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ABSTRACf

Limitations in the use of the conventiona1 comparison equation
and reference (approximate) potential methods for obtaining solutions to
the Schr8dinger equation in calculations involving the classical transition
region are reviewed. The origins of these limitations are discussed and a
systematic improved method applicable to real potentials with continuous
deriva tives is formulated. As a computational example oi the method, a
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details studyof the b::lund-state problem using the Morsepotential is presented.
Extension oi the method to the rnany-channel problem is discussed.

RESLI>IEN

Se reseñan las limitaciones en el uso de la ecuación de compara
ción convencional y métodos de potenciales (aproximados) de referencia par~
obtener soluciones de la ecuación de SchrOdinger en cálculos que consideran
la región de transición clasica. Se discuten los orígenes de estas limita-
ciones y se formula un método sistematico mejorado aplicable a potenciales
reales con derivadas continuas. Como un ejemplo computacional del método,
se presenta un estudio detallado del problema de estados lisados usando el
potencial de Morse. Se discute la extensión del métodoal problema de mu-
chos canales.

1. lNTRODUCTION

The classic "~ approximation to the analytical solution of thc
SCh~dinger equation has found extensive applications in boundstate and
scattering problems in diverse fields of physics(l). A varicty of
modifications, refinements and extensions intended to overcomc its several
dra~backs (i.e., singularities at the classical turning or transition
points, Stokes1s phenomcna, cte.) have been proposcd(2-7). Thesemodifica-
tions gencrally havc bccn limitcd to the finite-dimensional casco An
extension of the ~t]U method to the infinite-dimensional case has been
recently reportcd(8). Foremost among the relatively successful Dmprovements
of thc \(KBJ thcory is the ~lillcr-Good (~IG) transfonnations (3). lt has
given rise to the often cited "comparison method"(S) and to a typc of
uniform approximation(9-10). The general proccdure in thcse approaches is
to neglect the rcsulting SChwartzian derivatives (SD) termo

In thc usual WKBJ method, the original SChrOdinger equation is
comparcd to an ordinary-differential equation with constant coefficients.
In the classically forbidden dornain the solutions are growing or decaying
cxponcntial functions, whilc outside this dornain they are sinusoidally
varying functions. This procedure excludes from the outset thc construction
oí a smooth, approximating wavcfunction near the turning points sincc it
makes an abrupt change in this transition region. Further, the solutions
are to be considercd in regions far removed from thc classical turning
points. We will see that the uniform approximations do not represent the
correct solutions across thc transition region accurately enough (see
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Sects. 2 and 3). They have becn designed mainly to removc the wavefunction
discontinuity across the classical turning points, the solutions so obtained
bcing basically 3symptotic in character(lO). These are given in terms of
ene, ay more than ene, convenient paramcters. In quantal calculations the
relevant parameter is relatcd to Planck1s constant(9-11). For thc kind oí
uniform approximations we shall refer to in this work, the validity of the
scmiclassical approximation (where the SD term is ncglected) gives rise to
sorne doubts, mainly in the very-near turning-point regions (see Sec. 2).

To improve the accuracy of thc conventional comparison equation
treatment, twu iterative schemcs, similar to the familiar pcrturbation
technique, but differing in character, have been proposed(4,11). As rnuch
as we are awareJ these improvements hove not received extensive applications.
One of these seems appropriate1y designed for scattering prob1ems(4). and
the other for bound-state prob1ems(11). The main objetive of this report
is to present a systematic and simple improvement on the usual comparison
method, encompassing both situations, free from the semiclassical
approximation: the improved comparison equation method (IC~!).

The solution of a system oí coupled one-dimensional linear second-
order differential equations is the starting point in several calculations,
both in classical mechanics and nonrelativistic quantum mechanics. It can
be shown by straightfon;ard manipu1ation that the prob1em just posed may
be reduced to an equivalent coupled first-order differential equations
system(l2). lb~~ver, when several channels are present and a grcat
accuracy is required, the method is usually onerous due to the complexity
of the large scale numerical calculations involved. Thcrefore a limit to
accuracy is tmposed for practical rcasons. Such is the case in calculations
in the gas-surface interface scattering(13) and the gas phase scattering
of reactive systems(14). This restriction becomes more critical "hen
"closcd channels" or "states diffractcd into the surface" have to be
inc1uded, due to the effect on the scattering matrix e1ements(13) , or if
the interaction potential dces not vary slowly. A close-coupling approach
would therefore seem relatively expcnsive and one must resort to
qpproximations not readily justifiable and perhaps not valid in sorne
situations(15) •

Among the various numerical methods of solution oí the
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oehrOdinger equation, the finite-element method(16), originally developed
for engineering problems, and implemented by Gordon(17) has been used
extensively. It involves dividing the integratían region into conveniently
small domains and approxirnating the correet potential within each domain
by a tlreference potential". This reference potcntial ITnlst be so chosen
that the solutions to the reference or "eta10nll equatían, corresponding to
OUT homogeneous one, are relatively easy to determine analytical1y. In
practice the method consists oí stepping the interaetían at each integratían
interval of the resulting set of coupled first-order differential

t. (17-19) 1 bl . . h .equa 10n5 • TI pro ems requlnng great accuracy eae lntcrval mus!
be 5mall enough to guarantee an appropriate approximation oí the constant,
linear or quadratic referencc potential to the true potential. For further
developments o£ those approacl~sduring the 1ast ten years, the reader is
referred to Re£. 19a and references therein. A new method to solve thc
SChrtxlinger-like eq..13tionis presented, partIy anaIytically, partIy rurerically,
free from semiclassical approximations, and without severe restrictions
regarding the way by which the comparison potential adapts to the original
one.

