direction. In particular, for hard rods, squares and cubes s = g. For
hard disks s = mo/4 and for hard spheres s = 2g/3. These values of § give
the correct second virial coefficients and make [q. (9) identical to that
obtained from the virial theorem of Clausius.

These connection between elementary kinetic theory, Fnskog's
method, Clausius' theorem and the VDW-M, gave a consistent and alternative
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method to study the EOS. But the fact is that, by the time when these
results were presented, the approximations for Pyg had been significantly
improved and a practically exact EOS of the HS system was known. The
contributions were then mostly of academic interest, although the use of
kinetic arguments and the mean collision diamcter was later going to be
proven of importance. (See section IV.C.)

The other contribution to the pressure, arising from the attractive
forces, turned out to be more difficult to calculate by kinetic methods.
The original VDW approximation for P, is

Pa = - ap? , (10)

where ¢ is a constant with the dimensions of energy x volume. It was
possible to obtain Eq. (10) kinetically(ls), but it was not possible to
write its generalization in terms of the collision dynamics. Nevertheless,
a kinetic interpretation of P, through the virial theorem was later obtained

and will be described in section IV.C.

C. Free-volume theony

An alternative approach for the calculation of Py is free-volume
theory(ll) which has been mostly used in models of the solid phase(14).
Nevertheless, the VDW approximation in Eq. (4) is commonly justified in
terms of the free volume available to a particle, or the corresponding
excluded volume. A mean free volume can be defined directly from Eq. (5),
but an alternative definition can be made at the level of the free energy
of a hard-particle system. TLet AA be the Helmholtz free energy of the
system in excess over the ideal-gas contribution. Then, in a purely
repulsive system, the mean free volume per particle Vg is defined as

AA/NKT = 1n(Ve/V) s (11)
so that Vg cquals the Nth root of the free volume available to the N-

particle system in its configuration space. Then one simply finds the

pressure in terms of the excluded volume Ve = V - Vg to be
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7 =1 + YBXAy)

- X ' (12)

where X = V,/V is an excluded-volume fraction and y = bp is a reduced

(15)

density called the packing fraction The form of X(y) was found as a

power series in the density
X(y) = 4y - 3y* + o(y?) ; (13)

or could be approximated by assuming that the decrease in X with y is
simply proportional to y itself. This assumption leads to the equation

(16)

for Pos proposed earlier by Scott Again, these results were going to

find application later. (See section VI.A).
[1T. PERTURBATION THEORY AND EQUATION OF STATE

A,  Perntunbation metheds in Liquids

Even though van der Waals used kinetic arguments to deduce his
EOS, the main source of present support and popularity of his model comes
from a specific statistical mechanical technique: perturbation theory (PT).
The use of perturbation methods for the understanding of the liquid state
was well established in the beginning of the 70's. The main points in this
development were, on one hand, the proposal of a perturbation expansion by

(17)

methods: computer simulations
(21)

Zwanzig and the extensive work on the hard-sphere system by several
.

(18,19) " virial expansions ")

y b ) b 4

(22,23) o0 the other hand, the

5
work of Barker and llenderson (BH](”A) which was the first succesful theory

, scaled-
particle theory , and integral equations
of the liquid state. The reader may consult the abundant review literature
on the subject for a detailed account (*27¢7)

The main ideas of the PT of liquids conform to the VDW model as
stated in the previous section. DPerturbation methods thus give to it a
formal content and allow concrete calculations of the model which can be
systematically improved by statistical mechanical methods. The application

of PT to realistic fluids has been most succesful for simple fluids, whose
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intermolecular potential u(r) depends only on the distance r between two

molecules. The extension to the more complicated molecular fluids is also
2

possible(“s), but for simplicity we will restrict ourselves to the case of

simple fluids. These perturbation methods consist of three essential steps:

1) A separation of the interaction potential u(r) in a repulsive and an
attractive part as in Eq. (1).

2) A first perturbation expansion of the properties of the system with
potential u, about those of the HS system, which is used as reference.

3) A second expansion to incorporate the attractive forces in which uy
is the reference and u, is the perturbation.

These steps separate the thermodynamic properties of the system
in the same spirit of the VDW-M, Eq. (2). Thus, the excess Helmholtz free-
energy per particle becomes separated in a repulsive and an attractive

part
AA/NKT = ay + aa . . (14)
Due to step 2), one finds
a,(p,T) = ayg(p®) + a'(p*,T3lu,]) + ov s (15)

where p* = po® is the reduced density and kTayg is the excess free energy
of the HS system. Due to step 3), the attractive energy is expanded in

terms of the inverse temperature as
a (p,T) = ay(p*)/T* + a,(p*)/T*2 + a;(p")/T** + ..., (16)

where T* = kT/e and ¢ is the depth of the attractive well of u(r).
Actually, there are several ways in which any of these steps can
. -27
be implemented. The reader is referred to the lltera‘cure(25 ) for

details, but a few comments are in order:

- There are several ways to take steps 1) and 2), and therefore the

perturbation terms a',... in Eq. (15) can take different forms.

- The perturbation expansions in 2) and 3) are of a very different
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nature: step 2) has the effect of softening the HS potential, whereas
step 3) incorporates the attractive forces as a small effect and its
first-order term is the mean field i

1 w 7
a; = <Ug>yg = ZEW{dar Eus(rip®u,(r) ’ i

where g, (r) is the radial distribution function of the reference HS
fluid.

