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for hydrogen chem-
At this point it is
an appropiate de-

A sum rule lar the energy ai chemisorption, 8W, oi atoms on salid
surfaces i5 derived in a tight-binding scheme. The sum rule involves sorne
~~ee local Green functions oi the atomic array on the surface responsible
ter chemisorption and that oi the adatom, ~.e. ÓW can be exactly computed
without working out the electronic structure ai the chemisorbed system.
The sum rule, as applied to chemisorption at a single site in a Bethe lat-
tice, ShOW5 that 6w 15 eontrolled by the Fermi energy, the ionization ene£
gy of the adatom as measured from the center of the energy band and by the
amount of eoupling between the adatom and the surfaee. Contributions to
the sum rule from the di serete and eontinuum parts of the energy spectrum
are analized in detail.

Our results are compared with experimental data
isorption on sur faces of 3d and 4d transition rnetals.
argued that mixing of sp and d-states is essential for
scription of chemisorption on transition metals.
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RESll>1EN

En elesquema de amarre fuerte se deriva una regla de suma para
la energía ~w de adsorción química de átomos sobre la superficie de un s~
lido. La regla de suma sólo contiene funciones de Green libres: las fun-
ciones de Green locales del arreglo atómico superficial que interviene en
la adsorción química y la del átomo que se adsorbe. O sea, 6w puede cal-
cularse exactamente sin tener que resolver la estructura electrónica del
sistema compuesto. Al ser aplicada la regla de suma a la adsorción quími-
ca en un sitio de una red de Bethe, muestra que 6w es controlada por la
energía de Fermi, la energía de ionización del átomo adsorbido medida a
partir del centro de la banda y por la intensidad del acoplamiento entre
átomo adsorbido y superficie. Se analizan en detalle las contribuciones
a la regla de suma provenientes de las partes discreta y continua del e~
pectro de energía.

Los resultados se comparan con datos experimentales para adsor-
ción química de hidrógeno sobre superficies de metales de transición 3d
y 4d. En este punto se argumenta que la mezcla de estados sp y d es esen
cial para una descripción apropiaaa de la adsorción química en los meta--
les de transición.

1. INTRODUCTION

Sone of the mast important parameters characterizing atomic
chemisorption on metal1ic surfaces are the number oí chemisorption states
and their binding energies. These parameters are a11 measurable by seve~
al alternative experimental methous and in a grcat variety of different
situations(l). Thesc measurements have shown that thc chemisorption cne~
gies oí simple gases (HZ' NZ' 0Z' 00, NO, etc) íollow systematic trends.
These trends cry for an explanation but a general theol)'of chemisorption
is still lacking(2). Comparison of simple model predictions with experi-
mental data will certainly help in identifying the main ~hysical mechanisms
behind chemisorption.

The purpose oí this paper is to discuss in sornedetail the use
and derivation oí a sum rule(3,4) for the binding energy oí chemisorption
fiW. This sort oí sum rules has been extensively studied(S) and when ap-
plied to chemisorption(4). the sum rule provides an econornicway oí rela-
ting the binding energy oí chemisorption to the electronic properties oí
the clean solid surface, to the geometry oí the chernisorption site and to
the adatornparameters (e.g. ionization energy). ~.e., in arder to use the
sum rule one only needs sornelocal Green's íunctions of the ciean suríace
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and that of the adatom be6o~echemisorption. A bridge is provided betwe-
en a modei Hamiltonian for chemisorption and ÓW.

l~ehave used a very simple one band model for chemisorption
~adsorption at a single site in a 8ethe lattice(6)) to test the sum rule
and found that ól~ is controlled by the strength of coupling t betweena
adatarn and salid surfacc, the ionization energy E of the free atom asa
measured from the center of the band and the Fermi energy. We belive the
sum rule might provide a very simple and clean way (physics stays clear
at any step and no alien parameters are invoked) to compute ÓW from more
realistic models (e.9. as to include self consistency-effects(2) and/or
s-d mixing in transition metals). hhen compared to sorne other calcula-
tions(7): the savings provided by the sum rule are: (i)óW is not computed
directly as the difference in energy of the chemisorbed system (an infi~
ity number) and that of the uncoupled system (another infinite number).
This difference is usually handled through considerations on the modifi-
cation of the Fermi energy introduced by chemisorption (sic). And, (ii)
the detailed electronic structure (e.g. local Greenls functions, dcnsity
of states) of the chemisorbed systems needs not to be known to calculate
óW. However, the energy spectrum (not the density of states) of the
ehemisorbed system is very important indced.

