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ABSTRACT

A new algorithm for the solution of the Hartree-Fock equations is

presented, which avoids matrix diagonalizations.

The method is built around

the variance of the Hartree-Fock hamiltonian, computed with respect to
vectors arising from the Hartree-Fock transformation, and tries to make it
vanish. The present approach is applied to the Lipkin model and to a simple

numerical example
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RESUMEN

Se presenta un nuevo algoritmo para la solucidn de las ecuaciones
de Hartree-Foch, que evita diagonalizaciones de matrices. El método se
construye alrededor de la varianza del Hamiltoniano de Hartree-Foch, calcu
lada con respecto a vectores que aparecen en la transformacidn de Hartree-
Foch, e intenta hacerla nula. Se aplica el método al modelo de Lipkin y a
un ejemplo numérico simple.

1. INTRODUCTION

The Hartree-Fock (HF) approximation has had a long and distin-
guished history in atomic physics, and in the last 20 years it has been
applied extensively in nuclear physicsil-s) where it has achieved a privi-
leged status among the theoretical tools employed for the description of
nuclear properties.

In view of its importance, the discussion of different aspects
of the HF approach is always interesting, specially when it refers to the

investigation of alternative procedures concerning numerical applications

of the theory.
This is the purpose of the present work, in which a new algorithm

for the solution of the HF equations will be proposed, which avoids the
repeated diagonalizations involved in the usual approach. This will be
briefly reviewed in Section 2. Section 3 will deal with our new scheme,
which will be applied to two simple models in Section 4 and 5. Conclusions

will be drawn in Section 6.
2. THE HARTREE-FOCK FORMALISM

Given A nucleons and a convenient, orthonormal set of single-
particle (s.p.) wave functions |i> = a+[0> it is the aim of the HF theory
to determine that Slater determinant,

T %
> =b] by +ee by [0> , 1)
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constructed with the so-called self-consistent s.p. orbitals |A> = bI

with

| 0>

7 fig

= E c)\a'f » (2)
J

which minimizes the expectation value <¥|H|Y> of the Hamiltonian:

=] t, A { V. a a . (3)

ljljl] 1]mn13nm
Vijmn being an antisymnetrized matrix element(SJ.
The corresponding variational problem leads to the well-known HF
equations (?), which have the form of an eigenvalue problem:

&
I ek =g ) O

This possesses, howver, a nonlinear character, in view of the fact that
the HF hamiltonian h in Eq. (3) depends itself upon the c?:

A
hy; =ty + A£1 Elc'i*vjkiic; =gy * ?22 VikitPex o (%)
p being the HF density matrix
A *
Pk = 121 ci ci . (6)
Eqs. (4) and (5) are customarily solved by recourse to the following

iterative algorithm:
GE 5 Ay S
a) An initial set of coefficients {cj} is guessed, together with informa-
tion concerning which orbitals are occupied.
b) The HF hamiltonian is constructed.

c) Eq. (4) is solved by diagonalization of h, which yields a new set of
coefficients {c§}.

d) One selects A orbitals (usually those for which the s.p. energy g, is
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lowest) to be occupied.
e) One returns to step b) unless convergence has been achieved.

In the last case, one evaluates with |¥> those expectation values
which are interest. In particular, the ground state emergy is given by

A A
= 1 1
B * AZ;P\ITW *w Au£1 AuVaw> = 5 iZj (tg, *hydpy, - ()

3. ALTERNATIVE APPROACH

The main idea of our approach is that of looking for a relation-
ship between the expansion coefficients cg that are obtained in two
successive iterations, say the k-th and the (k + 1)-th ones, of the above
described algorithm. One may guess that this relatienship must be of the

general form
A+ 1) = I octmo (8)
i

where, eventually one must have, when convergence is achieved G = 5Au6ij'
Without loss of generality, one can give to G the structure

Au _ Au
Q¥ = a,, (0d ) + by (Ohy (), ©)

and the task to be confronted then would be to determine a, b and d from
the HF equations.
We shall propose, instead, the following ansatz
MMk) =6, (a8, + bh..) (10)
ji AutTATLS A3 ,
and will justify it in Subsection 3.3. In order to give and explicit

interpretation to Eq. (10), which shall be done in Subsection 3.2, we
review first a diagonalization method recently proposed.
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3.1. The 2x 2 algorithm

This is an iterative method which may under certain circumstances
be an alternative to the Lanczos method for the diagonalization of
Hermitian operators(ﬁ).