- Expansions 2) and 3) also differ in their convergence properties.

As a matter of fact, expansion 2) needs a definition of the dia-
meter o of the HS used as reference. This is commonly accomplished by
requiring that the 1st-order correction term to the free energy, a' in

(25)

Eq. (15), vanishes Thus, neglect of the 2nd and higher-order terms

makes
a,(p,T) & &, (") ; (18)

where the HS diameter ¢ appears in p* = po? and is defined by the solution
to the equation

a'(p,Tio,[u ) =0 . (19)

This equation makes the HS diameter dependent on the state (p,T) and
(functionally) on the potential u,(r). In the Bl theory, ¢ depends only on
[24). The Weeks-Chandler-Andersen theory
(WCA) gives o implicitly as a function of both p and T(Zg).

T and ba. (19) gives o explicitly

It turns out that, for a realistic u,, the definition of g in
Eq. (19) makes the expansion in Eq. (15) highly convergent. Thus, Eq. (18)
becomes a very good approximation and it is not nchssqry to go to higher
orders in the expansion for most practical purposcs

For realistic potentials truncation of the second expansion, L.
(16), after the lst-order mean-field term, a,, is not enough to give
accurately the thermodynamic propertics bellow the critical temperaturc.

A brief statement must be added about the methods that combine
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perturbation and variational methods(SU’Bl). These methods establish the
first-onder PT approximation as an upper bound to the free energy of the
repulsive system and determine the "best'" value of the HS diameter g by
minimizing the perturbed free energy, Eq. (15) with respect to g. These
procedure gives an implicit definition of ¢ which may be expressed in a
form similar to Eq. (19), and the values of g(p,T) behave in general as
those obtained from the BH and WCA perturbation expansions.

B. Pexntunbation methods and the VDW model

The perturbation methods outlined in the last section allow a
systematic improvement of the VDW-EOS. This possibility has given rise to
a whole series of "augmented', "corrected" or 'generalized'" VDW theories
(32-34)

theories All these developments have several common characteris-

tics:

1) They start by assuming a particular form of the intermolecular potential
u(r) as, e.g., the 12-6 lennard-Jones potential.

2) They separate this potential as in Eq. (1), which is usually done at
the distance rp where u(r) is minimm; this separation has been shown
to produce a more convergent expansion in Eq. (10)(26’27}.

3) They calculate the effective diameter by Eq. (19) or its equivalent,

(29)

which in the more convergent WCA theory makes o to depend on

temperature and density.

4) They use an accurate expression for the HS free-energy in Eq. (15) and
neglect higher-order terms.

5) They calculate the mean-ficld term a,, given by Eq. (17).

6) In many cases, these methods calculate the second-order term a, of
expansion (16). Although for some model systems, like the SW potential,

a, and a, have been calculated(ssl.

Calculation of the thermodynamic properties of simple fluids by
means of these corrected VDW theories has an eror of only a few percent.
To reach this accuracy, it is nevertheless necessary either to use effective
binary potentials, which depend on the thermodynamic state, or to take into
account the non-additive three-body forces(36’37). Furthermore, these

applications of the perturbation methods do not really produce true
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equations of state because it has not been possible to obtain a,, Eq. (17),
analytically for a given potential u, ; to incorporate analytic expressions
for the second order term a,, and for the effect of the three-body forces
is even more difficult. Thus, these methods produce tables of thermo-
dynamic properties instead of equations, although sometimes they are
referred to with the latter name.

C. Exact deduction of the VDW-EOS

A very important development concerning the VDW model was the
work of van Kampen(ss), Kac et a£§3) and Lebowitz and Penrose(4). They
have shown how to obtain rigorously and exactly the (modified) VDW-EOS
for a general class of potentials of the type referred to by Eq. (1). For
a HS core their work leads rigorously to

BA(p,T)/NKT = a, . (p*) - a p , (20)

where ayg is the exact HS excess free-energy per particle. From this
relation, Eq. (10) follows immediately. Kac et af. and Lebowitz and Penrose
found that Eq. (20) is exact for a potential consisting of a HS repulsive
part plus an attractive part which is infinitely weak and long ranged.

This attractive potential was represented by the Kac (or Yukawa) form

uc(r) = -Cyexp(-Yr)/r 7 (Z1)

in the 1imit when the inverse range Y 0. Lebowitz and Penrose(4) further
showed how to obtain rigorously the vapour-liquid equilibrium line,
including the Maxwell construction, in the same limit.

Nevertheless, a word of caution is in order about this point:
Eq. (20) is exact for the Kac potential (21) in the limit just mentioned,
but this is not the actual potential of interaction between real molecules,
i.e. there is no real fluid for which Eq. (20) is accurate over the whole
fluid region.

It is of historical interest that Boltzmann guessed this result
around the year 1900(39). In a letter to van der Waals, Boltzmann argued
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that for the VDW-EOS to be correct, the intermolecular forces should not

be as van der Waals proposed, but that their attractive part had to be
infinitely weak and long ranged! He was proven to be right 65 years later.
Actually, van der Waals argued back that he thought the real intermolecular
potential had to be of finite range and depth. He was also right!

