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ABSTRACf

The performance of a turbine-type engine connected to finite
heat sources and the environment is optimized, under the criterion of
maximum work de1ivered during a fixed period of operation. Time is
introduced considering heat transfers through wal1s with finite
::-onductivities.
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RESlNEN

Se optmimiza el desempeño de un motor tipo turbina conectarlo a
fuentes de calor finitas y el medio ambiente, bajo el criterio de máximo
trabajo entregado durante un período fijo de operaci6n. Se introduce el
tiempo considerando transferencias de calor a través de paredes con con-
ductividades finitas.

I • THE PROBLIJ.l

The study oí thermal processes taking into account thcir finite
duration and avoiding microscopic equations fer the fluxes involved has
attracted attention lately, with the rnain lines oí argument centering
around the optimization oí cyclical engines whose heat transfers take place
through walls with finite conductivities(l). OuT problem dcals with the
optimization oí a continuously operating engine, a turbine, under thc
criterion oí rnaxbnal work output when it undergoes a process whose duration
and initia1 state are knOhn.

States oí the systcm are defined by the temperatures T, TI, Th,
Tt of its different parts (see Fig. 1), and , given the time oí operation
and the values oí T and TI at the beginning of the process, thc work output
W can be affcctcJ through manipulation from outside the system oí the
conductivitics k, ~, kt, the hcat capacities C, el, and, most importantly
for liS, the engine temperatures Th and T

t
. Our task consists then oí

deterrrrining the externally controlled paramcters that ~ill maxirndze the
~ork output; ~ith finite reservoirs involved they will be functions of
time.

I I. r.ALCULATIONS A\'D RESULTS

Our system is characterized by the heat conduction equations
(ef. Fig. I for the meaning of symbols),

Q = k(T, T)

) (1)
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Fig. 1. The system.
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and the equations for thc rcservoirs' temperatures,

C,T, = k(T - T,)

) (2)

The quantity ""e want to maximize is the work
tf t

f

W = J (Q, - Q,)dt = t Q<¡,(T - TJ - k£(T£ - To)] dt (3)
o

with given tf' Ti = T(t = O) and TIi = T,(t = O) .
Befare going any further it will be convenient to write a11

expressions in terms oí dimensionless quantities, using ratios .0£

tempcrature, conductivities and heat capacities, and measuring time and
energy in units to, Wo that are natural to the systcm:

C
tO=1<:"

t
Wo = Cfo (4 )

Our dimcnsionless quantities will be

T T, T£ Thx =1, Xl = ~ x£=" xh = T

kh k C
a =1<:" a = 1<:" y = Cl

£ £

t W
1 =~ l.ll = Wo

in tenns of which Eqs. (2) and (3) become

(5)

(6)

(7)

dx,
OT = ay(x - Xl)

] (8)
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233

In a physical process a11 heat transfers are such that entropy
increases with time. Applied to thc engine, this leads to a further
condition on its internal tempcratures,

Ql Q,
T
h

-
T£

~O

(10)

=> ,,(1- - 1) +l - 1 ~xh x£

It has become customary to use the equality sign in (10), and so introduce
the requirement of "cndoreversibility" for the engines considered (1):

1+--1=0x£ (11)

This will be OUT condition, too, although any other combinatían of T
h

and
T£ that satisfied (10), "[;h - 1) + 2 [;£ - 1) = O for examp1e, wou1d

have been equa11y aeeeptab1e.

The work output was maxirnized under constraints (8) and (11)
using optimal control theory, which involvcs the following steps(2}:

(i) fufine a "Hamiltonian" (eL Eqs. (8), (9), (11))

(12)

+ 1jJl~Y(X- Xl)J + 1jJ~(Xl - x) - ax(l - ~)} +[x~- 1) + ;£ 1J

the optimal control parameters on which H depends lincarly

with "state variables"
~ = (~, x£" a,.8, y),

multiplier \J.

(ii) futennine

x = (x, xd, "control variables"
"Co-5tate variables" ~ = ($, ¡Pl) and a Lagrange
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using Pontryagin's maximum principIe,

~~:t ~~:tfI(x, u*, l¡J, ~) '= H(x, U, If.!, jJ)

where u. denotes optimal valucs.
(iii) Solve the "equations of motion"

aH _
-~

all _ d~l aH
ax - ax; - crr dXh - o

subject to the boundary conditions

~(T f) o ~l (Tf) o

(13)

(15)

Hence the solution to Eqs. (8), (11), (14) wi11 invo1ve the values of the
state variables at the boundary oppositc that on which they are known. we
will deal with this problem latero

The cquations of motion are

~ = a(l - Xh)(~ - 1) + B(~ - YWl)

dh
B(~ - YWl)

dT

x(~ - 1)
+ ¡::r O

\-1 = X 2 ,

(16)

It was found convenient to express the systern to be solved,
Eqs. (8), (11), (16), in tenns of two variables,



and
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Xl TI
TI:: X:: T

(17)

ane of which will aftcrwards be eliminated using the express ion [ar H.
The only difficulty in carrying through this changc of variables

comes from thc cq~~tionfar ~ ' which was integratcd starting from the
observation that combining Eqs. (8) with the first pair in (16),

X,
="> X1W1 .•. x1JJ - x - y:: A constant.

