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A new algorithm for the solution of the Hartree-Fock equations is
presented, which avoids matrix diagonalizations. The method is built around
the variance of the Hartree-Fock hamiltonian, computed with respect to
vectors arising frorothe Hartree-Fock transformation, and tries to make it
vanish. The present approach i5 app1ied to the Lipkin model and to a simple
numerical example
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Se presenta un nuevo algoritmo para la solución de las ecuaciones
de Hartree-Foch, que evita diagonalizaciones de matrices. El método se
construye alrededor de la varianza del Hamiltoniano de Hartree-Foch, calcu
lada con respecto a vectores que aparecen en la transformación de Hartree=
Fech, e intenta hacerla nula. Se aplica el método al modelo de Lipkin y a
un ejemplo numérico simple.

1. INTRODUCTION

The Hartree-Fock (HF) approximation has had a long and distin-
guished history in atonUe physics, and in the last 20 years it has been
applied extensively in nuclear physics(1-5) where it has achieved a privi-
leged status amongthe theoretical tools employed for the description of

nuclear properties.
In view oí its tmportance, the discussion oí different aspects

oí thc HF approach is always interesting, specially when it refers te the
investigation oí alternative procedures concerning numerical applications
of the theory.

This is the purpose of the present work, in which a new algori thm
for the solution of the HFequations will be proposed, which avoids the
repeated diagonalizations involved in the usual approach. This will be
briefly reviewed in Section Z. Section 3 will deal with our new scheme,
which will be applied to two simple models in Section 4 and 5. ConcIusions

will be drawn in Section 6.

2. 11lE HARTREE-FOCK FORMALISfol

Given A nucleons and a convenient, orthononnal set of single-
particle (s.p.) wave functions Ij> = atlO> it is the aim of the HFtheory

to determine that Slater determinant,

I~> (1)
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eonstrueted with the so-ealled self-eonsistent s.p. orbitals lA> = t{ I O>
with

bi = 1 ¿at
j ))

whieh minimizes the expeetation value <~IHI~> of thc Hamiltonian:

(2)

(3)
t t.lt ttH = L t .. a.a. + l L V.. a.a.a a

ij 1.J 1. ) ij 1)Inn 1. J n m

mn
Vijmn being an antisymmetrized matrix element(3).

The corresponding variational problem leads to the wel1-known HF
equations (2), which have too form of an eigenvalue problem:

This possesses, howverJ a nonlinear character, in vicw of the fact that
thc HF hamiltonian h in Eq. (3) depends itself upon the e;:

A

+ 1
A-1

(S)

p being the HF density matrix
A

A' A1 'it etA=l
Eqs. (4) and (S) are customarily solved by reeourse to the following
iterative algorithm:

(6)

a) An initial set of eoeffieients le;} is guessed, together with informa-
tían concerning which orbital s are occupied.

b) The HF hamiltonian is eonstrueted.
e) Eq. (4) is solved by diagonalization of h, which yields a new set of

eoeffieients le;}.
d) Olle selects A orbitals (usually those for whieh the s.p. energy CA is
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lowest) to be occupied.
e) Onc rcturns to stcp b) unlcss convergence has becn achievcd.

In the las! case, one evaluates with 1~>those expectation values
which are interest. In particular, the ground state energy is given by

1 A
+ ¿ I

).~=1

(7)

3. ALTERNATlVE APPROACH

The main idea oí OUT approach is that oí looking for a relation-
ship betwecn the expansion coefficients e; that are obtained in t~u
successive iterations, say the k-th and the (k + l)-th anes, oí the aboye
described algorithm. Ooe may guess that this relationship rnustbe oí the
general fonn

IG;~(k)c~(k)
pi

(8)

where, eventually ane mus! have, when convergence is achieved G - óA~6ij'
Without 1055 oí generality, ane can give to G the structure

and the task to be confronted thcn would be to determine a, b and d írom
the Hr equations.