D. The VOW-EOS and neal §Luids

From the discussion in the last sections it is clear that the
modified VDW-EOS given in Eq. (20) is an approximation to the behaviour of
real fluids. Actually, if an improved HS-EOS is used for the first term
of Eq. (20), instead of the original VDW approximation leading to Eq. (4),
the resulting EOS is in good overall agreement with experimental results
for argon when the VDW parameters b and o are chosen appropriately (Longuet-
Higgins and Widom(sz]}. But then the following question arises: are there
any conditions where the improved VDW-EQOS becomes quantitatively exact for
real fluids? The answer to this question was considered in a paper with
Arzola(40).

The extensive work with perturbation methods has shown that the
repulsive part a, can accurately by represented by a HS term with suitably
chosen diameter ¢, hence, the question above really concerns the validity
of the VDW approximation for the attractive part, Eq. (10), equivalent to
Eq. (20). 1In order to test this approximation, one can first write the
repulsive contribution by means of the highly accurate approximation in

(18), so that the full excess free energy in Eq. (14) becomes
AA/NKT = a_ (pa’®) + a_(p,T) (22)
HS a

and then ask about the form of the attractive energy a,(p,T). When is ag
proportional to p? Of course, perturbation theory gives a way to answer
this question by explicitly allowing the calculation of a_, by the series
in Eq. (16). But this can only be done if the form of the intermolecular
potential is known. However, such is not the case for the great mayority
of real substances.

When the potential u(r) is unknown, Eq. (19) cannot be used and



one needs to determine the effective diameter ¢ from the knowledge of the
thermodynamic properties of a substance. The problem of determining the
parameters of an EOS from purely thermodynamic data is an old question
confronted in practical cases by chemical engineers. The two most common
answers are: obtain ¢ and other parameters by fitting the EOS to a wide set
of experimental data of the substance, or alternatively, obtain the
parameters from the experimental results at a few selected points, e.g.,
the critical or the triple points. In order to test the modified VDW-EOS
none of these methods is useful. For, an empirical fit will never decide
a question of validity, and one cannot use information about a particular
point if the validity of the EOS at that point is in doubt. Moreover, the
VDW approximation is certainly wrong at the critical point, which is the
most popular in fitting. In conclusion, we had to look for a way in which
both the value of g could be found and the validity of the VDW approximation
(10), could be tested. The way to do this was inspired by the perturbation
results.

The first point was to look at the high temperature region, for
in that case the inverse temperature expansion, Eq. (16), gives

a;(p,T) —= a,(p)/T*
(23)

T —

The next point is then to consider when is ai, given by Eq. (17)
proportional to the density, as in the VDW equation (20). The integral in
Eq. (17) is roughly proportional to the number of particles within the
attractive well of a given one. Since for real fluids the potential u, is
of rather short range, that number will be constant at high densities.
With those elements, it was possible to look at the high density
part of the high-temperature isotherms, and see if there exists a value of
o that makes a_(p, T) constant in Eq. (22) when the left-hand side is
(40): the
VDW approximation for A becomes exact at high temperatures and densities,

obtained from experimental results. The answer was affirmative

and the values of ¢ found by this "bootstrap' method were in rough
agreement with the sizes of the molecules as obtained by molecular and
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statistical mechanical methods. The substance used initially in these

(40)

studies was argon and later other noble gaseg(dl]_

IV. THE VDW MODEL AND REAL FLUIDS

A, Intenmoleculan fonces and the inverse probfem

Most knowledge and insight about classical fluids, gained by
statistical mechanics, has been achieved by assuming particular forms of
the intermolecular potential. These potential models have been of ENnormous
importance in statistical mechanics and have led to discover which features
of real intermolecular forces are most relevant in the thermodynamic
behaviour of real fluids. Nevertheless, in order to calculate accurately
the thermodynamic properties of real fluids, it is necessary to start with
accurate intermolecular potentials. But, since these are presently unknown
for the vast majority of substances, one has to look for alternative
approaches. Is it possible to construct an EOS of a real substance that
is based on statistical mechanics but does not require the intermolecular
forces to be known? The affirmative answer is well exemplified by the
virial EOS for gases: it can be constructed from purely thermodynamic
measurements, has a wide applicability and is theoretically derived from

(42). This question is closely reclated to the so

statistical mechanics
called inverse problem: Can we learn anything about the molecules and their
interactions by an appropriate analysis of thermodynamic data?

A possible approach to construct a theoretical EOS(TEOS) for dense
real fluids is found in perturbation methods themselves. The expansion
used to express the properties of the repulsive system u, in terms of the
HS reference, Eq. (15), actually allows to write an EOS: precisely the EOS
of a HS system with a diameter g that depends on temperature and (slightly)
on density. All systems with purely repulsive potentials u,(r) will have
an approximate EOS, Eg. (18), of the same form; the detailed differences
in u (r) between systems give rise to different dependences of g with T and
p. So far so good. However, the treatment of the attractive part in Eq.
(16) is quite different: it does not lead to a thermodynamic equation that

involves the variables T and p, and some parameters. Even the simpler

o
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first-order term, Eq. (17), does not determine the thermodynamic parameters
which are relevant to describe the effect of the intermolecular attractions.

