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ABSTRACT

Professor Moshinsky (UNAM) has shown that the fermion unitary
group formulation of many-body theory is equivalent to the particle number
projected second quantized formulation, and that the freeon unitary group
formulation is equivalent to the particle number and spin projected second
guantized formulation. Our freeon formulation employs the generator basds,
an overcomplete, non-orthonormal basis constructed by applying weight
lowering (excitations) operators to the highest weight (lowest zero-order
energy) state. This basis permits facile matrix elements evaluation. We
convert the generator basis to the complete, orthonormal Gel'fand basis by
means of the Moshinsky-Nagel construction.

* Supported by the Robert A. Welch Foundation of Houston, Texas.
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RESUMEN

El profesor Moshinsky (UNAM) ha demostrado que el formalismo del
grupo unitario de fermiones en la teoria de muchos-cuerpos es equivalente
al de segunda cuantizacidn proyectando niimero de particulas, y que el for
malismo del grupo unitario de particula libre es equivalente al de segunaé
cuantizacién proyectando niimero de particulas y espin. Nuestro formalismo
de particula libre usa fa base de generadones, una base sobrecompleta, no-
ortonormal construida mediante la aplicacidén de operadores (excitaciones)
que reducen de peso al estado de md&ximo peso (minima energfa de orden-cero) .
Esta base permite la f&cil evaluacidén de elementos de matrices. Nosotros
transformamos la base de generadores a la base Gel'fand que es completa y
ortonormal mediante la construccidn Moshinsky-Nagel.

1. INTRODUCTION

The freecon unitary group formulation of quantum chemistry, is
currently being widely used in the theory of atoms, molecules and solids
when a spin-free Hamiltonian is applicable(l’z). In this formulation the
configuration state spaces are realized by irreducible representation
(irrep) spaces of U(p), where p is the number of freeon orbitals. The most
familiar basis is the orthonormal, complete Gel'fand basis {|G>}. We have
introduced the overcomplete, non-orthonormal generator basis {IE}}(3)
which permits facile matrix elements evaluation. We relate these two
bases by the Moshinsky-Nagel constructicm(a). In section 2, we review the
unitary group formulation and introduce the Gel'fand and generator bases;
in section 3, we describe the procedure for reducing the degree of generator
states. In section 4, we use the Moshinsky-Nagel construction to relate
the two bases; in section 5, we construct many-body Gel'fand states, and
use them in section 6 to calculate Hamiltonian matrix elements. In
section 7, we show the second-quantized [lamiltonian matrix elements to be
equivalent to our formulation. Section 8 includes summary and

conclusions of the unitary group formulation.

2. THE UNITARY GROUP, ITS IRREDUCIBLE REPRESENTATION
SPACE AND ITS ALGEBRAS

The group under consideration is U(p), the group of unitary
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transformations on a vector space,
Vp):{|r), T=1top} . £2,.1)
spanned by p freeon orthonormal vectors. In the quantum mechanical

treatement, these vectors represent orbitals; {.e¢., one-particle states.

Associated with the unitary group U(p), are two algebras:
1) its Lie algebra

LAU(p) : {Ers; T, s=1tap} s (2.2)
where the operators E,.. commute according to
[Eys, Etu]l = delta (s,t) Epy - delta (r,u) E.q . (2.3)

1i) its associative enveloping algebra

EALU(P) : {I, Eyg, EyrcErys «o. ) (2.4)

The irreducible representation spaces (IRS) of U(p) are labeled
by partitions of integers

[pl = s Azs wen Ag] (2.5)
M 222,20 (2.6)
with
Rl @7
i=1

where N represents the nmumber of particles. A graphical representation of
these partitions consists of Young diagrams YDl\p], consisting of arrays
of N boxes with A boxes in the ith row. lor cxample, when p = 4,

(2,1 =[x A A5 2,0 (2.8)
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and we can have five possible Young diagrams:

[2%] 12, 31 [1*] (% 1 (4]

| N O [I11]

Notice the number of boxes is always 4 ({.e. the number of particles), as
required by Eq. (2.7). The last two configurations are not of physical
significance since these violate the Pauli exclusion principle.