We shall propase, instead, the following ansatz

and wilI justify it in Subsection 3.3. In order to givc and explicit
interpretation to Eq. (10), which shall be done in Subsection 3.2, we
revie~ first a diagonalization mcthod recently proposed.
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3. 1. The 2 x 2 afgoltdhm

This is an iterative method which may under certain circumstances
be an alternative to the Lanezas method for thc diagonalization oí
Hennitian oper~tors(6).

Let A be a linear, hcrmitian operatoT, defined everywhere in a
finite dimensional vector spacc and lk> an arbitrary, normalized vector
belonging to it. If A operates on Ik> one obtains

with

Alk> = e Ik> + v Ik'>
k k

(11)

<klk'> = O; <k' Ik'> = 1 (12)

The coefficient in thc first tcrm of the r.h.s. of Eq. (11) is

e =
k

(13)

while in the sccond ane we havc the squarc 1'oot oí the variance oí A
computcd with vectors Ik> :

V 'k

, ,
<kIA'lk> - <kIAlk>' (14)

The states Ik> and Ik'> define a 2 x 2 subspacc in which A can be
diagonalized. The corrcsponding matrix has the form

ek
V
k
]M =

vk °k

where

o <k' IAlk'>

(15)

(16)

Berger d al. have sho....n(6) that thc cigenvalues (and eigenvcctors)
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of A can be obtained individually starting with thc lowest ane, vía an
iterative process in w~ich the matrix M is repcatedly diagonalized. FOT
every eigenvalue E of A there is a sequence of values ck converging to it,
while, at the same time vk tends to zero and Ik> tends to the eígenvectoT
belonging to E. The method has the advantagc of drastically reducing thc
computer storage space, since, in any given iteratían step, ane deals with
only two vectors.

We propase, according to Eqs. (8) and (10), that the HF equations
be sol ved by iteratían of the relationship

(17)

In order to get sorne insight concerning the meaning of Eq. (17)
let us consider the IW Hamiltonian h(k) and a given orbital I,(k» after k
iteratían steps of the algorithm reviewed in Scetion 2. Onc couId write
in thc spirit of Berger et al. (16).

h(k)I,'(k» = v, (k)I,(k» + u,(k) I,'(k» (18)

<,' (k) I,'(k» = 1 <,'(k)I,(k» = O

and considt r e v to be the matrix clcments of the projection of h anto" ,a 2x2 subspacc spanned by I,(k), cnd I,'(k» These states are given in
tcnms of the basis Ij>, by the expansions

and

I,(k» : ¿ c'(k)li>
j )

(19)

I,'(k» ¿ pA(k) li>
j )

(20)
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where, according to the first of Eqs. (18), the rA are given by
J

rACk) = "...k{I h .. (k)cA(k) - e,(k)CA(k)}
J vA l1'l.) i J~ 1 1\ )

Furthennore, we have for vA and nA the expressions

v~(k)= <A(k)lh'(k)IA(k» - e~(k)

and

If we were now te diagonalize the matrix

and focus OUT attention upon its lo~~steigenvalue,

(21)

(22)

(23)

(24 )

(25)

e~ wou1d be smaller than el. (k) (6) and generates a new vector IA"(k», with

expansion coefficients

NA(k) being a norma1ization constant given by

Suppose now that we define

'. (26)

(27)

el. (k + 1)

cl.¡k + 1)
J

(28)
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and change the meaning oí k, considering that it counts now the iteration
steps performed with the relationship (17).

6q. (26) adopts, explicitly, the form

N (k) {= N, (k)c'(k) + --'--- e,(k + 1)
"J v' (k) ",

(29)

The set of Eqs. (29) present liS with a nonlinear problem which
will be showed to be equivalent to that posed by the fW Eqs. (4) and (S).