In section 2 the general formalisrn upon which the present work
is based is summarized. lt is seen in this section that the iterative
approximations wi thin the context of the M:Jmethod are better replaced by
a perturbative approach similar in sorne respects to, but more general than,
the reference potential method (17). As a result, the homogeneous-like
equation becomes an inhomogeneous.like one. In section 3 a standard
technique is used to split this last equation into first-order equations.
Then it is shown that the Gordon method may be formally incorporated within
a more general scheme oí comparison equations. Contrasted with the Gordon
method, the distinctive feature oí the Icm is that the reference potential
covers large regions which sometimes may be extended over the entire
integratian regian. Moreover, it is not lirnited to approximate potentials
of polynomial fonn. In section 4 the lcm is tested and compared te the
exact analytical results of the bmmd-state problem fer the case oí the
Morse potential. In this sectien sorne íeatures and applicatiens oí this
potentiaI are also discussed. The appplicatiens to many-channel problems,
íor which the present scheme is likely to be more beneficial, are
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discussed in section 5. Final1y, in the sixth section, we present a brief
surnmary oí the method, a discussion oí the results and a prognosis far
future invcstigations. The main conclusion i5 that the ICf}t may be employed
with bettcr accuracy far problcms usually considered within the framc"~rk
oí the conventional unifonn treatments. The method advocated here may be
particularly useful far clos-coupling calculations with a highcr efficiency
than the reference ar approximate-potential method, mainly in many-channel
problerns.

2. ~ERAL FORl-!AL1~

The basie elements oí the ICEM can be seen by stuuying a simple
examplc. In arder to avoid terminological confusion, throughout this
paper the word method will be utilized to connote techniques that
fonmulate the bound-state ar scattering problcm, while the ~ord p~oced~e
will be applied to computational algorithms for solving thc equations
generated by the methods. To star~J the one-dimensional stationary-state
Schrl:Xlinger equation is considered. An extension to many~channcl problems
is discussed in Sec S. I~re attention is focused upon the homogcneous-like
equation

where

o ( 1)

p' (x) = 2m LE - V(x)]
11z

(2)

E being the energy of a nonrelativistic particIe with mass m moving in the
poten~ial fieId V(x). It is assumed that p2(X) is real on the real axis,
¡.e., V(x) real.

The Gordon approximate-potential method(17) involves writing
Eq. (1) as an inhomogeneous-like equation

-g(x)Hx) (la)
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whcre

p' (x) ~ p' (x) - g(x)o (2a)

contains a potential similar to, but simpler than p2(X): One then sceks
solutions to Eq. (1) via the nontrivial solutions to the homogeneous
differential equation

I~+ p' (X)]1jJ (x) OLdx2 II (}
(lb)

lhe ~~ method(3), on the other hand, employs a simultaneous
transfonnation oí the wavefWlction and the spatial coordinate. TIIC
following homogeneous-like equation is obtaincd instead of Eq. (1)(3):

I~+ q' (t)]~ (t) = Oldt 2 o
(3)

where q2(t) denotes a comparison momentum to be convenicntly chosen and to
is a function oí x to be deterwjncd. Once Eq. (3) has been solved, the
solutions to Eq. (1) are obtained from the inverse transfonmation (see
Eqs. (5)).

Instcad of fol1owing eithcr of the
they are combincd and Eq. (1) is compared to

[
~ + q' (t)]HtJ = f(t)Ht)
dt'

two approaches mentioned aboye,
an inhomogeneous-like equation:

(4 )

where q2 (t) denotes a general "rcfercnce" ar "comparison" momcntum",hose
properties wiII be specified latcr in this section anJ f(t) is a perturba-
tion-like potential tcrm (scc bclow).

To obtain Eq. (4) a transformation is performed, looking for a
monotonously increasing function t(x) that possesses continuous derivatives
t' = dt/dx, t" = d2t/dx2, etc. FOllm.:ing Miller and Goo~(3), a continuous
and differentiable function X(x) is introduced, to be determined such that



IjJ(x) = x (x) ~ (t (x))

ZBS

(Sa)

The function X(x) modulates to sorne extcnt the amplitude of the new wave-
fWlction. It is thus highly desirable to choose X(x) such that q'(t)
rescmblcs the main featurcs of p2(X) or, stffiilarly, that Q(T) has
qualitatively the same behavior as the solution ~(x) of the original
cquation. Substitution of r~.(Sa) into Eg. (1) yiclds

-" ]t' p (x) ~ • (t"x + 2t'X') M = - x"<P (4a)

This express ion convcrts to the inhamogeneous-like cquation (4) if the
coefficicnt of d~/dt is set to zera; we thus take

,
X(x) = tl-~

nnd identify f(t) with

f(t) -1 - 2XliX tI

which can a150 be written

1 -,f(t) = ¿ t' <t; x>

where

<t; x> ~ - i [~r

(6)

(7a)

(7b)

(8)

is the SD expression(3.4).
Instead of trying to salve Eq. (1) directly. an attempt is ri1<'lde

to find solutions to the exactly equivalent cquation (4), where
,

~(x) = t'-' Ht(x)) (Sb)
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and t is given by the nonlinear first-order differcntial equation

[~]'=~
q'(t)

(9)

An ana1ytica1 transformation similar to Eq. (Sb) has been found usefu1 in
invcstigations oí propagation and scattering oí electromagnetic and acoustic
W3ves in continuously layercd rrcdia(20).

TIle~K; transfom,tion yie1ds after comparing f"'ls.(1) and (3)

1p'(x) - ¿<t; x>

q' (t)o

(10)

In applications, the SD tenm appearing in Eq. (10) has becn customarily
neglected. In this case Eq. (10) reduces itself to thc simpler relation-
ship Eq. (9). TIlis procedure has been referred to in the 1iterature by
the tcnns "comparison equation" (S) and "uniform approximation" (9,10). The
name "comparison equation" originatcs from the fae! that ane compares
Eq. (1), whose solutions are unkno\<n, to 51. (3), wherc q'(t) is to be

ochascn so that the comparison equation possesses 5i~}leand analytical
solutions. Thc name"tmifonn approxirnation" rncans that, after neglecting
thc SD term and selccting an appropriate comparison potential, tI can be
made continuous over the entire domain, including the transition regions.
As a result, a smooth hávefunction is obtained across the classical turning
points where thc usual ~~ solutions are singular.