An irreducible representation space is spanned by orthonormal

Gel'fand states denoted |G> chosen so as to be symmetry-adapted to the

canonical chain
Up) =2 U(p-1) =2...2U0k) = ... 2 U1) (2.9)
and labeled by Gel'fand arrays

(2]

p

AG = [Ak] 3 (2-10)

(A1)
where
[Ak] = [Alk ave AgKk v Akk] {2.11)

labels the {Ak th] irreducible representation space of U(k), identifies
the highest weight state of that space and satisfies the betweenness

condition:
(2.12)



Again in the p = 4 case, such an array would look like

Ary Azu Ay Auy 2 2 0 0
A13 Az3 As; 2 .20
Ag = (2.13)
X1z A2z 2 2
A1 2

which satisfies Eq. (2.12) as required.

Yet another useful way of representing |G> is with a Gel'fand-
Weyl tableu (T;), constructed by inserting N of the orbitals into YD[A] in
non-descending order along rows and ascending order down columns. By
Listing in the form of Ag the partitions remaining after the p, then the
(p-1)th, etc. integers have been successively removed, one obtains a unique
relationship between an A; and a B

211 0
1)1
210
7 = | 2 A. = (2.14)
L3 N 21
4
. 2
2 20 0
2 20
_11‘ A, = 2.15)
Tg = ¢ 2 2
22‘
B 2

As a consequence of the symmetry adaptation, each Gel'fand state

1s an eigenvector to the diagonal generator (Byss J=1 80 p)i e
E;; |G =wG; |G, (2:16)

where wG; is the jth component of the weight



wG = {WGy, ... , WG} {2.17)

P

of |G>. In terms of the Gel'fand arrays Ag,

] 3=1
we. = } Ay L A oga (2.18)
=1 i=1

|G> is said to be of higher weight than |G'> if wi> wy' or if wy = w;'
then w, > w,", etc. For each Vp[A] there exists a unique highest weight
state denoted |0>, For the p = 4 singlet case (multiplicity m = # boxes

in row 1 - # boxes in row 2 + 1), |G >= A L has higher weight than
2|2
|grs = ; ; ; writing the A; for |G'> and recalling Egs. (2.13) and
(2:15)%
2 2 0 0
1 d 2 2 0
T.= A. = (2.19)
& 1z]s - 2 1 '
2
therefore
WG1 = AG11 = 2 »
wG'y = AG'1y = 2 »
WG2=J\G12+kG22‘AG;1=24’2"2=2 )

WG'2 = AG'12 + AG'32 - AG'11 =2 +1-2=1 .

and we see that w; = wy', but w, >w,' as required to have |G> of higher
weight than |G'>.
Vp[A] is also spanned by canonical states
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Vp[A] : {|E) = E|0>} 4 (2.20)
where

E=E; By Bog= « + (221)
with

T8, L 20, VW, 0 o o (2.22)

TSEEV . . - (2.22)

if r =t then ssu . . .

is a product of generators. Noncanonical generator states can be expressed
as linear combinations of canonical generator states by repeated application
of the commutation rule (Eq. (2.3)). For example if t>s>r, Etr[0> and

E E._ |0> are canonical, whereas E_ E__|0> is not but
sr ts ts sr

E, E__|0> = Eert5\0> + [E

ts sr

ts? Esr] [D>

223

Eertsm> * Etrm>

3. THE REDUCTION PROCEDURE

We define the degree of a generator state as the number of
excitations needed to get from the highest weight state (ground state) to
the desired state. The degree of a generator state is frequently
reducible. To accomplish this reduction, we apply Eq. 2.3 successively to
move the weight-raising operators (operators of the form E_, 7r>s) to
the right, where they vanish when applied to |0> according to the follow-
ing rules: there exists an occupation number wj, i = 1 to p, for each of
the orbitals in |0>. Then starting with the occupation numbers of the
ground state, the action of E . on |0> increases w, by one and decreases

w, by one. The application of a generator E.o to |0> where w, = 2 is
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identically zero, 4.e¢. we may not put a third particle into a doubly
occupied orbital. The application of E . to |0> where w_ = 0 vanishes
identically since we cannot remove an electron from an empty orbital.

For example:

For o> = Wi = wa = 2

E;1[0> = 0 because w; = 1, w, = 3

and

E31E31E41]0> = 0 because w; = -1

In addition, for a given Gel'fand tableu, we define the number of rows with
2 boxes by f; this is the maximum number of doubly occupied orbitals
allowed. For a particular state, if the number of wi's, i=1 top, equal
to 2 is greater than f then the state is zero.