The rest of the paper is organized as follows: Section 2 de-
tails the procedure to derive the SlDll rule. Its use is illustrated far

thc case of chemisorption on a Bethe lattice.
This is the simplest system in which all the interesting fea-

tures of the suro rule appear and the connection between the model
Hamiltonian and the resulting trends in chendsorption are transparento
Results are discussed in Section 3 and, although we knowthat tile rrodel

we choose to iIlustrate the use of the sum rule is very unrealistic, we
compare our results to experimental data for hydrogen chemisorption on
transition metals(l). This comparison suggests that mixing of sp and d-
sta tes might be essential for an appropiate description of chemisorption
on transition metals.
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in terms oí Green's functions is

£F
1~ IJ w 1m [ Gii (w) -G~i (w)) clw

-~
(4)

respecti-
included

where Gii(w) and G~i(w)are the local Greeos functions at site i after
[see Eqs. (2) and (3)) and before [see Eqs. (1)) chemisorption,
vely. The site i=a, ~.e., where the adatom is located, must be
in Eq. ( 4).

At this paiot it is worth to say that to calculate binding ene~
gies by direct use of Eq. (4) is rather impractical. To achieve that,
(i) ane must know the local Green's.flDlctions at adatom and at every site
in the solid before and after adsorption, ( ii) the series must be trun-
cated at sorne poiot far enough from the chemisorption site, (iii) care
must be taken when computing a small number from the difference of two
very big ( infinite in principie) numbers. Here we bypass all these prob-
lems by finding a rule to sum up Eq. (4). Before going into the deriva-
tion of the sum rule we find useful first to prove the following theorem.

Theorem: Let

and

HIK) EKIK) (KIK') ÓKK

where

111 E I i><j I + h.c.
{i,n

( 5)

(7)

the surnmation aver i and j being restricted to sorne finite set {i,j} and
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li> and <ji may be wave functions of the Wannier type. If conditions
is Eqs. (5)-(7) are fulfi11ed then

dE
K.,,-).1m TrG = ¡: ImIG ..(E) + G ..(E)} (8)

o I1,j} 1) K ) 1 K

where Green's functions are defined by (z-H)G(z)=1 and G .. = <iIGlj> .
1)

The fini te set Ii ,j) in Eq. (8) is the same one than that in
Eq. (7). Actually, Eq. (8) is a Greerrs function disguised version of
the Hellmann-Feynman identity(8)

= E (Kli><jIK) + c.c. (9)
Ii ,j }

that follows almost inmediately from Eqs. (5)-(7). The proof of Eq. (8)
fo11ows.

Using the definition of G we can write

whcre

G .. (z)
1)

Aij (KJ

r z-E +iaK K
(10)

A .. (K) " <iIK)(Klj>
1)

with the properties A,.)' = A~. and Tr A=l. Replacingjl

~ ~ J p(E)dE ( 11)
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in Eq. (10). and using the formal identity

I _ Ix+io - P x " i.6(x)

wc get

f
p(E) \j (E)

Gij (z) -i'\j (z)p(z) + P Z _ E dE (12)

From this last equation is easy to see that the density of states p(E)
introduced in Eq. (1l) is pez) = -1m Tr G(z)/ •.