Hence, to obtain a TEOS it was essential to develop a perturbation
theory dealing with the attractive interactions in the same manner as the
repulsive forces are treated in the usual theories. Such a theory should
provide an approximate but closed-form EOS and determine which parameters
are adequate to describe the effect of the attractive forces, in the manner
that the diameter o(p,T) does for the intermolecular repulsion. This

development is described in the next section.

B. The square-well pernturbation method

The success of perturbation methods based on the HS model is due
to three factors: the great similarity between the effects of the HS
interaction and those of real repulsive forces, the predominance of
repulsive effects on the structure of the liquid, and the simplicity of the
HS potential. 1In order to construct a theory with similar virtues and
incorporating the attractive forces, one needs as reference system a model
potential that keeps the HS repulsion additioned by the simplest type of
attraction. An obvious choice is the square-well (SW) potential

L) r<.g H
ugyu(r) = {-e; o<r<R 5 (24)
0 ; Rer

(43) to extend the

This potential was used in the work with the lonngi
perturbation methods of BH(24} and WCA(ZQ) so as to include an attractive
potential in the reference system. The expansion obtained for the total
excess free energy per particle, Aa(p,T), which takes the place of both

Eqs. (15) and (16), is
Aa(p,T) = ag, (p*, T*, A) + a‘r + a'a Pt (25)

where ua., is the excess free energy of the SW system, A = R/o and the

W
perturbation terms a'y and a'y involve the SW distribution functions and
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the repulsive and attractive parts of the potential u(r), respectively. In
the same spirit of the HS perturbation methods, the two SW parameters o and

R are chosen by requiring vanishing first-order terms:

1]
o
-

a'r(O,T;U,Rs [ur])
(26)

]
<

a'_(0,T50.R, [0])

the third parameter was chosen equal to the depth of the well of u(r).
With this definition of the SW parameters, and neglecting the second and

higher-order terms, Eq. (25) becomes
pa(p,T) = ag,(p*,T*, A). (27)

In order to test the first-order approximation in (27) with o and
R given by Egs. (26), we applied this expansion to the Lennard-Jones 12-6
System(asj, which is quite realistic and whose thermodynamic properties are
rather well known,

The results found show that the 1st-order approximation in (27)
is very convergent and in all respects competitive with the expansions based
on the pure HS(43). In particular, Egs. (26) uncouple in the low density
1imit and one can solve them explicitly for ¢ and R. The results depend on
whether the method used is the "blip" expansion(zg) or the " - expansion"(24).
In the latter case one recovers, at p = 0, the BH expression for ¢ deduced
from Eq. (19) and the corresponding generalization for the mean range R(43).

In the former case one gets

Tm
o= 3J {1 - exp[-B(e + u(z))]} z%dz )
! = (28)
R; =12+ 3P - J{EXp[-Bu(z]] - 1} 2%dz ;
Tm
where o, and R, are the low density values of ¢ and R, Tespectively. The

behaviour of o(p,T) was also shown to be similar to that found in the WCA

and, in particular, op = Gyey (P = 0).
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C. Effective parametens and kinetic theony

The behaviour of o and R with temperature is quite simple for a

(43): o decreases

realistic u(r) like the Lennard-Jones 12-6 potential
monotonically with T, starting from the value o = r, at T = 0; on the other
hand, R = rp at T = 0 and therefrom increases monotonically with T

reaching a finite value when T — o,

In particular, the decrease of ¢ with T has an intuitive
qualitative appeal: soft-core molecules appear to be smaller at higher
temperatures because the larger momentum will reduce the distance of
closest approach on a collision. This qualitative fact suggested that the
kinetic approach described in section II1.B could be extended to deal with
soft molecules. This extension was rigorously proven with de Lonngi in a
very simple way(44). If s is the collision diameter for two molecules which
collide with kinetic energy E, the probability density p(s) of a given s is
easily obtained from the Maxwell distribution for E, p(E). One immediately

finds that

Im

<s>(p = 0) = J ds {1 - exp[-gu(s)]} (29)

0

where the average <> is taken with respect to E. But the right hand side
of Eq. (29) is just the expression for the effective diameter in the BH
theory as obtained from Eq. (19), {.e.,

0gu(T) = <s>(T, p= 0) ; (30)

Later we also found the connection between o,, Eq. (28), which is identical

to o_.(p = 0), and an average of the collision diameter(43]:

o
o} (1) = <s?>(T, p= 0) = o®  (T,p=0) . (31)

Also, we showed that the effective range R, Eq. (28), is equal to a mean

range

R (T) = <h?>(T,p=0) , (32)
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where the range h is the maximum distance of separation between to bound
particles.

Egs. (29) to (32) establish a connection between two approaches
and gibe a new insight into the parameters used by the perturbation
theories. This alsomears that the low-density values o, and R, that enter
into the EOS of a simple fluid, Eq. (27), are respectively equal to the
mean collision diameter and the mean attractive range.

