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ABSTRACT

The performance of a turbine-type engine connected to finite
heat sources and the environment is optimized, under the criterion of
maximum work delivered during a fixed period of operation.

Time is
introduced considering heat transfers through walls with finite
conductivities.
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RESUMEN

Se optmimiza el desempenc de un motor tipo turbina conectado a
fuentes de calor finitas y el medio ambiente, bajo el criterio de miximo
trabajo entregade durante un periocdo fijo de operacidn. Se introduce el
tiempo considerando transferencias de calor a través de paredes con con-
ductividades finitas.

I. THE PROBLEM

The study of thermal processes taking into account their finite
duration and avoiding microscopic equations for the fluxes involved has
attracted attention lately, with the main lines of argument centering
around the optimization of cyclical engines whose heat transfers take place
through walls with finite conductivities(l). Our problem deals with the
optimization of a continuously operating engine, a turbine, under the
criterion of maximal work output when it undergoes a process whose duration
and initial state are known.

States of the system are defined by the temperatures T, Ty, T,
Tg of its different parts (see Fig. 1), and , given the time of operation
and the values of T and T, at the beginning of the process, the work output
W can be affected through manipulation from outside the system of the
conductivities k, k, kﬁ, the heat capacities C, C;, and, most importantly
for us, the engine temperatures T, and Tl. Our task consists then of
determining the externally controlled parameters that will maximize the
work output; with finite reservoirs involved they will be functions of

time.
I11. CALCULATIONS AND RESULTS

Our system is characterized by the heat conduction equations
(cf. Fig. 1 for the meaning of symbols),

Q=K - T
Q = k(T - Tq) @)
Q = kR(TE - Ty)
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Fig. 1. The system.
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and the equations for the reservoirs' temperatures,

CiTy = KT~ T,)

£ (2)
CT =K(T, - T) - k(T - T,)

The quantity we want to maximize is the work
te t
=}(Q1- szt~JE<h(T-Th)—k(T - To)] dt (3)

0
with given t., L = T(t = 0) and Ty =Talt =0) .

Before going any further it will be convenient to write all
expressions in terms of dimensionless quantities, using ratios ‘of
temperature, conductivities and heat capacities, and measuring time and
energy in units t,, W, that are natural to the system:

ty = = . We=CT, : @)
2

Our dimensionless quantities will be

il T T
. | 1 _ __h
E¥rpr 2 MSE s Tyt ow BT o Q)
k k G
h
& = s B = E; s Y= » (6)
2
ot W
T = ’ W= e (7).

in terms of which Egs. (2) and (3) become

HT_ = BY(X - x1)
> (8)

& =B0a - x - ex{ - x)
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T

w = Jo [m((l - xh) o ] e XJ dt . (9)

In a physical process all heat transfers are such that entropy
increases with time. Applied to the engine, this leads to a further
condition on its internal temperatures,

Q Q ;
B o >
T iR =
S (10)
= a{lw = 1] $ o w 1@
% )

It has become customary to use the equality sign in (10), and so introduce
the requirement of "endereversibility' for the engines considered(lj:

a[—l—-l} + L 1= . (11
Xy, Xy
This will be our condition, too, although any other combination of T, and
T2 that satisfied (10), UE%— - 1] + 2&%— - 1] = 0 for example, would

h £

have been equally acceptable.
The work output was maximized under constraints (8) and (11)
using optimal control theory, which involves the following steps{zjz

(i) Define a "Hamiltonian' (cf. Eqs. (8),(9),(11))

H(g(T)?'ﬁ(T): (1), ul) = {UX(I -x)+l- XR} +
(12)

oo o] -0 - Bl 1) -

with "state variables" x = (x, x1), "control variables"
U= (X,» Xg5 ®, B, Y), "co-state variables" {j = (¢, v,) and a Lagrange

multiplier u.
(ii) Determine the optimal control parameters on which H depends linearly
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using Pontryagin's maximum principle,

H(x, U*, J, w) 2 HX, U, ¥, W A (13)

where u* denotes optimal values.

(11i) Solve the '"equations of motion"

oH d aH

LRS- P e IR B i B
subject to the boundary conditions

WTY = 0 . i) =0 . (15)

Hence the solution to Egs. (8), (11), (14) will involve the values of the
state variables at the boundary opposite that on which they are known. We
will deal with this problem later.

The equations of motion are

F- ol - -1 BT,
din
— = - B(Y - v¥1) ’
drt
)2 (16)
X - 1)+ || =0 :
w=x?