Finally. one gets Eq. (8) from Eg. (9) by using the irrk'ginary
part of the symmetric part of Eg. (12). ~.e .•

1m (G.. + G ..) = -.p(z) lA .. + A ..)
1) ) 1 1)) 1

Once Eq. (8) has becn proven we can go back to OUT ~1in problem, namely,
to find out a rule to sum Eg. (4).

We use Eq. (8) for chemisorption identifying Eq. (3) as )JI!

and ta as A. and integrating ayer E from minus infinity up to the Fenni
energy EF:

where

"W
~=

EF
~ r dE 1m {Gsa (E) + Gas (E)}

-00
(13)

iEF
W = 2 ~ p (E) E dE

and, since the electronic spin is nat being considered explicitly in
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2. TIlE SUM RULE AND HOW TO USE JI

2. J. Th. ~umnut.
Grecn' s ftmctions are a convcnicnt bridge between él lIamil tanian

and thc clectronic propcrties oí a system. the chemisorption binding ene~
gy oí an atom to a salid surface, in OUT casc. In this section wc derive
the sum rule that expresses the chemisorption energy in terrns of thc lo-
cal Grcen's functions oí the clean surface and that oí the free atom.

We define thc chemisorption binding energy as the difference oí
the electronic energy oí the ehemisorbed system minus the energy oí the
system where the atom is infinitely far away from thc surface. In the
last situation, the lIamiltonüm can be written as

(1)

where ti and H are the lIamiltonians far the clean salid surface and fors a
the free atom, respectively. Any matrix elernentof HO between solid-sur-
face and atomic wave functions is identically zera. Thc Harniltonian for
the chcmisorbed system is

H (2)

liad represents the coupling between
of 11 responsib1e for chemisorption.
binding scheme as

atom and solid surface and is the puL
In can be represented in a tight

Had ta (Is><al + la><sl) (3)

where 15> is any nonmalized linear combination of Wannicr functionsassoci
ated with the atomic sites on thc solid surface responsible for chemiso~
tion, la> is thc adatom state (assumed a single state) and t is thea
strength of coupling between 15> and 1 a> states.

The chemisorption binding energy, as defincd aboye, cxpressed
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Eq. (3), the factor of 2 in Eq. (13) aeeollnts for the eleetron spin de-
generacy Thc chemisorption energy, tM, is obtained fmm Eq. (13) sim-
ply by integrating in ta, from zera to la:

t

.? J adt
rr ao

EFJ dE 1m
o

{G (E) + G (E))
53 as (14)

The ta functional uependence oí Green's function
made explicit by solving Dyson's equation

G - G' + G'II G
J - 3d

G in Eq. (14) can beas

(15)

where GO is the "free Green's function" corresponding to HO in Eq. (1).

Dyson's equation can be exaetly solved for Gsa using the faet that
c;a O. ¿e.., atom and surface are uncoupled (la = O) in the "free sy~
tem'. I;e obtain fram Eq. (15)

Gsa
G'sS

ta
I -

G'aa
t2 GO GO
a ss aa

(16)

Substitllting (16) into Eq. (14) and performing the ta integration we ob-
tain the Slun rule

2 J.LF 261;= -, __ dE 1m tn {I-t G' G'}_ a ss aa (17)

Eq. (17) gives the way to surn up the series in F.q. (4). It is a exaet
and general eq~~tion relating the chemisorption binding energy to (i)
thc properties of free atorns (throllgh G~). (ii) thc cleetronie proper-
tíes oí the clean salid surface (through G;s)' propcrties such as band-
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width, work function, Fermi energy, etc., and (iii) to geometry oí the
active site in chemisorption (through the linear combination 15». Eq.
(17) represents a great spare of effort as compared to Eq. (4). whcre
it is requircd to know everything about the clectronic structure of the
system after ano befare chemisorption.