The rigorous extension of Egqs. (31) and (32) to finite p has not
been completed yet. It has been shown that this extension relies on the

(12)

use of collision frequencies in the manner of Enskog's theory so as to

(49)

generalize Eq. (9) for an arbitrary potential The question is being

investigated by means of the molecular dynamics method as applied to

(50). Nevertheless, by assuming the validity of

discontinuous potentials
Eqs. (31) and (32) at any density it has been possible to interpret
kinetically the behaviour of ¢(p,T) and of R(p,T) for a variety of systems,

(48,49,51)

both spherically symmetric and asymmetric The soundness of

these interpretations is in support of the assumption.
V. CORRESPONDING STATES AND SYSTEMS

A. Generalized connesponding states and systems

A look at Eq. (27) is enough to rcalize that the EOS of all simple

fluids can be written (approximately) in the same universal form if the

appropriate reference systems and reduccd vari:bies are used. This fact
. 45) < i

recalls the Principle of Corresponding States{l" for classical fluids.

Two substances S and S' are said to follow the PCS when the thermodynamic
properties of S at any state (p,T) become equal to those of §' at another
state (p', T') such that the scale ratios p/p' and T/T' are constant,
independent of the state. Two such states are then said to correspond to
each other. The two substances follow the PCS if their intermolecular
potentials u(r) and u'(r) differ only by constant scale factors of distance
and energy. Such potentials, or substances, are also said to be conformal.
The fact that there are sets of real substances which follow the PCS stems
from the scaling similarity of their intermolecular potentials within each
set(45’46’49). These sets may be called conformal sets.



Hence, all substances within a given conformal set have the same
EOS if written in terms of variables reduced with the appropriate constant
scaling factors. One only needs to know the [0S of one substance of the
set and the appropriate changes of scale, to obtain the EOS of all the
other substances in that set. A limit in the applicability of the PCS to
construct EOS is the exclusive character of the notion of conformality:
two substances are either conformal or not, there is no room for differences
in_degree; it is impossible to incorporate the effect of a deviation from
conformality.

Actually, the perturbation methods allow to tackle the last

problem, although approximately. The BH method of softening the hard coro(24)

f.(29]

properties of two non conformal potentials: the HS reference and the soft

and the "blip" expansion of Weeks c¢ta , relate the thermodynamic
ur (r) -Eq. (18)-. The extension of these ideas to incorporate the
attractive u, in a similar way allows the SWPT of the Lonngi and del RIOLJS)
to relate the full u(r) to its non-conformal reference Ugyy in Bg. (27).
This is done by a standard statistical method which requires u(r) and the
distribution functions of the SW reference to be known, and is done in an
approximate way.

In order to overcome the limitations of the PCS to conformal

(47

In its generalized version, the PCS again changes the scale of the thermo-

substances, a generalization of the PCS was presented several years ago

dynamic variables to relate corresponding states, but now the scale factors
depend in general on the state variables themselves.

The generalized PCS agrees with the SWPT result, LFq. (27), in one
important aspect: the FOS of all simple substances takes the same form in
terms of the state-dependent reduced variables, although the SWPT relation
is only an approximation and not an cquality. Nevertheless, there are two
great differences between the CPCS and the SWPT: 1) the reference in the
latter is not a real substance, but a model onc, and 2) both systems S
and Sgy are not in "corresponding' states but in the same state (o,71).

Based on these considerations, a modification of the GPCS, called
"method of corresponding systems' was proposcd and applied initially to
systems with purely repulsive potentials(Jo]. In this simpler case, the

reference is the HS system. Instead of the approximate perturbation



relation (18), one imposes the equality between the properties of the
system S of interest and the reference Syg:

taip,T) = aHS(D*} . (33)

The MCS expresses the EOS of S as the HS-EOS with an appropriate
g = ol(p,T). The latter can be obtained in either of two ways:

1) When the potential u() of S is unknown but its thermodynamic propertics
have been measured or calculated by computer simulation, ¢ is obtained
from Eq. (33) for any given P and T.

2) When u is known, approximate values of o(p,T) can be obtained by

perturbation methods, Eq. (18).

1t must be added at this point, that both the perturbation methods
and the MCS can be applied to other thermodynamic properties besides the
Helmholtz free enmergy . Thus, expressions equivalent to (18) and (33) can
be written for the pressure, the compressibility, etc. Each choice of
thermodynamic function leads to different definitions of the effective
diameter 0.

In the MCS all the particularities of a substance are incorporated
into the functional dependence of o(p,T). Thus, since no universal or
simple form of o(p,T) has been proposed, a complicated behaviour of o(p,T)
would seriously limit the applicability of the MCS. Fortunately it was
found that this is not the case. In particular, for a wide sample of
repulsive potentials, including non-spherical ones, it was found that

a(p,T) can be written in a virial expansion(ag)

o(p,T) =Cq (T] * &y [T)P ¥ wew (34)

through the complete fluid range up to the solidification line. It was
found that the expansion (34) is highly convergent: it is only necessary
to keep three or four terms in order to achieve an accuracy similar to that
of present day computer simulations(48’49). This is an important point; it

means that one only needs a few selected data at cach temperature in order
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to find o p,T) in the whole density range.
The MCS was also applied to non-spherical particles, e.g. hard

(48]. It was found that the effective diameter

spherocylinders and dumbells
is temperature independent, because the particles are hard, but that their
eccentricity makes o to be density dependent: the increase in orientational
ordering of the particles at high densities makes the effective diameter o
to be smaller than at low density. This fact is easily understood by
appealing to the kinetic expression for o, Eq. (30: the aligment of the
molecules in dense states increases the collision rate for smaller

diameters.