Let R be a linear, hermitian operator, defined everywhere in a
finite dimensional vector space and |k> an arbitrary, normalized vector

belonging to it. If A operates on |k> one obtains

R!i; = ek|k> + vklk'> , (11)
with

<k|k'> = 0; <k'|k'> =1 ; (12)

The coefficient in the first term of the r.h.s. of Eq. (11) is

e = <k[Alk> (13)

while in the second one we have the square root of the variance of A

computed with vectors |k> :
b= kR - <k[Allo? = k|R2flo - e (14)

The states |k> and |k'> define a 2x 2 subspace in which A can be
diagonalized. The corresponding matrix has the form

® Y
M= , (15)
% %
where
o = <k'[A[K'> . (16)

Berger et af. have shown(6) that the eigenvalues (and eigenvectors)
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of R can be obtained individually starting with the lowest one, via an
iterative process in which the matrix M is repeatedly diagonalized. For
every eigenvalue E of R there is a sequence of values e, converging to it,
while, at the same time Yy tends to zero and |k> tends to the eigenvector
belonging to E. The method has the advantage of drastically reducing the
computer storage space, since, in any given iteration step, one deals with
only two vectors.

3.2. An interpretation of our Ansatz

We propose, according to Eqs. (8) and (10), that the HF equations
be solved by iteration of the relationship

A _ A )
cj(k + 1) a)\(k)cj(k) + b)\(k) Ehjici(k) . (17)
In order to get some insight concerning the meaning of Eq. (17)
let us consider the HF Hamiltonian h(k) and a given orbital |x(k)> after k
iteration steps of the algorithm reviewed in Section 2. Onme could write
in the spirit of Berger et aﬂ.( T
h(k) [A(k)> = ex(k)|k(k)> # vA(k)IJ\'(k)> .
h(k)|A' (k)> = vy X) [A(k)> + ak(k)|1'(k)> , (18)

AN E>=1 , A'EhE>=0 ,

and considcr e, , v, to be the matrix elements of the projection of h onto
a 2x 2 subspace spanned by |A(k)> and |x'(k)> . These states are given in

terms of the basis |j>, by the expansions
> = § > (19)
;3
and

MWM>={%&HP . (20)
Jj

28w
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where, according to the first of Eqs. (18), the P? are given by
. Sy ny A .
P09 = 5ty {1 By; 09100 &M} . (21)

Furthermore, we have for vy and oy the expressions

Vi) = Ak) W2 (K) A (K> - e} (K) ' (22)

and

]

o () = ' [hE N R)> (23)

If we were now to diagonalize the matrix

] v
A X
[“A o ] ) (24)
and focus our attention upon its lowest eigenvalue,
(L e 00 + 0,00 - {0200 + 3 [a,00 - 0]} (25)
B1 1 (R oy X % % =R ’

ei would be smaller than eA(k)(ﬁ) and generates a new vector |\''(k)>, with

expansion coefficients
M on o [ty + fer - ey P (k)} (26)
3 A j ATATT) S A ’
NA(k) being a normalization constant given by
N,(k) ={1+ |e! - e (k)]Z/vz(k) r | (27)
A e R

Suppose now that we define

el(k + 1) = ei .
c?(k +1) = cﬁ" ) (28)



268

and change the meaning of k, considering that it counts now the iteration
steps performed with the relationship (17).