Several qucstions about thc rangc of validity of the conventional
comparison and uniform treatments arisco Thc number of availablc comparison
momcnta is greatly restrictcd by the assumption of negligible SO valucs.
At any rate, they must be similar to the original momentum p2(X).

Apparently, no kno~n attempts have been made to assessthe assumption of
neglecting the SD te~ rcsulting from the most"utilized comparison
equations, namely, the Airy and Weber equations. The validity of this
approach dcpends mainly upon the nature of the externally Unposed
potential or interparticlc potential at hand. ~breover,as wil1 be seen
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in See. 3, the values of the negleeted term, similar to g(x) in Eq. (la),
detcnnincs the behavior oí the wavefunction at the vcry-near tuming
points regions. Negleeting the SD term in Eq. (10) it would give rise to
scrious miscalculations in sorne problems; such is the case of the
scattcring problem at intermediatc energies in situations where differences
in the phase-shift values might be signifieant.

The only rnanageable situation for whieh g(x), ¡.e., the SD term
(sec F4. (18)), can be made exactly zcro ayer a certain firrite regian for
cvery potential is for the transformation

p'(x) • eq'(t), (e = constant)

As simple as it is, there is a case in which this transformation may be
useful. Suppose that the comparison potcntial is the linear anc. The
solutions are given in tenms oí the "~ll-known ftjry functions. 1t is
al~ays possible to linearize the potcntial in a conveniently 5mal! regian
on the x-axis. If ane compares the true potential with the linear
potential vía the ~~ transformation outsidc a sin&ular point of p2(X),
and perfoTm5 a linearization of the potential in a small region containing
the transition point, it is possible to obtain both smooth solutions over
the entire domain, and exactly zero SO values through the transition
rcgions. This feature has been rccent1y used to guarantee the validity
of the (m.unerical) unifonn solutions across the tuming points in a many-
channel scattering problem(2l). It is worth noting that lincarizing the
potential step by step within conveniently SIDal1 regions, as is done in
Ref. 17, yields directly the Airy functions as solutions to Eq. (3).

Another question stems from the s)'1l1l1ctryoí the conventiona1
comparison method. This symmetry means that one cou1d construct ~(t) out
of Q(x) via the inverse transfonmation of the spatia1 coordinate
x = x(t)(ll). As will be scen latcr in this section (see the discussion
following Eq. (11)) this symmetrical situation requires a one-to-onc
correspondence between the spectr3 of the llamilton opcrators for both
eqU41tions: (1) and (3). This requiremcnt introduces a complication mainly
in bound-state problems. An isospcctral corrcspondcnce betwccn discrcte
eigcnvalucs tIoes not exist on comparing, for exarnp1e, the Webcr cquation,
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hhich is associated ,,/ith a hanoonic oscillator potent ial, vd th any other

potcntial having a finite number of bound states (sce seco 4 far an
cX3Mplc). It mcans that, in general, one carmot prctcnd to salve arbitra-
riIy any of thc twa comparison equntions by solving the other ene [ar the
entirc spcctnnn. Nevertheless, one must recognizc that, fTcm a pragmatic
point of view, this faet has nat any importancc. The intcrest in practice
reduces to solving a non-directly integrable cquntion by comparing it with
a simpler ane, and usually fOT a very spceific state.

[quation (9) "hich determines t as a function of x is remarkably
simplcr than thc corrcsponding ~lr.cquation (lO). In tum, this analytical
simplicity imposes ane requircment: once a comparison potential has beco
selecteJ, one must solve the inhomogcneous like Eq. (4). instcad oí the
homogeneous one, Eq. (3). I~"ever, it should be noted that thcre exist
several mcthods to deal with inhomogcneous-like equations, whcreas the
involved mathematical strueture of Eq. (10) is hardly manageable even in
simple sit~,tions. Furtherrnore, it is worthwhile to note that this
apparentl)' disadvantageous situation oí the prcsence of the inhomogeneous
tenn avoids the problem posed by the symmctry of the conventional method,
since there is not such a symmetry within the ICEM method. If the right
hand side of Eq. (4) is neglected, the present approach reduces to the
conventional one. It is a consequence of the faet that Eg. (10) reduces
to the exact and simple equation (9) after neglecting the SD tenn.
\\henevcr a bctter accuracy is sought two possibilitieS exist: Thc first of
tOose is trying to solve the rather cumbersomeEq. (10) exactly, following
thc ~IG prcseription without modifications(4,ll), in which case the comparison
oquation takes the simpler fonn given by Eq. (3). Tho socond possibility
consists of using the transfonnation introduced by ~lG and solving thc more
difficult equation (4), determining t írem the simpler relationship 04.
(9). lt will be sho"TI in Sec. 5 that the later choice. namely, thc ICE}t,
is largely more beneficia! in many-ch3nnel problems. 5ection 4
illustratcs thc efficiency oí the mcthod advocated in this report in
bound-statc problems. Thc fonncr altcrnativc has been worked out within
thc contcxt of iterativc schemes(4,11), which are not substantially
di[[erent from the fanrrliar pcrturbation tcchniquc.

It should be strcssed that deciding which comparison potential
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should be used does not imply that the ncw spacial coordinate t has been
completely specified as a function oE x. FroIDEg. (Sb) t' may be rcwritten
as

t,=~'(t)

1/" (t)
(11)

This last exprcssion shows that t is a strictly increasing function of x,
as required, if ~ and ~ are real functions. If they are no!, one couId
still choose a comparison potential such that t' given by Eq. (11) were
always positive. Equations (9) and (11) suggest setting t. congruent with,
x .• "he re x. dcsginatcs thc nodcs of p' (x) and 1/" (x), and t. those of, , ,
q'(t) and ~'(t). This fruitful choice will make t' regular and will avoid
singularities ar zeroes far t' upon the additional assumption of continuous
differentiability of the four functions w2, ~2, p2 and q2. It Unposes
sornerestrictions aver the comparison equations at our disposal. Bu!
these do no! bring ~jor cOr:1.plieations as long as the application is
restricted to comparison potentials which have qualitatively the same
behavior as the original one.