It was found convenient to express the system to be solved,
Eqs. (8), (11), (16), in terms of two variables,
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X, T
(17)
§ =i(£ TTQ
S T: T. L
h h

one of which will afterwards be eliminated using the expression for H.

The only dlfflculty in carrying through this change of variables

comes from the equation for H‘L » which was integrated starting from the
observation that combining Eqs. (8) with the first pair in (16),

d - X3 _ 18

Ir [ xab-x—T_ = (18)
X

=> X ¥ *xY-x - -Y—l = A = constant, (19

Hence our system becomes

S PR |

Xp l1+a ar, e
1+ar,
X, = 5
£ 1+ a
X = X, ’
(20)

d(ln x) _ _ 1
—-%T—l = gry - 1) o {1 ?;J »

1 T
w X

Sy 2
¥y = Y .3 XT 1 (;\ * rz) ’

in which only one is a differential equation.

To eliminate r,, use Eqs. (20) to obtain
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H= 1% (1, - )%+ 801 - rl)‘:{% + 1 [1 $ -%H . (21

which is a second degree equation for r , with solutions
2

B 1

T2 S 757 % 7R, ‘/Bi'—‘m:ﬁ: ’ (22)
where

A =7 f e gl - 1) {1 + é%} ,

5 - o , @

s g B 71 - 5] =
Dy Sty 5 I (1 -r)-H
The correct sign in Eq. (22) will be determined later, using the boundary
conditions (Eq. (15)).

All our variables are now in terms of r, and the constants )
and H, and these will be related to T, and Tlf using one of the boundary

conditions:

—]

1
v () =0 = m=~[%§+; Tij : (24)

Evaluating H for T = 7, then leads to

U 2
oerta[ ] e

The other boundary condition implies that at the end of the
interval of operation the optimal engine works maximizing the instantaneous
power output, as if connected to an infinite heat source:
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w(rf) = => rzé = X (26)
T T 13

- . [ @7)
Toe Tt

If one considers a turbine connected to an infinite reservoir at
temperature T, a straightforward calculation gives ,—r}% = T‘l]z for its
internal temperatures that will maximize instantaneous power output.

The above is not a surprising result, because according to Egs.

(2) changes in T will be irrelevant for times much shorter than the smaller
G €
o {f o i

From Eqs. (20) the results for the temperatures are

ry(7) drl oL
T=Tiexp” drlH [B(rl-l)—rg—a-[l-#_]l )

X

11
Ey =dry s
(28)
Ty & L

T, =T, [1+-I-£+‘-a(r1-1):|

All these temperatures are functions of time, through r, given by Eq. (22)
and r, (t) obtained from

ryiT) dr ] -2 i
dr, = = dt' = 1 " (29)
1 Tli )
where r; T and

1

dr1 arl 1
—dT—=B(1‘r1)(Y+r1)+T+_u[1'r] (30)
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from Egs. (8).

As mentioned before, the solution involves Tf and Tif’ the
values of T and T; at the end of the interval of operation. This calls for
a trial and error procedure in which T, and T, are assigned arbitrary
values, the functions T(t) and T, (t) calculated from Eqs. (22)-(25), (28)-
(30) with the correct sign in (22) coming from Eq. (26), and the whole
process repeated until T(Tf) and Tl(rf) coincide with the chosen values of
Tf and Tlf.

This is a straighforward but time consuming enterprise, which
can be considerably shortened if one is interested in analyzing optimal
processes with given Ti and Tyqd the exact value of Te being of little
concern. In this case one has to search for only one correct parameter,
Tf or Tlf; the other one in the pair fixes e through Eq. (29). The
graphs in Figs. 2 and 3 were obtained this way.

When one is considering cases with g = kk; << 1, that is, small
coupling between the upper reservoirs, a perturbative calculation gives
the temperatures explicitly as functions of time, in the form
Y(1) = Yo(1) * RY;(t) + B?Y,(t) + ... , where Y is a temperature Y, its
value for g = 0,4{.e., with the upper reservoirs decoupled. The broken
lines in Fig. 3 correspond to a solution to first order in B; the errors
involved are of order g because one is expanding from a known function
Y, (1), not an extremal solution with respect to variations of g. The fit
does not seem impressive for g = 0.1, but the approach is still useful
considering the fact that one gets explicit time dependences, and the
time involved in obtaining a numerical solution, even when searching for
only one of Tf and T1f according to the preceding paragraph. The details
and results are in the Appendix.