2.2 How to Uhe Eq. (17)

There are no ~pecial directions in arder to use Eq. (17).
Ilowever, the long-funetían is a little bit tTicky nnd sorne explanatían
is in arder. The starting point is a suitable pair oí Green's functions
G;a and G;s' As a simple example we take chemisorption oí atoms at a
single site oí a Bethe lattice with nearest neighbors interaction. The
Hamiltonian far the free system is

+ ca la><al (18)

and the adsorption Hamiltonian is

+ la><ol) (19)

whcre lo> is the Wannier function at the site of adsorption (i=O). -ca
is th~ ionizatían energy oí the free atom (energ)' is being measurcd from
thc center of the band).

The electronic structurc corresponding to 11°, Eq. (18). is
solved in thc Bcthc lattice approxin~tion. The local Green's flIDctions
wc nccd are

GO
00

(z-2)x- iz~~
2 2Vez -4x )

(20)

z-)

V((z-2)x + sgn(x) z/x2+1-z)
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and GO= l/lV(x-a), where x = E/lv, a = £A/lV and z is the coordination
number of the Bethe lattice.

The energy spectrum of the free system as given by the singula~
itíes oí the Green's function, consists oí a continuum of states forming
a band in the range Ixl<IZ=T and a localized state at site a of energy
x=a. The origín of the energy axis is at the centcr oí the band [see EQ.
(18)1. The energy spectrum of ~he chemisorbed system is slightly differ-
ent. It also has a continuum oí states in the same. range oí values of x
but the position Xo of the localized state changes deeply. The zeros of

f(x) (ll)

give the positían in energy, xo' oí the localized states. Note that [(x),
defined in Eq. (ll), is just the argumcnt of the log-function in the St~

rule, Eq. (17).
There are tour different cases concerning the zeros oí flx) de-

pending on the values of a and y" t/V. The broken Iines in Fig. l.b
are the border lines in the y-a plane separating those [OUT cases. For
values of (a,y) within the shaded region of Fig. I.b f(x) has two zeros
corresponding to two localized states, ane below and ane aboye the bando
There aTe no localized states [or values oí a and y contained in the vegion
oí Fig.l.b rnarked with a staT. The unmarked region corresponds to ane l~
calized state abo ve the band and the region containing the dot corresponds
to one localized state below the bando

After these prcliminaries we procecd to calculate ~W. Let us
begin with the case of a localizcd state below the bando Frem the defini-
tion of f(x) in Eq. (ll), it has the following properties:

f(x) ~ 1 as Ixl ~ ~

1m f(x)=O for
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Fig. L (a) Plot al the real part al f(x), as defined in Eq. (21), ior
u= -5 and Y=5. The broken lioes mark the bandedges. The tick cro~
5i09 the abscissas axis 1s at x=O where Re(f) changes sigo through
infinity. Re(f) changes sigo through zero at x=x

o
=-6.118.

(b) the dashed lloes border four different regioos on the a-y plan~
concernig the roots af f(x). For values o£ a and y on the shaded
region there are two localized states, cne at each sirle al the bando
No localized sta tes apPear for values within the region marked with
a star. Values within the unmarked region correspond to cne local-
ized state aboYe the bando One localized state appears below the
band ior values oi a and y in the fourth region marked by a doto A
lacalized state at x = -6.118 appears far any pair af values af a
and y alang the ful1 lineo
(e) Plot af the real part af f(x), as defined in
and y=3. The dashed lines mark the band edges.
the abscissas axis is at x=a and Re f=O at X=Ya.

Eq. (21), far Q=-l
The tick corssing
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The function f(x) is purely real outside the band and changes sign twice.
at x=xo and at x=a. Fig. l.a shows Re f(x) for a=-S and y=5. These val-
ues of a and y correspond to the dot in Fig.l.b. For all values of a and
y along the full line in Fig.l.b there is always a localized state at x =o
-6.118. Note that the line sets up precisely at this values of a when
~=O. ~.e., when the system is uncoupled xo=a as it must be far the free
atom. The dashed lines in Fig.l.a are the band edges. the tick on the
f=O axis is at x=a and the localized state is at xo= -6.118, i.e., f(xo)=O'
Observe that the position x=a oí the free atom energy level is shifted to
lower energies, x=xo' duc to chemisorption and that Re f(x), is negative
in the range xo<x<a anly.