Once a comparison potential resembling the original qne has bcen
choscn, the following prescription allo~~ the determination of t as a
function of x.

For the solution of the first-order differential equation (9) one
needs to fix a constant of integration. TIlcrefore, without limitation of
gcnerality one may set t = to at an appropriate fv:ud point corresponding
to x = xo, say the location of the first turning point to the left, thus

(12a)

for a simple-turning-point problcm the function t will be completely
spcci fied for a certain comparison potcntial. In problcms with more than
one clnssical turning point, additional constraints must be imposed to fit
the rcqui rement of turning points congruency. It may be achieved by
including n-} adjustable paramctcrs into the comparison mcmenta equations,
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where n is the number of c1assica1 turning points(10). These parameters
mar be determined from

(12b)

t o Xo
where t. (x.) corresponds to the ith turning point of the potentia1. This

1 11ast condition is an obvious genera1ization of Eq. (22) in Ref. 3. It sets
the turning points in ane-to-one correspondence. A problem mathematical1y
similar to this ene, the case of ThOtuming PJints in acoustics and electromagne-
tic theory, has been considered in a number of studies(22). In the bound-
state problem, Eq. (12b) provides an eigenvalue E fer each "eigenvalue

ll

E

of the comparison potentia1 v(t) = (b'/2m)[c - q'(t)).
Superficia11y, Eq. (12b) seems to be a basic approximate

relationship. Jt resembles the Poincaré-Cartan invaríant integral oí
classical mechanics(23), which does no! have an exact analogue in quantum
mechanics. In contrast to the MG trcatmcnt, in which Eq. (12b) is obtained
from Eq. (10) as a semic1assica1 approximation(ll) (expansion in &'),
within the present schcme it is an exact relationship; it is obtained from
Eq. (9) and appropriate1y adjusted to the simple criteria stipu1ated aboye.
Jt rus! be noticed that the "comparison potential" in Eq. (4) i5 JTKXlified
by a perturbation-1ike potentia1 termo i (b'/2m)t'-'<t; X> , which is
missing in Eq. (12b). Within the present schcme, Eq. (4) is not a
1egitimatc or we11-defincd physica1 eigenva1ue equation, as is Eq. (1).
The semiclassical approx~tionused in other approaches replaces Eq. (4)
by the "eigcnvaluell equation (3). In the ICH-1, solutions to Eq. (1) are
being sought which satisfy prescribed boundary conditions. ~heneverone
considers Eq. (1) as an eigenvalue eq~ltion, the prcsent scheme requircs,
that it be solvcd by adjusting appropriatc solutions, via tl-~, to the
inhomogencous like equation (4). Moreover, as will be sccn in thc ncxt
section, the solutions to Eq. (4) are sour.ht by using acccptablc(24)
solutions to thc homogencous-likc equation (3)(21). These admissible
solutions are not eigenfunctions but linearly cxact indepcndent solutions
of thc homogencous formo
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3. SOWrIOO OF TIIE INlOlJGENEOUS-LIKE SCHRiiDINGER a:¡UATION

In this section the advantages of the IC~l over the approximate
or refcrence potential, and the comparison equation methods is illustrated.
It is stressed that the IC~I works weU within any other technique to solve
the inhomogeneous sccond~orderdifferential equation.

It is convenient to rCWTite Eq. (1) as

[:, .p'(x) .}<t; x>] ljJ(x) =}<t; JC>1jJ(x) (13a)

Written in this way, Eq. (1) resembles an inhomogeneousequation. The in-
homogcncous driving tcnms consis! oí the wavefunction itself multiplied by
the SD cxpression, which rJUlst be computcd m.unerical1y. Since the SD values
are usuaUy smaU, the right h"nu side of Eq. (13,,)may be viewed as a
perturbation termo The disndvantagcs oí introducing this complication is
far out-~~ighedby the advantages, namely, a greatcr accuracy and a simpler
equation to determine t = t(x).

Applying the MG transformation given by Eq. (Sb) to Eq. (13a) ,
selecting a comparison potentiaI which satisfies Eq. (9) and employing
Eqs. (12) to determine t(x), ljJ(x) is obtained after solving Eq. (4),
which is rewritten as fol1ows:

[
d' ] 1-'- • q' (t) ljJ (t) = I t' <t; JC>1jJ(t)
dt'

(l3b)

If two linearly indepcndent exact solutions, A(t) anu B(t), of
the homogcneous form corresponding to Eq. (l3b)

r~.q'(t)lljJ(t) = OIdt2 o- -
(14a)

are easily determined analytically. then the solution to Eq. (IJa). (or
Eq. (13b)), can be facilitated. Among the several methods of constructing
the solution to Eq. (13a), the familiar method oí variation oí paramet~rs
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(special method of perturbations) (25) is considered here:

-~(x) = a(x)A(x) + B(x)B(x)

~(t) = a(t)A(t) + B(t)B(t)

(15a)

- ,where A(x) = t'-' A(t(x)), etc., and a(x) = a(t(x)), etc. Ihis last
property may be readily ve:ified di:ectly cmploying Eqs. (9), (13), (14),
and (15). The quantitics A(x) and B(x) can be viewed formally as
in(~pendent solutions oí the homogeneous form oí Eq. (13a):

~

d'_ + p'(x)
dx'

The constraint

+ i <t; x>}(X) = O (14b)

(16)

wil1 be utilized in this reporte!7). The reader is referrcd to a more
general constraint in seco 5. From Eqs. (13) to (16) the following
fundamental srstem oí ~linearJ first-order differcntial equations far the
coefficients a(X) and B(x) is obtained:

n' (x) - \(-1 [A, B]B(x)g(x) [nA + BB]
x

(17a)

B'(x) = W~'[A, B]A(x)g(x)[nA + BB] (17b)

whcre Wx[A, El = WtiA. El is the Wronskian determinant of thc reference
solutions. and

1g(x) = - '[ <t; x> (18)

EquatiOTIS similar to (17) may be writtcn far the t-dcpendcnt cocfficients
n(t) and B(t). lhe functional x (or t) independence of the Wronskian
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follows from the linear indepcndcncy oí thc solutions to thc Schrodinger-
typc cquations.