For example,

1
2
3
4]
and

qulg;‘ =0 since Wi = Wa = Wg = 2 .

The generator states are also eigenvectors to the diagonal

(number) operators thus (applying eq. 2.3 successively),



B =B B s (B (3.1)

1]
=
™
s
tm
3
=)
v

(5.2)

where
wEJ = wUJ + deltalj, ) + delta(j,t) # «u
- delta(j,s) - delta(j,u) ... 3.3}

Note that generator states with different weights are orthogonal.
Canonical generator states of equal weight are not generally linearly
independent ; however, the dependence can be recognized by diagonalizing
the Gramm matrix and then removed by an algebraic reduction method:

i) Construct a zero canonical generator vector |E) =0
i1) Apply a weight-raising operator on the left
iii) Reduce the degree of the generator vector

For example, in the p = 4 case:

0>

[E) = E;;E31E31]0> =0 (3.4)

Now apply E,, on the left (this raises the weight since it takes a
particle out of orbital 2 and puts it in orbital 1), and we get

U = E12E21E31E31|0>
= (E21E12 + [Eiz, Ez1]) E31E;p|0>

Ez1(Es1E12 - E3z) E31]0> - 2 E31Esq 0>

95
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E;1E3; (E33E1s - Eg) | 0> - E;1E3,E;5,|0> - 2 By By

(-E21E31E32 - Ez1E32B5: - 2 E3;E34) |D> (3.5)
= -2 E21E31E32|U> -2 EalE31|0>

=D

EqEgi [0 == BsqEqiEBs3 |05 .

4. THE MOSHINSKY-NAGEL CONSTRUCTION

In the Moshinsky-Nagel transformation, Cel'fand states are

constructed from canonical genmerator states; we can write this as

|G = z |E) (E|G> (4.1)
E
2mn
= NG L Lmn}0> (4.2)
m2nz21 g

where NG is the normalization constant such that if <0[0> =1 then
<G|G> = <0|G'G|0> = 1 (4.3)

(where the bracket is evaluated by the reduction process of section 3), amn

is given in terms of AG by

a =X - A (4.4)
mn nm n m-1

and where
amn -
L =) E (E/mn) (4.5)
mn E

is a weight lowering operator symmetry-adapted to the chain (Eq. 2.9) by

requiring that

=0 for Lexrsasnl . (4.6)

r r+l1 mn
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The coefficients (E|mn) involve products of the eigenvalues of the
diagonal operators

X_=E_~-E_~-t+s (4.7)

rs rr SS

Examples of this transformation (for the p = 4 case) follow, where the
L's in Eq. (4.2) have been converted to E's (as in Eq. (4.5)) using Table

1 from the appendix.
From Eq. (4.2) we get for the general form of a Gel'fand state

for U(4)
323, 931 32 Ay Fyz g
6> = Ng Laa L3y L3z Luy Lup Lys|0> (4.8)

then we have

i) 2 2 00

=

w

or

|G> = N Laz|0>
SO

|G> = Ng Ej,|0>

this cannot be reduced, so normalizing

2 .
1 = <G|G> = N; <0|E23E32|0>

N; <0| (EjzEzs + Eyp - E33)|0>

2
2 Ng <0(0>



therefore

|G>= ’l- Eaz|0>
V2

i)

so

|G> = NG L232|0>

= NG EggE;;zIO)
and normalizing

1= <GJC> = Ni; <O!E23E23E32E32|U>

2
Ng <0|E23(E32Ez3 + Ezp - Eg3)bss|0>

2
Ng <0|Ez3B35(Eyulisy + Iy = Fay) 0>

[}

2
ZNG <0 IE2 3E32 |0>

o
4N, <0]0>
therefore

E32E;,|0>

_1
|68 =o



99

1id)
Z 2 0 0
g | [2] ) 210
3|4 2 0
i
or
|G> = Ng LaaLjsLy, |0>
s0

6>

Ng E21E32(Eu2(Eap - Eyy + 2) + E;2E,;3) |0>

NG E2 E32E, 2 |0>
= Ng (E3zEz; - E5 )E42|0> (absorbing the 4 into N;)