Hence OUT system becomes

Xh :: 1 ~ a (1 .•. a; 2 )

1 .•. ar2

1 + "

d(In x) " [ 1 ]~-~~- = ~(r, - 1) - -- 1 - -dT 1 .•. a r 2

(18 )

(19)

(20)

1/1 = 1 -
r' ,
x

in which only ane is a differential equation.
To eltminate T2, use Eqs. (20) to obtain
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H - "- r+ii" (r, - 1) '+ B(l - r,) [-~ + r' (1 + ::LJJl
TI 2 TI

(21)

"hich is a second dcgree equation for r,, with solutions

B,. 1
lB'r2 =~:t "ZA;" - 4A D, 1 1

where

(22)

2"B, = r+ii" (23)

D = ---"---+ ~ (1 - r,) - H
1 1 + a TI

The correct sign in Eq. (22) wi11 be determined 1ater, using the boundary

conditions (Eq. (15)).
All OUT variables are now in tenms oí TI and the constants A

and H, and these will be re1ated to Tf and Tlf using one of the boundary

condi tions :

(24)

Evaluating H far t = T£ then leads to

[[T]' l'a f í
H ="j"+"""[i T o - 1_

(25)

The other bOlO1darycondi tion implies that at the end oí the
interval oí operation the optimal engine worksmaximizing the instantaneous
power outpu!, as if connected to an infinite heat source:



=>
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(26)

=> (27)

lE ane considers a turbinc connected to an infiniterreservoiI at
tempcraturc T, a straightfoTh'ard calculation gives ~ = (;0-) far its
internal tempcratures that wil1 maximi:e instantaneo~s power output.

The aboye is not a surprising result, bccausc according to Eqs.
(2) changes in T will be irrelevant far times much shorter t~ln the smaller
of {f. id .

From Eqs. (20) the results for the temperaturcs are

T - 1) - r-¥a [1 - ;,]]}
T1 TrI

Th T [1 - r,~;: ~)]
T1 To [1 + 1 ~ a (r, - 1)J

(28)

All thesc tcmperaturcs are functions oí time, through Tz given by Eq. (22)
and rl(T) obtaincd from

r tlt'
o

t (29)

dr, + 1 a+ra,[1 -r ',Jcrr- = 8(1 - r,)(y + r,) ~ (30)
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from Eqs. (8).
As mcntioned befare, the solution involves T and T thef lf'

values of T and TI at the end oí the interval oí operation. This calls far
a tria! and error proccdure in which T and Tare assigned arbitrary

f lf
values, the functions T(1) and T¡(,) calculated frcm Eqs. (22)-(25), (28)-
(30) with the correct sign in (22) coming from Eq. (26), and the whole
process repcatcd until T(t

f
) and TI (T£) coincide with the chosen values oí

Tf and Tlf'
This is a straighforh.ard but time consuming entcrprise, which

can be considerably shortcned if ene is interested in analyzing 0ptimal
proccsses \.,rith given Ti and Tu' the exact value oí Tf being oí little
concern. In this case Dne has to search for only ene corree! parameter,
T
f

or T
1f

; the other one in the pair fixes 'f through Eq. (29). The
graphs in Figs. 2 and 3 were obtained this way.

~hcn Dne is considcring cases with B = i;« 1, that is, sma!1
coupling bet~een thc uppcr reservoirs, a perturbatfve calculation gives
the tcmperaturcs cxplicitly as functions of time, in the fOlm
Y(1) = Yo(1) + 8'i1(1) + B2Y2(1) + ••• , \-,'hereY is a temperature Yo its
value for 13 = O,-<..e., with the upper reservoirs decouplcd. Tho brokcn
lines in Fig. 3 correspond to a solution to first arder in 13; thc errors
involved are of order B because one is expanding from a knO\.•n function
Yo(l), not an extremal solution with respect to variations of B. The fit
uoes not scem impressive for B = 0.1, but the approach is still useful
considering the faet that one gets explicit time dependences, and the
time involved in obtaining a nurncrical solution, even when searching for
only one of T and T according to the preceding paragraph. The details

f 1f
and resul ts are in thc Appcndix.