Eq. (26) adopts, explicitly, the form
N, (K)
v2 (k)

c)j‘(k +1) =N, (k)cj}‘(k) + {eA(k i1y - ex(k)}-

(29)
A A
{ Ihys (900 - ¢, 00,0 :
The set of Egs. (29) present us with a nonlinear problem which

will be showed to be equivalent to that posed by the HF Eqs. (4) and (5).
Comparison with (17) allows one to write

3,00 = K, 000 - & fe, e+ 1) - o0 brtan
(30)

. 2
bx(k) NA(k) {eA(k * 14 eh(k)}/vk(k) 3
The interpretation of the ansatz (23), with a, and bA given by
Eq. (30), becomes now apparent. If we were to employ the standard algorithm
for the solution of the HF Egs., performing the corresponding diagonaliza-

tions according to Berger et azﬁe}

, we would face a nest of two loops.
For every orbital |A> one should iterate a relationship of the form (29)
(internal, or 2x 2 loop) until covergence is reached. The set of such
internal loops should also, as a whole, be iterated (external, or HF loop),
until convergence is attained.

Our proposal involves a different structure of the nest of loops.
We interchange the order within the nest, performing, in succession, one
internal loop followed immediately by an external one, i.e., given an
orbital |A(k)> we obtain |A(k + 1)> after just one 2x 2 step and proceed
to the next orbital. After we exhaust the list of orbitals, we have a
sequence of values e)(k + 1). Selecting among these the ﬁ,lowest ones, we
construct h(k + 1) and restart the procedure, in order to get the |i(k +2)>
set and so on. In the next subsection we shall try to justify this way of
attacking the HF problem in which no actual diagonalizations need to be
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performed, although a diagonalization method underlies the approach,

3.3. Equivalence of the ALgornithms

The two algorithms we are concerned with in this work are
obviously identical. Consequently, they will in general yield different
intermediate results. We must require equivalence only in what refers to
the final ones, when and if they converge. We shall endeavor now to prove
that if a given set {cg} is a solution of the HF Egqs. (4) and (5), it is
also a solution of (29) and vice versa.

Let us assume first that a set of coefficients {gJ exists that
satisfies selfconsistently the HF Eqs., 4.e.

7 <j|h{g_}|i>g% = € g%, for all 1, j : Z1)
i J i A%3

It should be proven now that, if after k iterations of the form
(29) one finds that

c;‘(k) = g;,‘; for all j and A (32)
then

c;‘(k +1) = c;‘(k) ; for all j and A (33)
and

eA(k +1) = Ek(k) =€ for all x » (34)

Proof: According to Eq. (18) we have
= A* A
e, (k) _i% hji(k) < (k)Ci(k) > (35)

which together with (31) and (32) yields

e, (k) = € (306)
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Moreover, Eqs. (31), (32) and (36) allow one to rewrite (17) as
Mk + 1) = a, K + e, ()b, (K (K)
3 yMRIC ARID LRIC, ’ {37l
so that, for (33) to hold it is necessary that
a (k) + e, (Kb, (k) = 1 . (38)

But, in view of Eq. (30), this is verified if, (just sum the r.h.s. of
the two Eqgs. (30))

NA =1 ; for all ). (39)

In order to ascertain whether (39) holds, one must study the
behavior of the variance v;(k). From Egs. (22), (32) and (34) one has

n

vi (K) Z C (k)h2 (k)C (k) - ef(k)
= 7 %(mh(mh(m&m)—ém)
At (40)

- eA(k):§ cA;(k)hjl(k)cz(k) - e2(K)
- e2(k) { c (k)c W - e2(k) =

We see in the limit {c X}~ {gl} which for the sake of brevity
shall be abbreviated as the '"g- 11m1t", i.e., in the limit in which the
cj(k) become the self-consistent eigenvectors of the HF hamiltonian, the
variance vy 2(k) vanishes. In this same limit P (k) also tends to zero
(the numerator goes to zero as vy 2(k), the denomlnator only as vy (k)) and,
consequently, ay (k) also van1shes as rapidly as vy 2(k) (see Eq. (23)) If
we focus our attentlon now on Eq. (25), taking 1nto account the definition
(28) one can establish, after a Taylor expansion of the square root, that

fe,(k+ 1) - e,(®)} » 0 as vi(K) >0 , (41)
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proving (34) and implying that, in the g-limit,
{e,(k + 1) - e, (K)} v;‘(k) >0 " (42)

and, as a consequence, NA + 1, which completes the proof.
Conversely, it ought to be proven now that, if after k iterations
of the new algorithm, Eqs. (33) and (34) hold, then the cg(k) are the self-

consistent eigenvectors of h, <.e., Eqs. (31) and (32) are true.