Comparison with (17) allows ane to write

(30)

The interpretation of the ansatz (23), with a, and b, given by
Eq. (30), becomes now apparent. If we were to employ the standard algorithm
fay the solution oí the HF Eqs., performing the corresponding diagonaliza-
tions according to Berger el al!6), we would face a nes! oí two loops.
For every orbital lA> ane should iterate a relationship oí the [orm (29)
(internal, ar 2x 2 loop) until covergence is rcachcd. The se! of such
interna! loops should a150, as a whole, be itcrated (external, ar HF loop),
until convcrgence is attained.

OUT propasa! involves a different structurc oí the nes! oí lcops.
We interchange the arder within the nest, performing, in succession, one
internal loop followcd iITDTICdiatclyby an external one. i.c.• given an
orbital I,(k» we obtain I,(k + 1» after just one 2x 2 step and proceed
to the next orbital. After we exhaust thc list oí orbitals, wc have a
sequence of value5 eA(k + 1). Sclecting among these the A lowest ones, we
construct h(k + 1) and restart the proccdure, in order to get the IA(k +2»
set and so on. In the next subsection we shall try to justify this way of
attacking the HF problem in which no actual diagonalizations need to be
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performed, although a diagonalization method underlies the approach.

3.3. Equ,¿va1ence 06 .the M90JL.i-t~

The two algorithms we are concerncd with in this work are
obviously identical. Consequently, they will in general yield different
intermediate results. We mus! require equivalcnce only in "hat refers to
the final anes, \~'henand if they converge. "'c shall cndcavor nOK to prO\-c

that if a given set jeA) is a solution of the HFEqs. (4) and (5). it is
)

a150 a solution oí (29) and vice versa.
l.et us assume first that a set of coeffieients {g.) exists that

)
satisfies selfconsistently the HFEqs., ¿e..

(31)

It should be proven now that, if aftcr k iterations oí thc form
(29) one finds that

e'(k) '. for al! j and,
) gj'

then

e'(k + 1) e'(k) for al! j and A
) J

and

Proof: Aeeording to F.q. (18) we have

,* ,
eA(k) • L h .. (k) e. (k)e. (k)

ij J1 J 1.

"hieh together with (31) and (32) yields

e, (k)

(32)

(33)

(34)

(3S)

(30)
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~~reover, Eqs. (31), (32) and (36) allow one to rewrite (17) as

(37)

so that, for (33) to hold it is neeessary that

But, in view of Eq. (30), this is verified if, (just sum the r.h.s. of
the two Eqs. (30))

NA = 1; for all ,.

(38)

(39)

(40)

In order to aseertain whether (39) holds, one must study the
behavior of the varianee v\ (1<). From Eqs. (22), (32) and (34) one has

v'(k) = LeA' (k)h', (k)eA(k) - e\(k)
). ij J J~ l.

L eA' (k)h,~(k)h~, (k)eA(k) e\ (k)
ij~ J ) 1. lo

= e, (k) L eA~(k)h,~(k)e~(k) - e:(k)
A j~ ) ) " A

= e\(k) L e"(k)eA(k) - e'(k) = O
j ) ) A

We see in the limit {e'(k)} ~ {gA} whieh for the sake of brevity) )
shall be abbreviated as the "g-limit", Le., in the 1imit in which the
c3(k) become the self-consistent eigenvectors of the HF hamiltonian, ~he
v~nce v~(k)v~heh. In this same 1imit p;Ck) a150 tends to zero
(the numerator goes to zera as v~(k),the denominator only as vA (k)) and,
eonsequently, aA(k) also vanishes, as rapidly as v\(k) (see Eq. (23)). If
we focus OUT attention now on Eq. (25), taking into account the definition
(28) one can cstablish, after a Taylor expansion of the square root, that

(41)
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proving (34) and implying that, in the g-limit,

(42)

and, as a consequence, N~ ~ 1, which completes the proof.
Conversely, it ought to be proven now that, if after k iterations

of the new algorithm, Eqs. (33) and (34) hold, then the cA(k) are the self-
)

consistent eigenvectors oí h, l.e., Eqs. (31) and (32) are truco

Proof: We know that Eqs. (33) and (34) imply both that (24) is diagonal
and that aA(k) vanishes. The fact that v~(k)= O implies, in view of Eq.
(22), that

= e, (k) L cA'(k)h (k)cA(k)
11 n oro ro

ron
(43)

Define

Introduction of this into Eq. (43) yields

(44 )

which, after equating the coefficients of Q~(k) on both sides gives the
desired result:

L hu (k)C:(k) = eA (k)C~(k) (46)
>

and thus completes the procf.