The plots in Figs. 2 and 3 represent optimal processes for the
case of fixed conductivities and heat capacities. If one is able to
modifiy these quantities during the time of operation then the work output
will be further increased varying them according to the results of
Pontryagin's maximum principle, which requires that these quantities
alternatively take their maximum or minimum possible values during certain
periods along the process:

Spelling out condition (13) it implies, from Eq. (21),
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Fig. 2. Optimal process with T = 4, Ty5 = 5, o = B = vy =1. All
temperatures in units of T;. The instantaneous effectiveness was
; P
defined as e = o 4 where both the power P and the rate of
entropy production § are in units of KRTU; this is bases on the

(cf. Ref. 3). 1In (c) § (from q)

means rate of entropy production due to the flow of heat g.
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Fig. 3. Optimal process with the same input parameters as in Fig. 2,
except that now B = 0.1. Broken lines refer to a perturbative
solution to first order in R (cf. Appendix).
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B >0
k max
(i) gmp=to for (rz - I)% —s {< ¢ (31)
2
indeterm. =0

Physical requirements on the temperatures (cf. last two equations in set
(28)) imply r,>1, so o must always have its maximum possible value.

B (> 0
§ g f = (T [ ) () e, )
(ii) S=']?;= By for LI_TJ | lTJ"T: v J -
indet. - =0
. sy (2
e o ; Te  1Tyg) (Ty)?(Te)? :
(iii) v = C: *3 L or 1 - T: §-¢E~. T TE +4{< 0
indet. =0

Sm;ming up: To maximize the work output of the system vary the
engine temperatures Ty, and Ty according to Egs. (28), and adjust the
conductivities and heat capacities so that conditions (31-33) are satisfied
along the process.
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APPENDIX. A perturbative approach

The starting point for a perturbation expansion in powers of R
is provided by the differential equations for ry and r,:

(33)
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dror; [ 1]
BEivs o red orlly ) '
(A-1)
dr_ B
& 7w [ e ) '
dr, dr,

where a—— 1s the same as in Eq. (30) and H'— comes from Eq. (21) and the
condition H‘ = 0 along an optimal path

Define r(o) ol through equations (A-1), with B = 0; then
define '™ and ™ for n> 1:

and 1,

dr, (n) ar (n-1) I: 1

= _ (n=1) (n-1)
- T |- o] o[ ]
2

(n)
d‘!‘z B r

(n-1) (n=1) )2
ya + (r, 3 {Y + [, H s
dr 2r§"'l) (n=1) I_

(A-2)

keeping powers up to g" on the right hand side. The resulting equations

have solutions involving ri 5] (r = 0) and rén) (t = 0); determine rl(n](T =0)
from
T, ;
rin) (t=0) = —%’i (A-3)

and, lacking a better handle on it, define

(n) o fij = r(D) (A-4)
where rzm) is the solution to (cf. Eq. (26))

(
Ti‘! aT,

21n r(o) = 1n |— -
TGJ

1
1 & '.[—'-(65-] 1 (A-5)

1+q 2
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rfn) and ri“) are then obtained in terms of T;, T, and 7, the input

parameters.

Define now T, (™, Tgn) and T;") substituting r\™ and r/"
into Eqs. (28) and keeping powers up to 8. The results to first order in
B are:

T L O ap(@ )
(1) _ ~(0) AT
T," =T, +BT[rliL+De J ,
G i 1 (A-6)
(0) 1 E
T£1)=T;0)+B i a + ) L - o )
1+a Ty (e
[aT E
T = ® e gl 2 !
11+ o
with
T ™ ,
0} _ -
T1 = lli .
A-7
T::O) =701 - (0)2 ’
Xy ¢ (L i)
© a(réO) - 1)
T, - T, 1+ —n— s
1% i@
and
a(riO) - 1)
As '
{21 + o)
(-7 (Lar r;i 2AT
Deye w2y -1, (A-8)
A ZA
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NI R

T = [1 +[ &
1*g 1i
(0)y2
[]_m[ 5| alta )
A 1+a 2A% [riO’P

gl a [+ [Tio)]z
+ [1 = @ ] [1 % a]{ lerli(r:O))s }

ZA[rEG)V] LL [A ' (rio}]z]

- rli(réo)]z} }T +

(A-9)

The power P = ox(1 - xh] * 1 = Ky (in units of k,T,; cf. Eq. (9
and the efficiency n =1 - ?& then readily follow to first order in B.

h
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