To calculate ~W we found useful to write the log-function in the
furm

ln f(x) = ~n Re f(x) + ~n [l+i ~: ~f~lJ . ( 22)

The argument of the second log-function on the R.H.S. of Eq.(22) stays on
the R.Il.S. half of the f-complex plane, so we can freely change the val-
ues of x without crossing the branch cut. The first log-function on the
R.H.S. oí Eq. (22) has a real argument, so

Re f(x»o
1m ~n Re f(x)

{

O

(2n+l)Tf, n=o,~l, ... , Re f(x) <o

and 1m ~n f(x) arctan~: H~l+ (2n+l)n el-Re [(x)] (23)

where 8(x) is the lIeaviside ftmction and the inverse tangct fnnction

takcs values from -TI to n.
Note that the first term on the R.Il.S. of Eq. (23) vanishes for

values of x outside the band (Ixl >~) and the second one is different
from zera far valucs of x such that x <x<a (see Fig.l.a). wherc Re f(x)<o.o
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Using Eqs. (23) and (17) we obtain

E

óW = 2(E -c ) + ~ J Fde 1m tn (l_t2 G2 G2)oa 11 aocaa
-El

(24)

where Eo = 2Vxo and El • 2vlZ7T. The edges of the band are at E = : El'
The infinite many Riemann sheet s of the log-funetion in the f-eomplex
plane were labeled by integer n, as shown In Eq. (23). The value n=O was
used to write Eq. (26) in order to have óW{EF' El) • O, ~.e., the blnd-
ing energy must be zero when all the eleetronie states are filled. Thls
is a very general feature that stems fTem the non-diagonal character of
Had. Indeed, when al! the states are oeeupied, the ehange in total
encrgy is

óW = Tr HO - Tr H • Tr lJad • O (25)

In Fig. 2 óW is glven as a funetion of Fermi energy by the full
liúe. It corrcsponds to a • -$ and ~ = SI values shown by the dot in
Fig. l. b.

We eonelude this seetion showing the ealeulation for the case
that there are no localizad statas In tha spaetrum. Fig. l.e shows Re
f(x) for o • -1 and y • 3. These values eorrespond to the star in Fig.
l.b.

An analysis of the imaginary part of log-funetion similar to
that we made befare yields

E

ÓW = ~ r dE aretan ~~ ~¡~l+

-El

<c a
(26)

where Ea is now givon by Eo • 2Vyo' to boing tho zero of Rof(x) (see Fig.
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Fiq. 2 ÓW/2V as a function oC E~2V. The full line corresponds to a = -5
and y= 5 (these values oC Q and y ~re shown as a dot in Fiq.l.b).
The dashcd Une corresponds to a "" -1 and y =] (shown by the stac
in Fiq.l.b'.

l.c). Ref(x) is a different function that f(x) Isee 1"1. (20)1, ¿'., X
o

and Yo are zcros of tljffeTeot functions. The dashed linc ,in Fig.2 sOOws
howó"" as givcn by Eq. (26) bchavcs as a fWlction of the Fcnni cnergy.
This dashed linc corrcsponds to the star in Fig.l.b having the valucs
Q = -1 and y = 3.

3. DISOJ5.'iIQ'I A'Ill (ll'ICI.US[Q'¡S

I\'c havc dcrivcd an exact sin rule COT the bim.ling cncrgy of
chcmisorption of atoms and illustrat~~ its use with a vcry simple onc-
band modcl dcscrihing the mctallic surfacc~ namely, adsorption al a single
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site of a 8ethe lattice Isee Eqs. (18), (19) and (20)1. The important