Proof: We know that Eqs. (33) and (34) imply both that (24) is diagonal
and that aA(k) vanishes. The fact that v;(k) = (0 implies, in view of Eq.
(22), that

x* A - A A
igﬁ " (oh, (hy ()} (K) = e*(k)rilcn Wh @t . (43)
Define E
Qm =T h W . (44)
) b e

Introduction of this into Eq. (43) yields

A - A A
EH@W@Mgm-ﬁwg%m%m , (45)

which, after equating the coefficients of Qg(k) on both sides gives the
desired result:

A - A
E hy, ()l (k) = e, (K)c) (K) (46)
and thus completes the proof.

3.4. Practical considerations

From the practical point of view of numerical applications, an
unpleasant feature of the present algorithm is that, in order to evaluate
v;(k) (Eq. (22)) and ay (Eq. (23)), one needs h? and h3, respectively.
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This difficulty can be overcome as follows. Replace the first
of Egs. (18) by

h(k) [x(k)> = e, K [A(k)> + [p> » (47)
and expand |P> in terms of the known basis |j>:

P> = ] B0l (48)
J

Since we know the coefficients cg(k) of the expansion (19), we
obtain for B; the expression

Ay - Xy A
Bj(k) = E hji(k)ci(k) ex(k)cj(k) s (49)
and, considering that <A'(k)|A'(k)> =1,
vi(K) = <P|P> = ] |B()|? . - (50)
b
Moreover, |A'(k)> = !P>/vk(k) implies
o (K) = v 2<Plh®) [P> = vI2®) T BN oh B . (51)
A A A i3 & ij j
The alternative HF scheme can then be set forth thus

a) An initial set {c%}

the occupied states. h(1l) is evaluated and ek(l) given the value
<A (1) |[h|a(1)>.

is guessed, together with information concerning

b) Bg is evaluated for all j using Eq. (49).
¢) BEmploy (50) and (51) to obtain\a(k) and “l(k)'

d) with Eq. (25) obtain ex(k + 1) and with Eq. (27) NA(k)' Then, via Eq.
(30), compute aA(k] and bl(k]'

e) By recourse to Eq. (29) get the c%(k + 1) for all j.
f) Steps b) to e) should be performed for all A. Having the complete set
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of values ek(k + 1) for all A, select the A lowest ones and construct
h(k + 1).

g) Return to b) until convergence is achieved.
4. APPLICATION TO A SIMPLE MODEL

Let us consider 4 identical fermions of spin } and 3 s.p. levels,
of degeneracy 2, characterized by a quantum number p (p = 1, 2, 3), with
Ss.p. energies sp given (in arbitrary units) by -1, 0 and +1 respectively,
Our s.p. states are of the form |p,o> where o(= *1) indicates the spin
projection. In the perturbed ground state one occupies the s.p. states
|1, #12, [L, =i2, |2, %1% and |2, ~1>, Assume @ two-body interaction with
antisymmetrized matrix elements given by

s . (g Do o) (52)
(014 02) (03 + o4)

Vv
P101p202;p303py0y

[ 8
01, =02 O3, =0y 691?2 tSPaPu F(Pl’pz’p3’p“J

with

F(pl !pz Jp3 !puJ * (53)

B 6P1.Pa+ 691:?3 + 14-691.93 = I
The last two terms in Eq. (52) indicate that the interaction is
able, say, to take two particles from P=1ltop=2or fromp =2 to p=3,
but not fromp =1 to p < 5
We shall look for an axially symmetric HF solution(s), which is
tantamount to say that the HF transformation (Eq. (2)) is independent from

O,

A
A,0,> = § >
10, 0,9, pgl c;lp, o (54)

If we write
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h.l.j el tl] + Fl] » (SS)

thus defining the so-called HF potential T' (Cf. Eq. (5))(3), we have in
our case

Yoau © 5Pq5011€p ? (56)
and T becomes a 6x 6 matrix, that, since axial symmetry is required, is
built out of two 3x 3 submatrices, placed along the diagonal. The usual
HF treatment involves thus the repeated diagonalization of a 3x 3 matrix,
as indicated by the transformation (54).