B. Cornesponding systems and neal substances

The MCS was further developed to cover real systems by using as
a reference the same SW system as in the SWPT(49). With the SW reference,
the three parameters ¢, o and R have to be determined. This has to be done
in such a way that the phase diagram of both systems S and Sg,; are mapped
into each other so that all states along phase lines and critical points
coincide. The possibility of using references different from the SW was
also considered and judged at this time impructicnl(ﬁg).

In order to test the applicability of the MCS, together with
Fernindez Fassnacht we applied it to a set of monoatomic and molecular
fluids(SI).
orthobaric states of the substance to those of the SW system. The effective

The correspondence used in this work identifies the

SW parameters are chosen in the following way:

1) The depth e is taken constant, as in the perturbation expansion, and its
value obtained from the compressibility factor Zg, = PV/NKT of Sgyy at
the critical point.

2) The value of the reduced range A = R/o at cach orthobaric state was

found from the equality of the compressibility factors
Z0T*) = Zgyu(T™,A) . (35)

3) The mean diameter o was then obtained from the orthobaric SW density



o (M) = p*(T*,1)/p(T) . (36

Results were obtained for A, N,, CH,, CF,, CF,Cl, CF,Cl, CFCl,, CCl, and
CO,. The test of the MCS proved to be succesful, showing in particular the
following points:

a) The method is feasible, <.e., Eqs. (34) and (35) have real solutions
for o and A,

b) The behaviour of ¢ and R with p  and T, agree qualitatively with
all predictions based on the HS and SW perturbation methods and with
their kinetic interpretation. The exception are the second
derivatives of ¢ and R with p, which are of opposite sign from the
SWPT calculations.

c) The present knowledge of the SW reference fluid is sufficient to
make the MCS work.

d) A conformality between different substances was exhibited explicitly
in all cases where it was expected (e.g. argon and methane). Also,
a partial conformality, <.e. between the repulsive parts of the
potential, was found for the CFy family. This indicates a similarity
of their repulsive forces which is commonly hidden by the non-
conformality of their attractive potentials.

e) The EOS takes the generalized VDW form, as Eq. (14).

C. Development of the SW EOS

In both SWPT and MCS one needs the knowledge of the properties of
the SW system. The MCS relies on the thermodynamic properties, whereas the
SWPT also needs the radial distribution function gsw(r). The sources of
informat ion about Sg, are of the same types as for HS: integral equations
{52}, perturbation mcthods(SS), and Monte

for the distribution functions
(54’35). There is no accurate

Carlo or molecular dynamics simulations
analytic theory for the SW g(r) and the best numerical results are provided

by simulutions(54’35]. Thus, de lonngi and del Rio proposed an analytic
- . : y .(55,56)

and empirical representation of ggy(r) based on the simulation results .
: . 43

This was the representation used in the SWVF( )

The thermodynamic properties of Sg, deserve some discussion. The



SW-EOS can be written by means of a high-temperature perturbation expansion,
similar to that in Eqs. (14-16), in terms of a HS reference, to obtain an
EOS of the VDW type:

_HSW = aﬁs(p*) 1 aa (D*, T*) A] 5 (37J

where again a, is expanded in terms of the inverse temperature by Eq. (16).
Henderson et af.(54) calculated the first two terms in this expansion, a,
and a,, by the Monte Carlo method for SW systems for several values of A
between 1.125 and 2. Ferndndez Fassnacht used these results to obtain the
vapour-liquid equilibrium including the position of the critical point(ST).
These orthobaric data were then used in the application of the MCS to real
fluids 51:37)
Zz(\) should take the value Z. = 0.29, characteristic of real simple fluids.

For Eq. (35) to have a solution at the critical point,

The exact result for A = 1.5 gives Z.(1.5) = 0.29, which is an encouraging
3 ;

valuc(“s), but the second-order approximation to a, gives larger values of

Z. for all A(54’57).

close to the critical point

This limitation prevents the present use of the MCS
(51’57). In order to remove this limitation,
and also to obtain an analytic expression for dsw, we have developed
theories in the long (A >> 1) and short range (A = 1) limiting cases.

The long-range case was first analized by Ponce and Renon[ss).

The first-order term for the SW system is

R

a; = -2mp Jdr r2gug (r,p*) 5 (38)
0

which becomes, when A >> 1,

21p 1 _
e e P - (g™ - 1 + 2mp B(p*, 1), (39
p

with
Ko (0*) = B (90/3p) .

where B(p*, A\) -> O when A >« ., Qne notices that the first term in
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Eq. (39) is just the VIW term with o = R3c. The second term was the onc
calculated by Ponce and Renon(sg). The long range approximation has
recently being extended to the higher-order terms a, and a, by Benavides
to provide close-form expressions and the accuracy of the approximation is
presently being tested{sg).

The short-range approximation, A - 1 — 0, has been studied in
collaboration with Lira{éo) by means of standard perturbation techniques.
One obtains again analytic expressions in this limit, in terms of powers of
X - 1. These results are also being tested and used to predict the vapour-
1iquid equilibrium of the SW fluid in this limit.

A further extension of the study of the reference system involves
the simultaneous use of a SW attraction, introduced to model the dispersion
forces, plus multipole terms introduced to model the electrostatic
interactions. In this way one finds the effect of the non conformality of

the dipolar and quadrupolar terms on the vapour-liquid equilibrium(sg).

