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ABSTRACT

A sum rule for the energy of chemisorption, AW, of atoms on solid
surfaces is derived in a tight-binding scheme. The sum rule involves some
4nee local Green functions of the atomic array on the surface responsible
for chemisorption and that of the adatom, {.¢. AW can be exactly computed
without working out the electronic structure of the chemisorbed system.
The sum rule, as applied to chemisorption at a single site in a Bethe lat-
tice, shows that AW is controlled by the Fermi energy, the ionization ener
gy of the adatom as measured from the center of the energy band and by the
amount of coupling between the adatom and the surface. Contributions to
the sum rule from the discrete and continuum parts of the energy spectrum
are analized in detail.

Our results are compared with experimental data for hydrogen chem-
isorption on surfaces of 3d and 4d transition metals. At this point it is
argued that mixing of sp and d-states is essential for an appropiate de-
scription of chemisorption on transition metals.
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RESUMEN

En el esquema de amarre fuerte se deriva una regla de suma para
la energia AW de adsorcidn quimica de atomos sobre la superficie de un s&
lido. La regla de suma sblo contiene funciones de Green libres: las fun-
ciones de Green locales del arreglo atdmico superficial que interviene en
la adsorcidn quimica y la del dtomo que se adsorbe. O sea, AW puede cal-
cularse exactamente sin tener que resolver la estructura electrdnica del
sistema compuesto. Al ser aplicada la regla de suma a la adsorcion quimi-
ca en un sitio de una red de Bethe, muestra que AW es controlada por la
energia de Fermi, la energia de ionizacidn del atomo adsorbido medida a
partir del centro de la banda y por la intensidad del acoplamiento entre
idtomo adsorbido y superficie. Se analizan en detalle las contribuciones
a la regla de suma provenientes de las partes discreta y continua del es
pectro de energia. -

Los resultados se comparan con datos experimentales para adsor-
cidn quimica de hidrdgeno sobre superficies de metales de transicidn 3d
vy 4d. En este punto se argumenta que la mezcla de estados sp y 4 es esen
cial para una descripcidn apropiada de la adsorcidn guimica en los meta-
les de transicidn.

1. INTRODUCTION

Some of the most important parameters characterizing atomic
chemisorption on metallic surfaces are the number of chemisorption states
and their binding energies. These parameters are all measurable by sever
al alternative experimental methods and in a great variety of different
situations(lj. These measurements have shown that the chemisorption ener
gies of simple gases ( HZ’ Nz, 02, €0, NO, etc) follow systematic trends.
These trends cry for an explanation but a general theory of chemisorption
is still lacking(z). Comparison of simple model predictions with experi-
mental data will certainly help in identifying the main physical mechanisms
behind chemisorption.

The purpose of this paper is to discuss in some detail the use
and derivation of a sum rule(3’4) for the binding energy of chemisorption

(5)

AW. This sort of sum rules has been extensively studied and when ap-

plied to chemisorption(4), the sum rule provides an economic way of rela-
ting the binding energy of chemisorption to the electronic properties of
the clean solid surface, to the geometry of the chemisorption site and to
the adatom parameters (e.g. ionization energy), £.e., in order to use the

sum rule one only needs some local Green's functions of the cfean surface
¥
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and that of the adatom before chemisorption. A bridge is provided betwe-
en a model Hamiltonian for chemisorption and AW,

We have used a very simple one band model for chemisorption
fadsorption at a single site in a Bethe lattice[ﬁ)) to test the sum rule
and found that AW is controlled by the strength of coupling t, between
adatom and solid surface, the ionization energy €4 of the free atom as
measured from the center of the band and the Fermi energy. We belive the
sum rule might provide a very simple and clean way (physics stays clear
at any step and no alien parameters are invoked) to compute AW from more
realistic models (e.g. as to include self consistency—effects(Z} and/or
s-d mixing in transition metals). When compared to some other calcula-

(7

directly as the difference in energy of the chemisorbed system (an infin

tions* '/, the savings provided by the sum rule are:{i)AW is not computed
ity number) and that of the uncoupled system (another infinite number).
This difference is usually handled through considerations on the modifi-
cation of the Fermi energy introduced by chemisorption ( sic). And, (ii)
the detailed electronic structure (e.g. local Green's functions, density
of states) of the chemisorbed systems needs not to be known to calculate
AW. However, the energy spectrum (not the density of states) of the
chemisorbed system is very important indeed.