Fig. 1 depicts the HF binding energy, for the case |G| =
obtained both with the standard algorithm and with the present one, as a
function of the iteration number k. We compare also in Fig. 1 the "Fermi
level" as given by the two methods, €2(k) and e2(k), respectively. It is
clearly seen that intermediate results are different, although the two
approaches converge to identical final results. Similar curves can be
drawn for other values of the coupling constant G. Several different
configurations were tried as zero order guesses, without noticeable effects

in the final results.

5. LIPKIN MODEL

The study made in Subsection 3.3 makes it clear that the
variance vz(k) (Eq. (22)) is the protagonist of the new algorithm, that
converges when it vanishes. We illustrate this central role in the case
of a 51mp%e]mode1 that enjoys a high degree of esteem among nuclear
We have two A-fold degenerate s.p. levels, separated by the s.p.
energy €, and A identical fermions. Two quantum numbers characterize a
s.p. state |j>. One of them adopts the value -1 (lower level) and +1
(upper level). The other, which may be called the p-spin, singles out a
state within the A-fold degeneracy, and runs from 1 to A. The s.p. basis

theorists

is then
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With reference to the model in Section 4, the HF binding energy
computed both with our approach (solid line), and with the standard
one (dashed line) are plotted as a function of the corresponding
Also shown (see scale on the righ side) are
the self-consistent Fermi levels e

number of iterations.

dashes).

2

undistinguishable results.

(dashed-point) and

After about ten iterations both methods yield
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325 [Pa B BE Ly s ¢ w g 0= 41 (57)
and the Hamiltonian reads
H=¢ } oa;dapU + % ) a*ua+ua Pan ? (58)
po pqupquq

where € is usually set equal to unit and we choose V> 0. The HF solution

can be found analitically(s) employing the so-called quasi-spin algebra(7).
We shall here find it, instead, by recourse to the condition vi = 0. The
HF transformation (2) is here(g].

[xs ™ = ka {cos(a/2) |py, 0 = ©> - i sin(e/2) |p, o = -1>} . (59)

On account of the monopole character of the interaction in Eq.
(58) the density matrix (6) adopts a very simple form(g). It consists of
A 2x 2 blocks along the diagonal, of the form

o__ Py
60
Oy, Pos , (60)
with
p__ = cos?(a/2) ; 0, = sin?(a/2) ,
(61)
B & Bl ™ i sin(a/2)cos(a/2)

The HF hamiltonian (5) has, as a consequence, the same structure,

and one easily finds that

(62)
EZV(A- 1)sin(a/2)cos (a/2) .

=
]
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We determine the angle so as to make the variance to vanish, L2y
<A |h?|r> = el 5 (63)

and use the expansion (35) and that given in (40) for N and v (k),
respectively. The results

ey =7 M, +h ) +3m_-n cosco - |h,_|sin(a) (64)

and

Ao =7 M2, +h2) + L w7+ 2 jcosa) +

(65)
|h+_l2 = L h__)!h+_|sin(a) 7
allow one to rewrite Eq. (63), utilizing first Eq. (62), :as
tg(a) = V(A - 1)sin(aq) g (66)
which yields two solutions
oy = 0 H
(67)
cos(a) = {V(A - 1)}7" ’

with the second one, of Course, restricted to the situation for which
g R -1 _ (68)

These are indeed the HF solutions found by Agassi et aﬁ.(s}.
When (67) is replaced into (61) and (62), and the HF energy (7) is then
evaluated, one finds that the second solution (67) prevails energetically
over the first one, when (68) is satisfied.
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6. CONCLUSIONS

We have presented a new scheme for the solution of the HF
equations, which in principle does not involve diagonalizations,although
it is founded on a diagonalization algorithm. The method is based on the
idea that the variance of the HF hamiltonian, computed with linear
combinations of a convenient s.p. basis, must vanish. Since the HF
hamiltonian itself depends upon such linear combinations, a nonlinear
problem arises, expressed by the set of equations (29). These equations
have been numerically solved in Section 4 for a very simple model, while
the central idea has been illustrated with reference to the Lipkin model.
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