paramcters in the rrndcl are Q= C:/lV (oi.l!. the ionization cncrg)' of the

aclatom as rrc3surcd fmm the ccntcr oC the band in uni t5 of IV) aOOthe

ratio y = t /\'. Fig. 2 shows the rcsulting binding cncrgies as a functiana
of y2V (the arrows mark the band edges) for two different sets of va!u.'s
of a and y. The full line corresponds toa = -5 and y = 5 (sce Fig. l.a
and l.bl. whcn a localizcd statc is prescnt bclow the band in the cncrgy
spectrum. In this case. the aclatan binds rore strongly to the surfacc
whcn thc band is almost cmpty aOO 6W grows up mnotonically to zcro al

the tap of the bando 61\'vanishcs for a fillcd band due to thc non-diagomI

charactcr oC liad' 100('<:'0.• hen all sta tes are occupicd the binding crrrgv

is given by Tr I~d = o. Fig. 3 showsdata for the biuding energy of ch~
isorption (rigth haud sc;,le) of hydrogenon 3d (circles) and ~d (squares)
transition metal surf:lccs. lt can be secn tbere that .ó.Wfails to vanish

••.hen the n...mer of d electrons is alrost 10 (.l.•. Ni aud N). The same
behavior is observed(l) for adsorption of °

2
, m, m

2
and Nr Wethink

this Caet is <Jnindication that tllerc is a nelatively large fraction of

electronic states still ClTptraboye the Fermi energy so that Eq. (25) <tes
not hold for Ni and Pd. This couhl be atributcd to thc admixture of sp-
and d-statcs in tr.ansition mctals.

The full line in Fig.3 is the biuding energy (Ieft hand scale)
35 a fLmction of thc m.mi>crof d- clcctrons Nd as givcn by our ovcrsinp1i

ficd DDdcl. Thc p;:lraIDCterswcrc held constant at V=l, a = -S and y = S

for a11 values of Nd. Note that the energy scalcs for thc thcoretical

prediction ,md data ocre arbitrarily shifted by 0.7eV so as to make the
line go through the dat". Weexpect this shift will be produced by the
mixing of sp and d-st~ltcs in a rcalistic roodeI.

The dashed line in Fig.2 showsllWas a function of Y2V for
a = -1 aud y = 3 (sce Figs. Lb and l.c), that is the case whenno local
izcd statc cxists in thc cncrgy spcctrum. Thc birx.ling cnergy shows a
sharp dccp whcn thc Fermi encrgy 1ies near thc value of a and vanishcs at

both edges of !he bando lne absence of sueh a dcep in the observed tnnl,
for adsorption of simple gases 00 transition mctal surface announces thc

prescocc of a local izcd statc bclow the d-band. Such a statc has alrcady

becn observed by angle-resolved pbotoelectron spectroscopy of hydrogen
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o
0.7 eV •

O I

- -1 [>
>

~Q) •- -1 -
3=

CD
-2 <

<] -
-2

2 4 6 8
-3

Nd
Fig. 3. Binding energy of chemisorption as a function of the number of

d- electrons Nd" The displayed data are for "2 on 3d (circ les)
and 4d (squares) transition metal surfaces. as reported by
Toyoshima and somorjai (1979). The energy axis fer the data is
the one at the right hand side. Shifted cownwards by 0.7 eV on
the left hand side 1s the energy axis for the theoretical predic
tion (full lioe). We used a = -S. y-s and V = 1, the same for
all Nd values.

adsorbed on Ni, Pd and pt(9).
In conclusion, we have discussed the derivation oí a suro rule,

Eq. (17), for the binding energy oí chcmisorption, ~W, and adopting a
highly simplified and unrealistic model (it docs not inelude d-d correla-
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tion effects(IO,lll which are very important in transition metals and the
metal}ic surface was replaced by a Bethe lattice) it5 use was il1ustrated.
The suro rule can be extended to treat chemisorption oí molecules and/or
to inelude sorne other electronic properties of the salid surface. e.9.,
sclf-consistency effects, ferromagnetism and admixturc oí sp- and d.states.
Finally, it is worth to cmphasize that the sum rule is 3n cfficicnt way
relating the binding energy of chemisorption to the electronic properties
of the clean surfacc, the geometry oí the chernisorption site and the
adatom parametcrs.
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