Ng [Esp(EyoEzp - Eii) = Eleuz]!0>

n

Ng (EszE4y + E5Ey5) (0>

and normalizing

2 -
1= (G‘G> = NG <0|(E2;.]:.13 *: ElgE23) (E32E|.,1 + E31E‘+2)]0>

aNg, <0]0>
therefore
1 .
]G> =5 (EzpEqp + L'3251»1)|0>

In Table IIT in the appendix, we include all 20 singlet states for U(4).
The reduction and normalization for these states was carried out by hand
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and then checked with our MACSYMA program.
5. MANY-BODY GEL'FAND STATES

The generator states are true many-body states since they are
independent of both the number of particles (N), and the number of orbitals
(p). The Moshinsky-Nagel construction forms Gel'fand states from generator
states; if again we do not specify N and p, these Gel'fand states are true
many-body states in which we take pg = Ng = 2m (where m is the degree of
excitation), as the effective number of orbitals and effective number of
particles respectively. The associated Gel'fand-Weyl tableu will contain
Ne = 2m boxes. Below, we provide examples of this many-body representation
for singlet states (the extension to higher multiplicities 1s straight-
forward and will not be included here for simplicity).

h1 | h
o> = = .
0 hy | by f=NJ/2

he hf

hi | hi
1 1 . il _ ;
v \ph) \/_5 Eon 10> hy |hj I‘_il
h_| h |
fl p
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where h = hy for 1 g1 g B
For a double excitation (m = 2):

FELE, 0> = ' =

[phph) ohFph

9| =

where h = h; for 1 £1 2 f

1 1
= |php'™h') == E . E . .|0> i)
V] 2 “ph "p'h ? oo

-
1
=
—_
A
—
A
e
P———
e
.
-~
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p S p'
4p =p' then h<h'
0. HAMILTONTAN MATIX ELEMENTS
The freeon unitary group Hamiltonian is
H=H, +V, +V,
where

Hij= ¥ Bl

r

Vi= ] [ [rs] E_
r s

1 7
Vv, = 5 ; g Z é [rs|tu] E Ey, -~

(6.1)

(6.2)

(6.3)

(6.4)

As examples of hamiltonian matrix elements consider (as in section 5 we

will assume singlets for simplicity, but the extension to higher

multiplicities is not difficult),

i) the energy of the ground state:

E(0) = <0|H|0>

1

i 2

+

v ) [hp|ph]
f h

ii) energy of a singly excited state:

2 [y - T2 T [hihyfhoh,]



<Ihfp[[H]|p[h]|>

+

&

+

!

hy

[hyh,] + (1/2) [hh] - (1/2) (pp]

2): Z [hlhllhzhzl ‘): [hih, [hh]
h, b,

)
h

1

)

hy

hy

(hh|hyhy] - (1/2) [hh|hh]

[hihy|pp] + ]Z [pp |hyh,]
h

1

[pp|pp] + [hp|ph] + [ph|hp]

1 .
(hp [H|ph) = 5 <0[Ehp H hph|0>

7. SECOND-QUANTIZED CALCULATION OF HAMILTONIAN MATRIN ELEMENTS

The second quantized hamiltonian is

H=H, +V, +V,

where
He = §
R
Vy =)
R
V, =}
R

and where we have used capital letters to label fermion

products of freeon orbitals and spin orbitals, (.c.

[R - 1>

[R>

1
S
)
s

[RS] At dg

R LSIR U] IR T .
T U

[r> |a>

[r> |g>

)

105

)

.4)

orbitals which are

(7.

5)
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with

Epoq = Eg = E; (7.6)
[R 8-1] = [R-1 8] = [r s] (7.7)
[R §-1|T U-1] = [R §-1|T-1 U] = [R-1 S|T U-1]
(7.8)
= [R-1 §|T-1 U] = [r s|t u]
[R S|T U] = [R S|T-1 U-1] = [R-1 S-1[T U]
(7.9)
= [R-1 S-1|T-1 U-1] =0 .
The zero order ground state is
lo>= Ny ag.1(> (7.10)

where | > is the vacuum state.
One particle excitations (m = 1) from the ground state and their

spin projections follow:

1}

G >

|P-1 H-1>
1

=a  q+8y [0>

| (p h)\\\

i (o B),//

[t}



105

|G,> = |P >

]

ap* ay |0>
(» h)>
(a B)

The projections of these two states give the singlet and triplet one

I

particle excitation states, ..e.
Iph; S = L (|65 + [G,) (7.11)
V2
[phs T =L (163 = [63) (7.12)
72

and these states correspond to the singlet and triplet obtained with
generator states, £.e.