Notice that hitherto no ad hoc approximations have been made in
the IC~l, a rigurous treatmcnt that will be maintained in Sec. 5. Indeed
ane could obtain analytical solutions to Eq. (17) only if there has a way
to cxprcss A, B and g analytically. In arder to achicve this goal, aftcr
finding analytical solutions to the homogeneous-likc equation (14a), it
would rcmain to express t as a funetían oí x. This could be made in
principJc from Eqs. (12). lbwevcr, for moSt oí the interaetían potentials.
thcre is not an elerncntary way to cxpress t in terros oí x, and ane must
resart to numerical méthods.

Severa! methods to salve close-coupled equations have been
devclopcd during the last fiftccn years(14,17,19,26). I~ithin a close-
coupling approach, an arbitrary accuracy is supposcdly achieved, the primary
limitation arising from practica! rcasons oí saving computer time. Befare
ending this section, sorne general advantages of the ICE}l aver the
approximate potcntial mctho(~ currcntly in use in closc-coupling calcula-
tions must be emphasizcd. The discussion will be limited to comparing it
with r~rdonl5mcthod(17). ~,inly because the close parallelism between thc
mcthods and because. as it will be secn 500n. Gordon's rncthod may be
considcrcd a particular case of OUT approach.

From a formal point of vic", Gordon's approach has severc
restrictions. The reference potcntial used in this mcthod may be viewed
as a comparison approach to thc true potential via a Taylar expansiono
Therefore, it is lbnited to polynomial expressions. In practice, if one
wants to maintain a simple structure of the comparison cquatíon, the linear
and/or the constant tcrms are the only ones to be kcpt in a series
expansion(l7). ~breover, bounJary co~ditions must be adjusted at each step
of the integration. The inconveniencies of this mcthod result on enormous
computer time consumption, mainly for potentials which vary strongly with
the spatial coordinate.

The aboye limitations are not found within the present scheme.
The IC~f is an analytical method without severe restrictions, the main
rcstriction being to set in congruency special points. Ncvcrtheless, it
is amenable to practical approximations ~hich can be adjusted satisfactorily
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whenever a great accuracy is required. The IDOst obvious approximation is
to take into account the SD term only at those regioTIs within which it
contributes substantially. As a rule oí thumb, the SD tonm is mostly
meaningful within the transition rcgions. In these regions p2(X) and
q'(t) both tend to ,ero. Therefore, the inhOlJXlgeneous-likeSD tenn in the
r.h.s. of Eqs. (13), which plays the role of g(x) in Eq. (la), detennines
the actual behavior oí the second-order differential equation and should
no! be neglected therein. This point will be il1ustrated in Section 4.
1t should be noticed that the uniform approximations cannot represent the
exact solutions across the transition regions since they neglect thc SD
terro everywherc.

Another use fuI approximation parallels Gordonts method. Instead

oí limiting the discussion to expanding the true (real) potential in a
Taylar series, a further step is taken te express the true, thc comparison
momenta and the new spatial coordinate as infinite series around an
arbitrary point xo:

p' (x) = L
0:::0

al!'
n

q' (t(x)) = í
0:::0

b un
n

(19)

t(x) L
0:::0

C un
n

where u = x - x,. The quantity t' is readily determined from Eq. (9) once
the bn coefficients have been detenmined. It only requires to evaluate
the t derivatives at Xo. Implicit derivation permits evaluation of higher
derivatives at any point. As an example,

t" = {[P'(X)l' - t"[q'(t(x))l'} / 2q'(t(x))t' (20)

This procedure was adopted to evaluate numerieally the SO function in the
very -near turning-point regions for the case considered in Sec. 4, where
a direet evaluation would eause numerical instabilities. ~breover) this
procedure illustrates how te incerporate Gordon's method and other
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approxirnate-potential mcthods whithin the more general Im1, since the
comparison equation is still Eq. (13b).

4. TIlE llJLMl SfATE PROBLlM EmIPI.IFIED

The discussion, up to this stagc, has becn general in charactcT.
From the practical point oí view, it is highly desirable to have
vanishingly small valucs for the perturbation-like termo f(t). in a large
integratían region(2S). This would result in slowly varying functions for
the variable coefficicnts. This can be an advantage numerically bccause
a reasonably large step-length (cornmonlycalled h) can be used in the
integratían. If the coupling matrix elements oí the potential in a closc-
coupling approach to the many-channel problem are large. further
approximations may be made. 1£ this is not the case. too SD term plays
too role of the coupling potential and must be carefully evaluated.

To describe aceurately the vibrational levels oí diatomic
molecules ~~rse introduced in 1929 too exponential potential (27)

V(x) = Dexp[-a(x - xo)J{eXP[-a(x - xo)J - 7.}

which sometimes is conveniently written as

V(x) = {l - Dexp [-a(x - Xo)J}'

(21)

(21a)

The dcpth and width paramcters D and a are empirically detcrmined, while
Xo is the equilibritnn distance parmreter.