The rest of the paper is organized as follows: Section 2 de-
tails the procedure to derive the sum rule. Its use is illustrated for
the case of chemisorption on a Bethe lattice.

This is the simplest system in which all the interesting fea-
tures of the sum rule appear and the connection between the model
Hamiltonian and the resulting trends in chemisorption are transparent.
Results are discussed in Section 3 and, although we know that the model
we choose to illustrate the use of the sum rule is very unrealistic, we
compare our results to experimental data for hydrogen chemisorption on

(1}. This comparison suggests that mixing of sp and d-
states might be essential for an appropiate description of chemisorption

transition metals

on transition metals.
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in terms of Green's functions is

AW

1]

W(t,) - W(t, = 0)

5

o]
E J wIm [G;; (W)-Gj; (W)]dw (4

- 0

1
1
==

where Gii(w] and G?i[w] are the local Green's functions at site i after
[see Eqs. (2) and( 3)] and before [see Eqs. (1)] chemisorption, respecti-
vely. The site i=a, {.e., where the adatom is located, must be included
in Eq. ( 4). _

At this point it is worth to say that to calculate binding ener
gies by direct use of Eq. (4) is rather impractical. To achieve that,
(i) one must know the local Green's functions at adatom and at every site
in the solid before and after adsorption, ( ii) the series must be trun-
cated at some point far enough from the chemisorption site, (iii) care
must be taken when computing a small number from the difference of two
very big ( infinite in principle) numbers. Here we bypass all these prob-
lems by finding a rule to sum up Eq. (4). Before going into the deriva-
tion of the sum rule we find useful first to prove the following theorem.

Theorem: Let

H=H + aml (5)
and

i = B0, (kI =5
where

H" = & |i><j| + h.c. : @)
{i,j}

the summation over i and j being restricted to some finite set {i,j} and
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|i> and <j| may be wave functions of the Wannier type. If conditions
is Eqs. (5)-(7) are fulfilled then

dE

K &

where Green's functions are defined by (z-H)G(z)=1 and Gij = <i|G|j> .
The finite set {i,j} in Eq. (8) is the same one than that in
Eq. (7). Actually, Eq. (8) is a Green's function disguised version of

the Hellmann-Feynman identity B

oE
= | o
=T (k|]i><j|k) + c.c. 9
{1,]}

that follows almost immediately from Eqs. (5)-(7). The proof of Eq. (8)

follows.
Using the definition of G we can write

Gij(Z) = E 2%%;§;%* ) (10)
where

Ajj () = <ifQ)(xl5> :
with the properties Aij = A?i and Tr AFI . Replacing

- [ pE)dE (11)
g™
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in Eq. (10), and using the formal identity

1 1 . s
Bis L x ol s
we get
| p(B) Ay (B)
Gij (z) = ‘lﬂAij (z)p(z) + P f ‘——E—j—ﬁ—uh—— dE 7 (12)

From this last equation is easy to see that the density of states p(E)
introduced in Eq. (11) is p(z) = -Im Tr G(z)/m.

Finally, one gets Eq. (8) from Eq. (9) by using the imaginary
part of the symmetric part of Eq. (12), 4.e.,

Im (Gij i Gji) = -mp(z) [Aij + Aji]

Once Eq. (8) has been proven we can go back to our main problem, namely,
to find out a rule to sum Eq. (4).

We use Eq. (8) for chemisorption identifying Eq. (3) as AHI
and t, as A, and integrating over E from minus infinity up to the Fermi
energy EF:

[=*]

W

2
it [ @mi, ® 6, @ (13)

where

Ep
W=2f D(EJEdE »

and, since the electronic spin is not being considered explicitly in
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2, THE SUM RULE AND HOW TO USE IT

2.1. The sum rnule

Green's functions are a convenient bridge between a Hamiltonian
and the electronic properties of a system, the chemisorption binding ener
gy of an atom to a solid surface, in our case. In this section we derive
the sum rule that expresses the chemisorption energy in terms of the lo-
cal Green's functions of the clean surface and that of the free atom.