VI. FEOS, FLUID MIXTURES AND SOLUTIONS

A.  Solution theories and the VDW moded

The problem of dense fluid mixtures differs at high and at low
pressures. In the latter case, it is very convenient to separate the
contributions to the chemical potential M, of the a-th species in a liquid
phase in several parts. In a first step, W, is written in terms of p”a,
the chemical potential of the same species as a pure fluid at the same P and

T as the mixture,
_ .0
uQ{P,T,{xa}] = ' (P,T) # Su, (P, T, x . (40)

where the composition of the mixture is given by the mole fractions

x. = na/n’ n is the total number of moles, and 6ua is measures the change
o]

in ¥, due to the fact that the o species is not in its pure state but in a
mixture. At low pressures, Pe<P t the critical pressure, u“a is readily
accesible to experimental determination and thus 6quis the property to be

predicted. This is usually done by means of solution models.



If X(P,T, {ng}) is an extensive thermodynamic property of the system, one

defines the function of mixing 4,X by

A X(P,T, {na}) = X(P,’[‘,{na}) - g x“a{v,r,nﬁ) . (4D
where the second term on the right-hand side is the value of X for the
system before mixing Xi'is calculated for the o species in its pure state.
The goal of a solution theory is to predict the Gibbs energy of mixing ARG
by assuming a molecular model. Since the mixing process in Eq. (41) is
commonly defined at constant P and T, one can write AnG in terms of the

entropy and enthalpy of mixing, 2,S and A, by
G = AgH - TARS . (42)

These quantities may be obtained from an equation of state for the mixture,
or from a specific model of the solution.

At high pressures, on the other hand, Eq. (40) is not too meaningful
and the emphasis is made in obtaining an FOS for the mixture, and in deducing
from it all the relevant quantities. Perhaps the strongest test of an [OS
for mixtures is to ask whether it predicts correctly the phase-equilibrium
phenomena. These are of great theoretical interest and also of wide
practical importunce(SG). In all cases, of low or high pressures and of
solution models or EOS, most actual applications are still done by means
of cmpirical(bl’bz) or semi—empiricul(ﬁs’ﬁd) methods.

On the theoretical side, the VDW model has been used both to
obtain the functions of mixing and to construct FOS for the mixture. We
will mostly refer here to the low-pressure case, but we must mention that
the VDW model and [0S are able to predict and classify correctly most phase-
equilibrum phenomena, as was shown by Scott and van konynenburg in their
fundamental work(ﬁs]. On the low-pressure regime, since the work of van
Laar the original VDW-EOS was used to obtain 6Ua (or its equivalent
"activity coefficient") from which the mixing Gibbs energy A G can be
dcrived(ﬁﬁ).

Our first work in this direction, together with Guzmin and Mier

y Terin, was to obtain the propertics of mixing from a generalized
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VDW—EOS(67’69).

in which the properties of the mixture arc represented by those of a

In this work we made use of the VDW one-fluid-theory (OFT),

(hypothetical) pure fluid, whose characteristic parameters are written in

terms of the interaction parameters of the components by means of "mixing

rules"(70).
In all mixing processes, one may separate the contribution from
the '"ideal mixing'. In the mixing of ideal gases one finds
pi% = RT Ix Inx | (43)
m (=} o o ’

o

where g = G/n is the molar Gibbs energy. Hence, one defines an '"excess"
function of mixing by substracting the ideal contribution in Eq. (43):

£

. _,id
g =Aag-AE s (44)

and similarly for the other mixing properties. To introduce the improved
VDW-EOS, Eq. (14), to the mixture problem, one uses the expression involving
the free volume, Eq. (11), to define a free-volume fraction O for the o

species as
by, =VEN: (45)

where V¢ is the free volume of one particle in the mixture and V? is the
free volume of a particle of type o before mixing. One also needs the

VDWW attractive energies per mole for the o species
a = Nyv a g (46)
a o

In Eq. (46), v is the molar volume of the o species and a is defined in
Eq. (14) written for the same component. In the original VDW approximation,

. A 69
o is a constant. The resulting excess Gibbs energy of mixing is then )
(e
gf = J x [RT In(¢,/x,) + P(v- v,) - /v ¥ CWAN . (47)
o

from which s® and h® are readily calculated and involve the changes of the
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EOS effective parameters, the diameters o and VDW energies aa of the a

component, with temperature:

1 =-[31ng* /3 1InT] , (48)
o a
and
m=- [31ng /3 In T] . (49)
(¢ 3
Most solution models, since they are used at low pressures, assume
that P = 0. A particular type of models describe the properties of the

so-called athermal mixtures, for which h® = 0. In this case, the important
quantity becomes &~ Imposing these conditions on Eq. (47), and assuming
the VIW approximation for the free volumes, given by the first term in Eq.
(13), we found the following set of results, which are equivalent to each

other within the assumptions (67-69),
s€= - R [ x, In[(vq - 4bg)/(v - 4b)] , (50)
o
= - R ] Xq In(vo/v) ; (51)
a
=-R g Xa 1n(bg/b) . (52)

These equations are identical to those obtained by well-known
models for athermal solutions: Eq. (50) is the result of Hildebrand(n),
and Eqs. (51) and (52) are those of the models of Flory(’2), cuggenheim!’3)
and Huggins (74). Hence, the generalized VDW result expressed by Eq. (47)
includes these models as particular cases.