The Merse potential was soon afterwarrls extended to cover a wide
variety of problems. e.g., neutron-proton scattering(28), molecule-solid
surface interactions(29), ctc. Slightly different versions oí it havc been
used to model double well potentials (30a.b) and otOOr ratOOr broad
problems like the one considered in Ref. 30c and in the admirable work of
Fernández and Castro(30d). several processes in molecular(30-33) and
surface physics(34-37), are suitably described by the ~~rsepotential given
by F4. (21). The radial Schr5dinger equation for too ~~rse potential is
not exactly solvable analytically. as has been pointed out by ter Haar(38)
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The ane-dimensional analogue and thc radial equatíon have been treated
analytically on several occasions(39,40), almos! always to obtain only the
eigenenergies oE the anharmonic oscillator. Numcrical studics employing
the ~IDrse potential have been done several times to compare the mcrits oí
different approximate procedures oí eigenvaluc calculatían. An analytical
treatment oí the ane-dimensional bound-state proble~ far thc Merse
potential in tenms of exact, normalized, closed forro wavefunctions has bcen
given by Nieto and Simmons(41).

The perpendicular motíon oí atoros ay molecules incident on a
solid surface is aften described by a strong repulsive terro near oy inside
the surface anda long-range attractive part which are well fitted by thc
potentia1 given in Eq. (21). Slight rodifications of the ~brse potentia1
allows the inclusion oí dissociation or similar processcs(36). It can be
mentioned in passing that the atom (molecule)-solid surfacc scattering is
a case in which a large nunmcr oí open and clased channcls must be
included(34,36). Since the ane-dimensional uncoupled problem is cxactly
solvable, while a strong intcraction demands a careful numerical trcatrncnt,
the ~brse potential is regarded as a good candidate to test the procedurc.

For completeness sake, the analytical solution oí the
SchrOdingcr equation far the Marse potcntial is briefly prcscntcd, and thc
exact eigenfunctions and eigenvalues far a particular case where therc are
only two discrete eigencncrgies are determined. With the c~~ngc of
variable y = exp [-a(x - xo)], the Schrodinger equation

[~, + k' - U(X)]ljJ(X) = O

where k' = 2mE/fl' and UCx) = 2mV(x)¡h'. becomes

(22)

~

d' 1 d--+--- +

dy' Y dy

f~re D' = 2mD/fl'. The substitution ljJ exp(-yd))b/2F, where b and d are
cOTIstants to be determincu, givcs



(b+ 1 _ 2yd) dI'+ ~ + f + _2D_'_
dy l" y a'.

d (b + 1)
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(23a)

Eq. (23a) is not in the mest convenient fOl~ to takc advantage of standard
mathematical info~1tion. Sctting z = 2yd, and making the dcfinitions

e _ b .•. 1, a _ S/2 - d (24 )

equation (23a) becomcs

[
d'z - + (S -
dz'

z) fz - aJF(Z) = O (23b)

which is Kummer's standard fonm of the confIuent hypcrgcometric
Thc parameters b and d are dctcrmined by means oí thc rclations

. (42)equatlon .

d = ¡¡¡r-la (25)

A cornmonpair of linearly independent solutions of equation (23b) "{e
givcn in terms oí thc confluent hypergcanetric series of z, ~1(Cl, 8; z.).
This series can be accuratcly summcd up by using cithcr a generalizcd
Euler transfo~'tion(43) or the classical and highly practical method of
Padé-Frobenius approximallts(44). The solutions of E'l. (23b) are the
nonclcrncntary functions(42)

1', (z) = M(a, S; z)

1', (z) = z1-l31>1(I +a - S, 2 - S; z) .

(26a)

(26b)

f"OT the cntire range, -C<l< z< 00, thc first solution bccomcs a [inite
polynomial if a = - n, n = 0,1,2, 0.0 From Eqs. (24), (25) and (26)
thc following cxpress ion Cor thc cigcnencrgics 15 rcadily ucrivcd
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(27)

Since the energy eigenvalues are independent oí the choice of
the equilibrium distanee parameter, xOt this parameter was arbitrarily
chascn to be lDlity. Using atomic tmits throughout and taking fer
convenience a = 3, d = 7/3, and ro = 1000, we found [from the requirement
that Hy~~) ; O], that two values of ", namely " ; O and " ; -1 gave rise
to one bound state cacho The exact diserete eigenvalues far the Mbrse
funetían are then

Eo -0.4114 eV, E, ; -0.0850 eVo

Befare proceeding to salve the foregoing eigenyalue problem
using the lCEM, it should be mentioned that an estimate oí the eigenenergy
value can be infcrred fram the homogeneous-like equatían (14a). In spite
of the fact that Eg. (14a) is not a proper eigenvalue equation, the
perturbation-like term which modifies it [see Eg. (13b)] is often small
comparedto q2 (t) in Eq. (13a). Therefore, an "eigenvalue" far £ in
Eg. (14a) determines a zeroth-order eigenvalue for E in Eg. (12b). The
value oí E so obtained maybe regarded as a trial value to the energy oí
the eigenvalue problern posed by Eg. (1).

A tractable comparison potential is the quadratic form

v(t) ; l t' (28)
4

This approximation to th,:. troe potential gives rise to Weber's canonical
equation(45) ,

dZ~
__ 0. [£-}t']~o=O
dt'

(29)

where e: is an as yet lDldeterminedparameter, independent of t. Eq. (29)
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may be solved exactly in terms of parabolic cylinder functions(45 ,46)•
FOT this discussion it is prcferable to considcr the two linearly
independent solutions A(t) and B(t), in terms of confluent hypergeometric
functions, given by(47)

A(t)

B(t)

,n'
real + D

,
• J2n) , exp
r(a' )

exp (- 1 t')~I(,,', !; !t') (30a)

(30b)

with a' (1 - 2£)/4. 1\,'0 stationary solutions of Eq. (29) are obtained
with a' O, -1 and the c-values so obtained are zeroth-order solutions
to the "eigenvaluc" problem given by Eq. (14a).