‘We define the chemisorption binding energy as the difference of
the electronic energy of the chemisorbed system minus the energy of the
system where the atom is infinitely far away from the surface. In the
last situation, the Hamiltonian can be written as

H =H_ +H 3 (1)

where HS and Ha are the Hamiltonians for the clean solid surface and for
the free atom, respectively. Any matrix element of H between solid-sur-
face and atomic wave functions is identically zero. The Hamiltonian for
the chemisorbed system is

H=H°+Had ) (2)

Had represents the coupling between atom and solid surface and is the part
of H responsible for chemisorption. In can be represented in a tight
binding scheme as d

Hig= %, (|s><a| + |a><s|) 3 (3)

where |s> is any normalized linear combination of Wannier functionsassoci
ated with the atomic sites on the solid surface responsible for chemisorp
tion, |a> 1is the adatom state (assumed a single state) and t, is the
strength of coupling between |s> and |a> states.

The chemisorption binding energy, as defined above, expressed
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Eq. (3), the factor of 2 in Eq, (13) accounts for the electron spin de-
generacy The chemisorption energy, AW, is obtained from Eq., (13) sim-
ply by integrating in to from zero to t

AW = W(ta) - W(ta=0) =

ta EF
Jo dta Jo dE Im {Gsa(E) + Gas(E)} . (14)

2
m

The t, functional dependence of Green's function Gas in Eq. (14) can be
made explicit by solving Dyson's equation

Gi= G+ G°Had G . (15)

where G° is the "free Green's function" corresponding to H® in Eq. (1).
Dyson's equation can be exactly solved for Gsa using the fact that

G;a =0, £.e., atom and surface are uncoupled (ta = 0) in the "free sys
tem''. We obtain from Eq. (15)

0 o
G W E Gss Gaa .
as sa a; . t2 © @ (16)
a ss aa

Substituting ( 16) into Eq. (14) and performing the s integration we ob-

tain the sum rule

E
_2(F 2 o pm
L\W—F[m G Ingn (1-t2 62 62} (17)
Eq. (17) gives the way to sum up the series in Eq. (4). It is a exact

and general equation relating the chemisorption binding energy to (i)
the properties of free atoms (through G;a), (ii) the electronic proper-
ties of the clean solid surface (through G;S), properties such as band-
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width, work function, Fermi energy, etc., and (iii) to geometry of the
active site in chemisorption (through the linear combination |s>). Eq.
(17) represents a great spare of effort as compared to Eq. (4), where
it is required to know everything about the electronic structure of the
system after and before chemisorption.

2.2 How to use Eq. (17)

There are no special directions in order to use Eq. (17).
However, the long-function is a little bit tricky and some explanation
is in order. The starting point is a suitable pair of Green's functions
G;a and Ggs. As a simple example we take chemisorption of atoms at a
single site of a Bethe lattice with nearest neighbors interaction. The

Hamiltonian for the free system is
H® = §© V]|i><j| + >< 18
L as)

and the adsorption Hamiltonian is

By = Xy (|o><a] + |a><o|) , (19)

where |0> is the Wannier function at the site of adsorption (i=0), £y
is the ionization energy of the free atom (energy is being measured from
the center of the band).

The electronic structure corresponding to H°, Eq. (18), is
solved in the Bethe lattice approximation. The local Green's functions
we need are

( (Z-Z)X = izfz_-l-xz ; |Xi(\f2-_1
V(z°-4x%)
G;O = 9 (20)
Z , |x|>vz 1
V((z-2)x + sgn(x) zvxZ+1-z)
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and G°= 1/2V(x-o), where x = E/2v, a = Ea/ZV and z is the coordination
number of the Bethe lattice.

The energy spectrum of the free system as given by the singular
ities of the Green's function, consists of a continuum of states forming
a band in the range |x|<vZ-1 and a localized state at site a of energy
x=0.. The origin of the energy axis is at the center of the band [ see Eg.
(18)]. The energy spectrum of the chemisorbed system is slightly differ-
ent. It also has a continuum of states in the same range of values of x
but the position X, of the localized state changes Aeeply. The zeros of

£(x) = 1-t2 ¢ () G2 (a) (21)

a oo

give the position in energy, X0 of the localized states. Note that f(x),
defined in Eq. (21), is just the argument of the log-function in the sum
rule, Eq. (17).

There are four different cases concerning the zeros of f(x) de-
pending on the values of a and y Eta/V. The broken lines in Fig. 1.b
are the border lines in the y-a plane separating those four cases. For
values of (a,y) within the shaded region of Fig. 1.b f(x) has two zeros
corresponding to two localized states, one below and one above the band.
There are no localized states for values of o and y contained in the region
of Fig.1.b marked with a star. The unmarked region corresponds to one lo
calized state above the band and the region containing the dot corresponds
to one localized state below the band.