From the practical point of vicw of numerical applications, an
unpleasant feature oí thc prcsent algori thm is that, in arder to evaluate
v~(k) (r~.(22)) and aA (Eq. (23)), one needs h' anu h', respectively.
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This difficulty can be overcome as follows. Replace the first
of Eqs. (18) by

h(k)IA(k» = eA (k)IA(k» + Ip>

and expand IP> in tenns of the known basis U>:

(47)

Ip> = I B\k)lj>
j J

Sinee we know the eoeffieients eA(k)
obtain for B~ the express ion )

J

and, eonsidering that <A'(k) IA'(k» = 1,

(48)

of the expansion (19), we

(49)

v'(k) = <plp> = I IBA(k) l'
A j J

~breover, lA'(k» = IP>/vA(k) imp1ies

(SO)

(SI)

The alternati ve HF scheme can then be set forth thus

a) An initial set {c~} is guessed, together with information concerning
Jthe oceupied states. h(l) is evaluated and eA(I) given the va1ue

<A(l) IhIA(l».
b) B~ is evaluated for all j using Eq. (49).

J

e) llqlloy(SO) and (SI) to obtain VA(k) and "A (k).
d) With Eq. (25) obtain eA(k + 1) and with Eq. (27) NA(k). 1hen, via Eq.

(30), compute aA(k) and bA(k).
e) By reeourse to Eq. (29) get the e~(k + 1) for a11 j.
f) Steps b) to e) shou1d be performed for a11 A. I~ving the complete set
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of valucs cA(k + 1) far al! A, select the A lowcst ones and construct
h(k + 1).

g) Return to b) until convcrgcncc is achieved.

4. APPLlCATION TO A S1~'I'LE mDEL

let us consider 4 identical fermions of spin 1 and 3 s.p. lcvcls,
of degcneracy 2 J charactcrizcd by a quantum ~umbcr p (p = 1 J 2, 3), wi th
s.p. energies E: givcn (in arbitral)" llilits) by -1, O and +1 rcspectively.p

OuT S.p. states are of the fonm Ip,o> wnere 0(= !I) indicates the spin
projcction. In the perturbed ground state one occupics the s.p. statcs
11, +1>, 11, -1>, [2, +1> and [2, -1>. Assurnc a two-body interaction with
antisymmetrized matrix elcments given by

(01 - o,) (03 - a,)

(al + o,) (03+ o,) (52)

with

Ó +6 +ó
Pl,P3 Pl,P3 + 1 Pl,P3 - 1 (53)

The 1ast two terms in F4. (52) indicate that the interaction is
able, say, to take two particIes from p = 1 to p =: 2 or from p = 2 to P = 3,

•but not from p = 1 to P = 3.
l\'e shall look for an axialIy syrnmetric HF SOlution(3), \o,'hich is

tantamount to say that the 111' transfonnation (Eq. (2)) is independent from
o,

If we writc

o >
p (54 )
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(SS)

thus dcfining the so-called ¡W potcntial r (Cf. Eq. (5))(3). we havc in
OUT case

t =66£-pa.q~ pq Oll P
(56)

and r bccomes a 6x 6 matrix, that, since axial symmctry is required, is
bui!t out oí two 3x 3 submatriccs, placed along thc diagonal. Thc usual
HFtreatment involves thus thc repeated diagonalization oí a 3x 3 matrix,

as indicated by the transforrnation (54).
Fig. l depicts the HF binding encrgy, for the case IGI = 0.2

obtained both with the standard algorithm and with the present one, as a
function oí the iteration number k. \\C compare also in Fig. 1 thc "Fermi
level" as given by the two rncthcxls, E2(k) and c2(k), rcspcctively. 1t is
clcarly seen that intcnncdiate resul ts are differcnt, al though thc twa
approaches converge to idcntical final rcsults. Similar curves can be
drawn far other values of the coupling constant G. SCvera! different
configurations were tried as zero arder gucsscs, without noticeable effects
in the final results.