|ph; &> = E =‘_/1% Ephj(b |0> =

h
B = Eg,[0> 10> = (7.14)

Moreover, since not only the states are equivalent, but the Hamiltonians
are also analogous (compare Eqs. (7.1)-(7.4) with (6.1)-(6.4), then the

(7.13)

1
El
=2

|ph; T>

matrix elements are the same and the two formulations are equivalent.
8. SUMMARY AND CONCLUSIONS

We have seen how the unitary group formulation can be used as a
many-body theory. We use the overcomplete, nonorthonormal particle-hole
canonical generator basis formed by applying weight-lowering generators
to the highest-weight state. We transform this basis to the complete,
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orthonormal many-body Cel'fand basis by the Moshinsky-Nagel construction.
Matrix elements over the Gel'fand basis are calculated by first expanding
in terms of the canonical basis and then evaluating Lie-algebraically
using the reduction procedure of section 3. The algebraic reductinn is
straight-forward, but tedious even for small p and N systems, thus we have
developed a symbolic manipulation program using MACSYMA to perform the
Moshinsky-Nagel transformation and the evaluation of matrix elements.

The many-body Gel'fand basis offers an alternative to the spin-
projected second quantized approach to spin-free many-body theories; e.a.
perturbation and coupled cluster theories and direct configuration

calculations.

Appendix: Table I

Weight Lowering Operators

Ly1 = Egq

L3z = Es2

Lai = E31X12 + By Eq2

Lys = Eus

Lyz = EupXp3 + Ej3E,3

bys = Besliakie ® BasBiakse ® Bunbudlis * BasBashis
= Egg

Lgy = EgaXgy + EysEs,

Lso = [s2Xp3Xau * EypEsuXos + EjaEs3Xaw + EgpEy 5Esy
Ley = Es1X12X13X04 + EuEsuX12Xy3

+ E31Es3X12X14 + Eo1EsaXyp3Xgu
+ LE31BuaEsuXyn + EpqEusEquXys
+ E;1E32E53X 4 + Ez1EqpEy5Es,



where

Appendix: Table II

Ceneral torm for Weight lLowering Operators

n+l n n+l n
Ln+2 n - En+2 n Xn n+l * Fn+1 n En+2 n+1
Ln+3 n - En+3 n Xn n+1 Xn n+2 * En+2 n En+3 n xn n+1
F En+1 n En+3 n+1xn n+2 En+1 n En+2 n+1En+3 n+2
Ln+4 n . En+4 n Xn n+1 xn n+2 Xn n+3
¥ E E X X

n+t3 n n+4 n+3 ‘n n+l “n n+2

+: B E

n+2 n n+4 n+2

X

“n n+l

X

n n+3

E

n+l n “n+4 n+l

X

n n+2 Kn n+3

E

n+2 n n+3 n+2 L:n+£l n+3 xn n+l

n+l n En+3 n+l En+4 n+3 xn n+2

* En+l n En+2 n+i En+4 n+2 Xn n+3
En+1 n n+2 n+l hn+3 n+2 E n+4 n+3

where

X =E_ =E._=r#$s .

rs rr ss

For a more general case, the rcecursion relationship between lowering

operators is useful,

Imn = [Im m-1, Im-1 n] Xn m-1 + Im-1 n Im m-1
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Appendix: Table III

Irreducible, normalized representation of Gel'fand states for

p=4

1 W - 1|2 1

> 121 |0> B4 — E B, 5 |0>

= 2

'1 1 1 13 1

e “”EEn[D) % | 4 =__2(E31542' Ey B [0
| 4

i | 113

P =%Lh2|0> o 1ot 3%2_E31E321q2|0>

1)1 1 : 13 il
= =B B . [0 = —E,_E _E_|0>
3 3 2 32 32| 4 a4 ,/B- 31242
: 2 2 |

Lt =L_E32I:”]0> =7E31}331|0>
3|4 /2 33

L2 -1 Ey2E,,|0> 2 =‘1—E315«1|0>
ala z 3 JZ




. -1 Es1|0>
3 Ve

- —'—HEQ1|0"
4

[}

£ E31E;2|0>
vz

1 5 .
il (E31Ew2 + E32Eu1) [0>
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