After these preliminaries we proceed to calculate AW. Let us
begin with the case of a localized state below the band. From the defini-
tion of f(x) in Eq. (21), it has the following properties:

f(x) 1 as |[x| + e« ,
Im £(x)=0 for |x|>/z-1 s

Re £(x) = £(x_) ; for |x0|>/z—1 .
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Re[f(x)]

T=ta/V

Re[f(x)]
:J
¢

C

(a) Plot of the real part of f(x), as defined in Eq. (21), for

0= -5 and Y=5. The broken lines mark the bandedges. The tick cros
sing the abscissas axis is at x=q where Re(f) changes sign througﬁ
infinity. Re(f) changes sign through zero at x=x0=—6.118.

(b) the dashed lines border four different regions on the a-Y plane
concernig the roots of f(x). For values of 0 and Y on the shaded
region there are two localized states, one at each side of the band.
No localized states appear for values within the region marked with
a star. Values within the unmarked region correspond to one local-
ized state above the band. One localized state appears below the
band for values of o and Y in the fourth region marked by a dot. =&
localized state at x = -6.118 appears for any pair of values of o
and Y along the full line.

(c) Plot of the real part of f(x), as defined in Eq. (21), for a=-1
and y=3. The dashed lines mark the band edges. The tick corssing
the abscissas axis is at x=a and Re f=0 at =y -
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The function £(x) is purely real outside the band and changes sign twice,
at x=x, and at x=a, Fig. 1l.a shows Re f(x) for a=-5 and y=5. These val-
ues of a and y correspond to the dot in Fig.l.b. For all values of o and
vy along the full line in Fig.1l.b there is always a localized state at X =
-6.118. Note that the line sets up precisely at this values of a when
¥=0, 4.e., when the system is uncoupled X =0 as it must be for the free
atom. The dashed lines in Fig.l.a are the band edges, the tick on the
£=0 axis is at x=a and the localized state is at X = -6.118, Li.e., f(x0)=0.
Observe that the position x=o of the free atom energy level is shifted to
lower energies, X=X, due to chemisorption and that Re f(x), is negative
in the range X <X<a only.

To calculate AW we found useful to write the log- function in the

form

¢n £(x) = &n Re £(x) + An [ 1+ é’;‘ﬁff%%] . (22)

The argument of the second log- function on the R.H.S. of Eq.(22) stays on
the R.H.S. half of the f-complex plane, so we can freely change the val-

ues of x without crossing the branch cut. The first log-function on the

R.H.S. of Eq. (22) has a real argument, so

0 , Re f(x)>o
Im &n Re f(x) =
(2n+1)7, n=o0,+1,..., Re f(x)<o
and Im 2¢n f(x) = arctan %E—%%%% + (2n+1)T 8[-Re f(x]] (23)

where 6(x) is the Heaviside function and the inverse tanget function
takes values from -m to T.

Note that the first term on the R.H.S. of Eq. (23) vanishes for
values of x outside the band (|x| >/z-1) and the second one is different

from zero for values of x such that X <X<a (see Fig.l.a), where Re f(x)<o.
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Using Eqs. (23) and (17) we obtain

E

W= 2(E.c) ¢ 2 & man (62 & 62 24
AW = 2( = - m &n s oy Gyt ®
-E

1

where E_ = 2Vx, and E; = 2W/z-1. The edges of the band are at E = + E,.
The infinite many Riemann sheets of the log-function in the f-complex
plane were labeled by integer n, as shown in Eq. (23). The value n=0 was
used to write Eq. (26) in order to have AW(EF = El) = 0, {.e., the bind-
ing energy must be zero when all the electronic states are filled. This
is a very general feature that stems from the non-diagonal character of
Hog- Indeed, when all the states are occupied, the change in total
energy is

- g = =
AW = Tr H TrH=Tr Had o . (25)

In Fig. 2 AW is given as a function of Fermi energy by the full
line. It corresponds to a = -5 and y = 5, values shown by the dot in
Fig. 1.b,

We conclude this section showing the calculation for the case
that there are no localized states in the spectrum., Fig, 1.c shows Re
f(x) for a = -1 and Y = 3. These values correspond to the star in Fig.
1.