S. I.IPKIN mOEL

The study made in Subsection 3.3 makes it clear that the
variancc v~(k)(Eq. (22)) is the protagonist of thc ncw algorithm, that
converges when it vanishes. We illustrate this central role in thc case
of a simple model that enjoys a high degree of estccm among nuclear
theorists(7) .

We have two A~fold degenerate s.p. levels, separated by the s.p.
cncrgy £, and A identical fenmions. ~u quantum numbcrs characterize a
S.p. state Ij>. One oí thcm adopts the valuc -1 (lo~~r level) and +1
(uppcr level). 1ne other, which may be called the p-spin, singles out a
state within the A-fold dcgencracy, and runs frcm 1 to A. The s.p. basis
is then
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Fig. l. With reference to the rnodel in Section 4, the HF binding energy

computed both with our approach (salid line), and with the standard
one (dashed lioe) are plotted as a function of the corresponding
numher oE iterations. AIso shown (see sea le on the righ side) are
the se1f-consistent Fermi levels e2 (dashed-point) and E.2(shortdashes). After about ten iterations both methods yield
undistinguishable results.
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Ii> ~ Ip, a>; p = 1 , ..• , A

and the Harniltonian reads

a = :tI t (57)

(58)

where E is usually set equal to llll.it and \.¡e choose V> O. Thc HFsolution
can be found analitically(8) employing thc so-called quasi-spin algcbra(7).
We shall here find it, instead, by recoursc to the condition v~ = O. The
HF transfonnation (2) is here(8).

lA, T> = '\p {cos(a/2) Ip, 0= T> - i sin(a/2) Ip, a ~ -T>j (59)

On account oí the monopole character oí thc interaction in Eq.
(58) the density matrix (6) adopts a very simple fonn(9). lt consists of
A 2 x 2 blocks along the diagonal, of the fonn

with

° = cos'(a/2) ; OH = sin' (a/2)

(60)

(61)

0+_ = P:+ = i sin(a/2)cos(a/2)

The HF hamiltonian (5) has, as a COTIscquence, the sarne structurc,
and one easily finds that

h -!
(62)

h+_ = ~ V(A- l)sin(a/2)cos(a/2)
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Wedetennine thc angle so as to make the variance to vanish, i.e.,

<Alh' lA> = e'
A

and use the expansion (35) and that given in (40) for el.and v\(k) ,
rcspectively. The results

and

a110w one to rewrite Eg. (63), uti1izing first Eg. (62), as

tg(a) = VeA - l)sin(a)

which yields two solutions

a = O

costa) = {VeA _ 1))-1

with the second ane, oí course, restricted to the situation for which

V>(A-1)-1

(63)

(64 )

(65)

(66)

(67)

(68)

lbese are indeed the HF solutions fOlUldby Agassi et al. (8).
When (67) is rep1aced into (61) and (62), and the HF energy (7) ;5 then
evaluated, ane finds that the second solution (67) prevails energetically
ayer the first ane, when (68) is satisfied.
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6. CONCLUSIONS

We have presented a new scheme for the solution oí too HF
equations, \oo'hich in principIe dces nat invol ve diagonalizations, al though
it is fotmded on a diagonalization algoritmo The method is based on the
idea that the variance oí the HF hamiltonian, computed with linear
combinations oí a convenient S.p. basis, must vanish. Since the HF
hamiltonian itself depends upon such linear combinations, a nonlinear
problem arises, expressed by the set oí equations (29). These equations
have been numerically solved in Section 4 for a very s~le modelJ while
the central idea has been illustrated with reference to the Lipkin modelo
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