It should be noticed that, apart íTem thc bound-state energics
prcviously determined, Keber's equation supports an infinite sequence oí
spurious discrete eigenvalues. They are spurious with respeet to the
~brsc ~tential as was seen after solvíng the problem analytically since
i t gi"5 rise to two eigcnstates for the range and depth considered in the
examplL. This peculiarity should not be a mattcr oí astonishment. One
recalls that the transformation utilized within the context of the lCEM
does not establish an isospectral correspondence bctween two bound-state
problemso Indeed, this would be the case in the conventional comparison
equations method (see Seco 3), including the cases where an itcrative
procedure is usedo

Using the zeroth-order solutions as a first approximation,
equations (17) may be solved iteratively between two points suitably
relOOved from the turning points, ",bere ljI(x)eiven by Eq. (15) approaches
zcro o One may then seek a solution ""nere the number of zeroes is in
agreement with the oscillation thecrem(48). lnstead, Eqs. (17) were
numcrically integrated, utilizing a solver frem the open literature, and
using Eqs. (30) as independent solutions to Eq. (29); the initial
conditions were chosen such that the approximatc wavefunctions matchcd the
exact ones at the point where thc integration began.
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Exact normalized bound-state wavcfunctions obtained from Eq. (26)
are ShOhTI as salid lines in Figs. la and lb. The computed approximate
wavefunctions corresponding to thc exact eigencnergics are represented in
the drawings by dashed lines. They are graphically indistinguishable from
the exact solutions up to values about r~ 2.0 in Fig. la, and up to values
about r~ 2.5 in Fig. lb. The nurncrical results are mas! encouraging.
Indced, up to those values of r the difference in the results was less
than 0.2%. Dotted and dashed-dotted curves iIlustrate the solutions
obtaincd whcn the energy values wcre chosen to be abou! 4% 1e55 than
(dotted) or greater than (dashed-dotted) the exact eigenenergies. In the
fonner case the '~'avefunctions" do no! turn dovm.35 rnuch, failing to match
the node to the right of the first (second) turning point in Fig. la
(Fig. lb); for large distances the '~avefunctions" go to +ro. This
behavior is to be expccted from an analytical treatment oE the problem.
In the latter case the ''wavefunctions'' peak sooner anu they descend more
rapidly than the corresponding exact wavcfunctions. We notice, again as
expected, that: (a) the "wavcfunctions" exhibi t more nades than
required, and (b) thc "wavcfunctions" go to -oo.

The perturbation-like term f(t(x)) defined by Eq. (7b) was
evaluated numerically using Eqs. (8) and (9). In the very-near turning-
points regions it was evaluated as dcscribed in Sec. 3. Figure 2 compares
the values of f(t(x)) for the ground-state as a function of x with those
of q'(t(x)), of which potential it may be regarded as a perturbation. It
is scen that its valucs are of the arder of 1% for the main range oE
integration. It is certainly dominant at the classic turning-points
regions. It takes its largest values far to the right of the second
turning-point, where the Morse potential diffcrs substantially from the
harmonic oscillator potential.

5. THE MANY-OIANNEL PROBLHo1

Ordinary ene-dimensional linear second-order difierential
cquations can be numcrically solved rapidly and very accurately using any

h. h ff" . t '1 bl (12) Th' 1'5 notoE the several 19 ly C lClcnt Integra ors aval a e • lS ,
(14 17 26)however, the case, in a many-ceupled-chatU1Cl problem ' , • As was
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Fig. l. Comparison oE the results oE the analytical and numerical methods
of calculation oE normalized eigen£unctions, corresponding to the
two stationary states oE the Morse potential for the parameters
given in Seco 3. Figure la: Eo = -0.4114 eVo Figure lb:
El = -0.0850 eVo Salid lioes: analytical solutions: dashed lioes:
numerical solutions generated u5iog the exact eigenenergy value.
The agreement oE the computed and the exact bound-state eigen-
functions i5 excellent even for the lowest eigenvalue. Dotted
(dashed-dotted) lioes: numerical solutions obtained using ando
energy value lower (highcr) thao the exact one by about 4\.
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Fig. 2. The perturbation-like term f(t) (see Eq. (7b» and the comparison
momentum q2(t) for the ground state as a function oi x.

pointed out in the Introduction, the main limitation in this case is the
amount of canputer tiJre available. It beco""s almost prohibitive when the
number of channels is of order one-hundred(26). It is our believe that it
is for this case that the ICIMis 1OO5t useful.

The discussion is limited to the case for which the many-channel
problcm is reduced to solve the following set of coupled-SchrOdinger
equations:

(3I)

t, and z;.being the channe1 indices.
According to the procedures cmploycd in Sec. 3, we rcwritc Eq.

(31) in thc reviscd form:
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[i <tl;; nÓ~l; + V~l;(X)JWl;(x).

(32a)

After using the ~IGtransfonnation

ane readily obtains:

(32b)

There is now a ncw and different spatial coordinate t~ fer each
ehannel related to the oId and new corresponding momenta by

t'~
(33)

anddetennined uniquely from relationshios similar to Eqs. (12).
Thc choice oí the ansatz

and the constraints

yield

ex' (x) - w: 1 [A~. ií~Jií~(x) ~ [i <tl;; X)<\l; + V~l;}l;

a' (x) = W:'[A~, ií~lA~(X) ~ ~ <tl;; X)Ó~l;+ V~l;}l;

(34a)

(34b)

(35a)

(3Sb)
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This is the starting point cornmon to several calculations(9,14,17,21,26,34,49).