A second result of the work with Guzmén and Mier y Terfn was to
show that Eq. (47) also includes as a particular case the model of
Scatchard and Hildebrand for the so-called "regular' solutions. These are
mixtures for which the excess entropy of mixing s® vanishes and the important
quantity becomes h®. Again, letting P = 0 and s® = 0, and assuming the
original VDW approximation o = constant, we found that



hE = - 2 _ 2 1
v[(f 8,8,) V8 oc%J - (53)
o o
where the '"solubility parameters'" § are given by
a
2 = . -
5a 1+ m 1u]au/va - (54)

Then, if the excess volume of mixing V& = 0, as is implied by the solution
being regular, one gets from (53) the Scatchard-Hildebrand result(75).

The generalization of the SH theory was used with Lozada and
Monfort to obtain values of the solubility parameters which are consistent
with measurements both of the EQS, through Eq. (54), and of the heat of
mixing h®, through Eq. (53}(76). These different types of measurements had
previously led to inconsistencies.

All these results showed that the problem of mixtures at low
pressures can be systematically treated by an EOS of the VDW type and that
such treatment contains as particular cases solution theories previously
obtained by restricted particular models. Thus, Egq. (47) should be better
than the old models. Nevertheles, the extensive application of this
extended VDW theory of solutions was prevented at the time by the poor
knowledge of the appropriate generalization of the VDW-EOS, and by the
corresponding ignorance about the correct effective VDW parameters. The
later development of the SW-EOS and its application to pure fluids, which
is within the framework of the VDW model, as described in the previous
sections of this article, has make it worthwhile to use Eq. (47) and a SW
EOS to calculate excess functions. This work is currently under way in
collaboration with Guzmdn and Murioz "),

B. SWPT for mixtures and mixing rufes

Besides the development of an EOS for mixtures, and to furnish it
with a statistical basis, the SWPT was generalized to the multicomponent
case in collaboration with Monfort(78). The generalization of the SW
expansion, Eq. (25), to the multicomponent system is straightforward and
leads to a definition of an effective diameter g and range RaB for the

interaction of species o with B. In its simplest form the SWPT for mixtures



35

uses the BH-type a-expansion and leads to

TR

8 = [1 -exp (- B{Eus + umB)}] dz (60)
0 ( o

ROLB = rzg - [exp (—BEQB) - 1]_1 [exp (-BUGB) - 1] 4z s (61)

m
raB
These expressions were used, together with the SW-EOS, Eq. (36),

to predict the excess functions of mixing for the systems Ar + Kr and
Ar + CH(7S). The SW EOS was taken to second order and the terms a, and a,

(52). The theory was shown

calculated from the Henderson et af, expressions
to predict correctly the excess functions gE and h® if the crossed interac
tion energy €q4p WBS fitted by means of an adjustable parameter.

Essential ingredients of the VDW-OFT are the mixing rules that
define the parameters of the pure fluid that represents the mixture. The
joint use of the SWPT and the MCS were shown to produce essentially exact
mixing rules. In order to make the pressure of the mixture equal to that

of its equivalent fluid, it is sufficient to make

3 oo 3 *
o'ggulo) a’BXOLXBU aBgaB(c o) 5 (57)
SW
R (% - Dgge(®) = J x xR o(e5508 - 1) g (®" ) (58)
af
and
£ =OCZS X XgEap ; (59)

These exact mixing rules require, for their practical application, to
approximate the SW radial distribution functions gsw. At low densities and
high temperatures gg, — 1 and one recovers the popular VDW mixing rules

3 - 3
o 0”memcsrj o~ (60)

and

eR® = ¥ xuxBRauBEus : (61)
g
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Thus, Egs. (57-59) allow a systematic improvement of the VDW rules, (60)
and (61), and involve a local composition effect through the rdf ggy.
Again, the systematic study of the SW mixing rules requires a good enough
SW EOs.

VII. CONCLUSIONS AND PERSPECTIVE

The work which has been reviewed in these pages has lead to a
theoretical equation of state with the following characteristics:

1) It is of the generalized VDW type, with a repulsive HS term and an
attractive term of the SW form.

2) The parameters of the EOS have a physical meaning: they are related to
the intermolecular potential through the (approximate) PT relations,
and allow a kinetic interpretation as mean collision parameters; this
interpretation has been proved rigorously at the zero density limit.

3) The EOS parameters can be calculated approximately by means of pertur-
bation methods from the intermolecular potential, and, when the latter
is unknown, by means of the phenomenological method of corresponding
systems from thermodynamic data.

4) 'The EOS can be applied to mixtures in the context of a VDW one-fluid
model. It incorporates as particular cases some well-known solution
models and leads to exact mixing rules in terms of radial distribution

functions defining local compositions.

In order to reach full applicability, the approach to a TEOS
revicwed here requires the development of several points, some of which are
currently under way: a more accurate SW EOS in closed-form expression is
needed; non-spherical reference systems have to be incorporated in order to
cope with more complicated molecules; the kinetic interpretation of the EOS
parameters has to be extended to higher densities, and finally, the MCS has
also to be extended away from the orthobaric states. All these develop-
ments are well-defined research problems whose solution would produce a

physically sound and useful TEOS for real fluids.
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