The plots in Figs. 2 and 3 represent optimal processes for the
case of fixed conductivitics and heat capacities. If one is able to
modifiy these quantitics during the time oí operation then thc work output
wil1 be further increased varying them according to the results of
Pontryagin's maximum principIe, which requires that thesc quantities
altcrnativcly take their maximum or minDnum possible vaIucs during ccrtain
periods along the process:

Spclling out condition (13) it implies, from Eq. (21),
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Fig. 2. Optirnal process with Ti = 4, Tli = 5, a = S = y = l. All
temperatures in units of To• The instantaneous effectiveness was
defined as e = --_P---, where both the power P and the rate of

p + S
entropy production S are in units of K1To; this i5 bases on the
usual expression e w +W

ToS
(ef. Ref. 3). In (e) S (from q)

means rate of entropy production due to the flow oi heat q.
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Fig. 3. Optimal process with the same input parameters as in Fig. 2,
except that now B = 0.1. Broken lines refer to a perturbative
solution to first arder in S (cf. Appendixl.



(i) lak rnax

a :::K; =: amin

indetenn.
for (r, - 1)' _

r> O

l' O
l. O
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(31)

Physical requiremcnts on the temperatures (cí. last two equations in set
(28)) imp1y r, > 1, so a must always have its maximumpossible valuc.

Bmax

1:
O

k ( T )
[1' fT,l [Thr [Tlf +YTf 1](ii) B E= ¡....for [1 T' J lTJ T T + YT J . O~ ~indet. O

¡:
(32)r~' OC [ rf 1 Tlf] [~]'[~r](iii) y = C

,
= Yrnin for 1- r.+-r ~ O (33), Y ,

indet. O

SUnming up: To maximize the work output of the system vary the
engine tempcratures Th and T~ according to Eqs. (28), and adjust the
conductivities and heat capacities so that conditions (31.33) are satisfied
along the proccss.
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APPENDIX. A pcrturbative approach

The starting point for a perturbation expansion in pm..'crs oí B
is providcd by the d'iffcrcntial cquations for TI and T2:
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dr 1 ar1
[1 - :,]Tt • I"""+"(l • e (1 - r )(y • r )

) )

(A-1)

dr e [YA. • r:)JClT'Zr1r, r'(y,
dr 1 dr2

where a:T is the same as in Eq. (30) and ClT comes from Eq. (21) and the
conditi~n ~. O a10ng an optima1 path(2).

Define r1°) and r;O) through equations (A-1), with e o; then

define r:n) and Tin) for n> 1:

(A-2)

dT
. e rYA • (r~n-l»)' [y • (rln-1) )']J

2r(n-l) r(n-l) 1_
) ,

Io>eping powers up to en on the right
have solutions involving r~n)(T = O)

froo

hand side.
In)and r, (T

The resulting equations
• O); determine r) In>CT • O)

(n) (r) T
(A-3)

and, lacking a bctter handle on it, define

rln) (T • O) • rlO), ,

where r;O) is the solution to (e£. Eq. (26))

(A-4)

21n r,IO) 1 [Ti1
= n T0 "T

f
[ rrl---1-

1 + a r 2°
(A-S)
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r :0) and r~n) are thcn ohtaincd in terms oí Ti' T li and Tf' thc input
parameters.

. (n) (n) (n) (n) .. (n) (niDefIne now T , TI • Th and Ti substltutlng TI and T
2

into Eqs. (2B) and keeping powers up to an. The rcsults to first order in
B are:

T~l) = T;O) + BTi[rli L + IXJ~ATJ

T~O) + atlT~O~l [[a + r;O)] L

t"TOE J+ a--
1 + a

w.ith

E l
- (r;O»)~

(A-6)

T(O) = T.e -AT
1

T(O)
= '[li1

r (O) - 1 j
(A-7)

= T(O) [1TIO)
r;O: (1 + a)h

[1
( (O)

~ l)jT(O) To
a r,

+1 1 +

and
( 1O) 1)a r,

A =
r ;0) (l + a)

(I-

A

y)rli[eo\T - 1) - r'
[e

2AT
- 1)D = y-r li

(A-B)+
2A
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L = - [1 +[~] [2A(rh,] tr:i [A + (r:OI)'] rU (r:OI)']} +

+ [eAT
- 1]t~i-[~] r (rIOI)'

]]1i :<: (A-9)
2A' [rIOI)'

+, .

and the
The po.er P = ax(l - x ) + 1 - x

T h £
effieieney n = 1 - T£ then readi1y

h
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