In heavy-particle collisions including energy transfcrs and
chemical reactions, Eq. (31) as sumes a some"hat more complex mathematieal
structure. The main feature being the inclusion oí a first derivative of
the wavefunction with respect to the spatial coordinate. Befare applying
the preceding schcme, a unitary transformation is made to simplify the
structure of the equation(49). In those cases it is useful to change the
constraint givcn by Eg. (34b) to thc following convenicnt matrix equation
constraint(49L

!Aa. I + IP$ 1 + Jr.(Aa + ID8 (36)

where ~ denotes a square matrix whose tcnms include first arder
differentiaIoperators(2I,49). ClearIy, the first two terms in Eq. (36)
reduce to Eq. (34b) if w were not presento The procedure used to obtain
the solution to thc gcncralizcd Eq. (35) is straighforward. lt is seen
that the only cffcet is to add a diagonal tcnrn, the SD term, to the
coupling potential matrix clernents. As it is secn from Eq. (35) the
structure of the resulting first-ordcr differential cquations is not more
complicated than that of Eqs. (17) after incorporating the SD tcrm.
lncrcfore, one can takc advantagc of the analytical sirnplicity of the ICEM
(extended comparison equation or uniform approximation mcthods) and the
numerical casiness oE the rcfcrcnce potential procedure to pcrfonrn
ef~icientclose-coupling calculations whcncver great accuracy is required
in a many-channcl problem.

6. Su¡.MARY AND DISCUSSION

It has bocn shown that the improvcd comparison equation method,
ICEM, is markcdly superior to both the analytical comparison equation or
uniform approximation mcthod which uses the Miller-Cood transforma-
tion(3-S,9-11), and thc numcrical approximate potential calculation method
implcmentcd by Gordon(16-19) in solving SChrodinger-like cquations.
Maintaining thc simplicity introduced by ~~, thc rigor is prescrved
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without the need to use complicated iterative schemes. In spite oí its
simplicity. in the present method the computational efforts are reduced
in thase situations which require considerable numerical accuracy. The
methad is a150 amenable to a variety oí approximations which further
simplify the problem and reduce still further the computational time.

The gist oí the comparison eguatían methad is to utilize a
convenient simultaneous nonsingular transformatían oí the wavefunction and
the spatial coordinate, to transform the original linear second-order
ordinary differential eguatían to a simpler formo It is an analytical
approach. Yet the procedures in useC3,S,9) make approximations that are
not always legitimate. Purther, the iterative schemes proposed to improve
accuracy(4.ll) do not differ basically from the perturbational approaches.
including all their inconveniences(2l.25).

In the reference (numerical) potential scheme the truc potential
expression is approximated by a simpler forro which permits an analytical
solution. The solution obtained for the approximate problem is then
utilized for solving the original problem. In principIe, a convenient
handling of the numerical procedure adopted guarantees the achievemcnt of
any desired accuracy. The renowned Gordon mcthod(16,17) includes the
unpleasant feature that one must match the logarithmic derivative of the
wavefunction at the extremes of each small domain into which the range oí
integration is decomposed. It is therefore onerous for computational
purposes, especially in probleID6 requiring great accuracy and where many
channels are to be dealt with.

In the present proposal the above two schemes are blcnded properly
in a maAiage de eonvenanee. The reference potential is obtained after an
analytical transformation is performed. Further, the same reference
potential may be utilized for the entire range of integration. The
comparison is then made with a different~structure equation, namely, a
hornogeneous one to an inhomogeneous formo This procedure brings the
comparison method close to the reference potential scherne, allowing ane to
rnake use of the own advantages that each methad posseses.

Thv additional appealing features of the method that are worth
noting are: first, it compares favorably to the conventional comparison
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equation method, guaranteeing an exact determination oí the new spatial
coordinate, without any semiclassical approximations; second, it compares
favorably to the reference potential method, because the computational
efforts are reduced while a great accuracy has been maintained.

The added complication oí the present method is the necessity to
evaluate the Schwartzian derivatives which is usually done nlDllerically.
Nevertheless, if one initially accepts that the problem must be grasped
numerically, a promising and powerful amalgamated procedure emerges; it
consists of looking for SchrMinger-homogeneous-like equations that have a
potential with the following characteristics: It resembles the old
potential in a very crude way. and it should be simple enough to permit an
analytical solution of the SchrMinger-like equation in terms of non-
elementary ftmctions. These functions are used to construct numcrical
solutions to the problem under consideration.

The main disadvantage of the comparison equation approach is that
the $chwartzian derivatives neglected; it thus fails to yield an exact
solution through the classical transition points, wherein both p'(x) and
q'(t) go to zero, and the SD t~rm determines the behavior of the
wavefunction. The usual reference pot~ntial method employs a Taylar series
expansion of the true potential and only the first term is kept. \lbenever
a great accuracy is required, both procedures have their limitations.
These are overcome in the present approach.

The advantages of the mcthod proposed here are still greater in
many-channel problems. In such cases one simply adds the SD term as a
diagonal term to the coupling potential matrix elements (see Eqs. (32)).
If che set of coupled~second-order equations is redueed to a first~order
system, the appearance of the (exact) last one does not represent
substantial complications over the one obtained when neglccting the SD
values. Further, whenever the approximations made within either the
conventional comparison equation or reference potential methods are val id,
it is an easy matter to carry over these approximations ,üthin our scheme.
Thcre is a final important theoretical featurc of the method advocated
here ",'hichis not shared by conventional cornparison cquation and rcference
potential treatments. We do not ne.g.te.cttenns. Thus £lit!:! cornparison
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equation may be used in practice.
In light of the discussion aboye, the saving in computational

time and the reliability of the solutions obtained should appear obvious.
Recent experimental studies of elastic and inelastic 3tom-salid surface

tt . (50-51). . " dsea erlng 15 spurrlng growlng ¡nterest to escribe these
scattering systems theoritically(36,37,52). An application of the present
scheme to scattering of atoms by a surface, where upt to fifty chaQnels

. 1 cd(34-37) . 1 . .are ¡nvo v t 1$ current y In progress. Furthcr appl1cations of
the method to scattering problems (from purely repulsive or purely
atractive regular potentials) in quantum mechanics is envisaged.
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