An analysis of the imaginary part of log-function similar to
that we made before yields

C if EF<EO
B

-2 . Im f(x) . | ¥ i
w o= 2 [ dE arctan g+ 4 2(E -Bp) if By<E <, . (26)
-E
1

Z(EO-Ea) if EF>£a

where Eo is now given by Eo = ZVyO, t, being the zero of Ref(x) (see Fig.
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EF/ 2V

Fig. 2 AW/2V as a function of E_/2V. The full line corresponds to a = -5
and Y= 5 (these values of a and Y are shown as a dot in Fig.1l.b).
The dashed line corresponds to a = -1 and Y =3 (shown by the star
in Fig.l.b‘.

l.c). Ref(x) is a different function that f(x) [see Eq. (20)], <.e., X,
and Yo are zeros of different functions. The dashed line in Fig.2 shows
how AW as given by Eq. (26) behaves as a function of the Fermi energy.
This dashed line corresponds to the star in Fig.1.b having the values

a=-1and y = 3.
3. DISCUSSION AND CONCLUSIONS

We have derived an exact sum rule for the binding energy of
chemisorption of atoms and illustrated its use with a very simple one-

band model describing the metallic surface, namely, adsorption at a single
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site of a Bethe lattice [see Egqs. (18), (19) and (20)]. The important
parameters in the model are a= caIZV (£.e. the ionization energy of the
adatom as measured from the center of the band in units of 2V) and the
ratio y = ta/V. Fig. 2 shows the resulting binding energies as a function
of EFIZV (the arrows mark the band edges) for two different sets of values
of a and y. The full line corresponds tca= -5 and Y =5 (see Fig. 1.a
and 1.b), when a localized state is present below the band in the energy
spectrum. In this case, the adatom binds more strongly to the surface
when the band is almost empty and AW grows up monotonically to zero at
the top of the band. AW vanishes for a filled band due to the non-diagonal
character of Had' Indeed, when all states are occupied the binding energy
is given by Tr “ad = 0. Fig. 3 shows data for the binding energy of chem
isorption (rigth hand scale) of hydrogen on 3d (circles) and 4d (squares)
transition metal surfaces. It can be seen there that AW fails to vanish
when the number of d electrons is almost 10 (€.e. Ni and Pd). The same
behavior is observcd“) for adsorption of 0,, @, COZ and NZ' We think
this fact is an indication that there is a relatively large fraction of
electronic states still empty above the Fermi energy so that Eq. (25) does
not hold for Ni and Pd. This could be atributed to the admixture of sp-
and d-states in transition metals.

The full line in Fig.3 is the binding energy (left hand scale)
as a function of the mmber of d- electrons Nd as given by our oversimpli
fied model. The parameters were held constant at V=1, a = -Sand y = §
for all values of Nd. Note that the energy scales for the theoretical
prediction and data were arbitrarily shifted by 0.7¢V so as to make the
line go through the data. We expect this shift will be produced by the
mixing of sp and d-states in a realistic model.

The dashed line in Fig.2 shows AW as a function of EF/.ZV for
a=-1and vy = 3 (see Figs. 1.b and l.c), that is the case when no local
ized state exists in the energy spectrum. The binding energy shows a
sharp deep when the Fermi energy lies near the value of a and vanishes at
both edges of the band. The absence of such a deep in the observed trends
for adsorption of simple gases on transition metal surface announces the
presence of a localized state below the d-band. Such a state has already
been observed by angle-resolved photoelectron spectroscopy of hydrogen
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AW (eV)

Nd

Fig. 3. Binding energy of chemisorption as a function of the number of
d- electrons N.. The displayed data are for H, on 3 (circles)
and 4d (squares) transition metal surfaces, as reporged by
Toyoshima and Somorjai (1979). The energy axis for the data is
the one at the right hand side. Shifted downwards by 0.7 eV on
the left hand side is the energy axis for the theoretical predic
tion (full line). We used @ = -5, Y =5 and V = 1, the same for
all N, values.

d
adsorbed on Ni, Pd and Pt(9.
In conclusion, we have discussed the derivation of a sum rule,
Eq. (17), for the binding energy of chemisorption, AW, and adopting a
highly simplified and unrealistic model (it does not include d-d correla-
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tion effects{lo’II] which are very important in transition metals and the

metallic surface was replaced by a Bethe lattice) its use was illustrated.
The sum rule can be extended to treat chemisorption of molecules and/or
to include some other electronic properties of the solid surface, e.g.,
self-consistency effects, ferromagnetism and admixture of sp- and d-states.
Finally, it is worth to emphasize that the sum rule is an efficient way
relating the binding energy of chemisorption to the electronic properties
of the clean surface, the geometry of the chemisorption site and the

adatom parameters.
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