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The pararnagnetic susceptibility of a one dimensional crustal with
a sinusoidal potential is examined in the second quantized formulation
where two electrons per lattice site are assumed to be under the influence
of the potential. Electron-electron interactions via Coulomb repulsion
are ignored. The Green's function equation of metion technique is utilized
to obtain an exact express ion for the paramagnetic susceptibility for k,
the allowed linear mornenta, restricted to the first two_ Brillouin zones.
The expressions are numerically integrated with the aid of an electronic
computer to obtain values of susceptibility as a function of the inverse
absolute temperature.
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RESu;.IF~'1

Se examina la susceptibilidad paramagnética de un cristal unidimen
~ional con un potencial sinusoidal usando la formulación de la segunda eua;
tización, suponiendo que dos electrones por sitio de la red estén bajo la -
influencia del potencial. No se consideran las interacciones repulsivas cou
lombianas entre electrones. Se utiliza la técnica de la función de Green -
de las ecuaciones de movimiento para obtener una expresión exacta para la
susceptibilidad paramagnética con K, los momentos lineales permitidos. res-
tringidos a las dos primeras zonas de Brillouin. Las expresiones son inte-
gradas numéricamente usando un computador electrónico para obtener valores
de la susceptibilidad como función del inverso de la temperatura absoluta.

1 • INTRODUCcr ION

Recently(l), ane oí the present authors examined the electronic
specific heat of a one-dimensional crystal with a sinusoidal potential and
obtained results which showed semiconductor to metal behavior as a function
of temperature and well depth of the sinusoidal potential. The present
purpose is to exarnrrnethe crystal to determine the semiconductor to metal
behaviar for the paramagnetic susceptibility. As in the previous article(l),
it is assumed that two electrons per lattice site (one atom per site con-
tributing the electrons) are under the influence of the potential. The rno-
mentum vector will be restricted to the first two Brillouin zones. The
choice of two electrons per lattice site under the influence of the poten-
tial will automatically ensure that the first Brillouin zone is completely
filled at temperature T=O. (In the previous article(l); the graphs of
Figs. 2 and 3 shouId be interchanged, and the specific heat unit is evl
(cm-k).) The momentum vector has been restricted to two Brillouin zones in
order to limit the amount of necessary calculatians, but it is also assumed
that for reasonable temperatures, the probability of an electron jumping
energy gaps into a third or higher Brillouin zone is smal!.

2. ANALYSIS

For the one-dimensional, paramagnetic sample under consideration
one has, in the first quantized formulatian, the Hamiltonian for one elec-
tron to be

11 (1)



In Eg. (1), Ho is the applieJ rnagnetic field, gs is the gyromagnetic ra-
tio for spin oí the electron, and ~B is the Bohr ~1gneton. AIl other
symbols have their previous(l) meanings. One assumes that the matter
ficId is quantized in plane wave form to be
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iKx
E aK o e ((a)K,a J (2)

where L is the sample length, K is the linear J1X)mentum vector, a is the
spin angular momentum, (a is the single partiele spin state and a

Ka
is

the electron creatían operator. One may then obtain the Hamiltonian for
electrons in the sccond quantized formulation to be

H 2 2 +
E (h k 12m - U/2 - ~) aK,a aK,aK,a

- U/4 + +E (a a + a a alK a K,a K-2~/a,a K-2n/a,a K,,

(3)

where u, the chemical potential, is introduced so that ane may obtain
Grand canonical ensemble results when using the Green's funetían tech-
nique oí statistical mechanics. By using a procedure entirely analogous
to that done previously, one may obtain the Green's function equation oí
rootion to be

E«AlB»

With A = aK1 t and B,
sorne manipulations

+aK t' ene ebtains, using the aboye equation and
2 '

(E - 6K + 1/2 gs~¡flo) «aK la. t"
1 l' K2,
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(4)

where one has 6K
2 2h K /2m - U/2 - U (S)

•
By a similar procedure, replacing A by aK t and B by aK ~,one can ob-
tain l' 2'

+ «aK 2 / ,iaK+ »)1+ Tf a,'" 2'';''
(6)

One now utilizes Eqs. (4) and (6) and appies them to the two
band model where one has for the first Brillouin zone (first band)
_ %< K < %. and for the second Brillouin zone (second band). % < K < ~ •

-;Ti <K < -aTT Any Green's funetian outside of the first two Brillouin
zones will be neglected. Due to symmetry considerations and the faet
that only wave numbers within the first twa Brillouin zenes are used, onc
can see that all of the nceded Green's funetían can be obtained íTem r~s.
(4) and (6) for K> O.

In Eq. (4) for K¡ = KZ = K. one obtains

(7)

- 1/2, - U/4 «aK_2,/a.tla~.t» .



Z.Fer KI = K, KZ • K - ¡¡, ane has

(8)
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Far K¡ = K KZ ::K, one has

Z.For K¡ z KZ ::K - ñl' one has

(E - 6 Z / +I/Z g U_H )«aK la+ »K - rra s ~'a - Z./a,t K - Z./a,t

• - I/Z. -U/4 «aK,tla~. _ Z./a,t» .

One can write Eq. (10) as

(9)

(10)

-U/4 (11)
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Using Eq. (11) in Eq. (8), one obtains

+
«"x,t1aK - 2n/a,t» (12)

One can write Eq. (7) as

Substitution of Eq. (13) into Eq. (9) yie1ds

(13)

U/41/2n .(H)
(E - 6K _ 2n/a + 1/2 gsUBHo)(E 6K + 1/2 gsUBHo)-(U/4)2

FrornEqs. (12) and (14), one has

1
+ I +«aK _ 2n/a,t aK,t» = «"x,t "K - 2n/a't»

FroID Eqs. (7) and (9), eliminating «aK _ 2n t1aK t», one obtains
a' ,

(15)

(16)

-ll2n
(E -

E - 6K _ 2,/a + 1/2 gsuBHo
6K - 1/2 gsUBHo)(E - 6K _ 2TI/a+ 1/2 g uBH )_(U/4)2s o



--- ----------------------

345

By using a similar procedure with Eq. (IJ), ene obtains

(17)

- 1/2n E - 6K _ 2n/a - 1/2 gsU~~
2 .1/2 g uBfl )(E - 6K 2 / - 1/2 g U_H )-(U/4)s o - 'IT a s !f-o

From Eq. (16), one may write

-1/2n E - 6K -2n/a + 1/2 gsUBilo
(E - 6K + 1/2 gsuJfJo)(E - 6K -2n/a + 1/2 gsUBilo)-(U/4)2

- 1/2n
(E,2 _

where one uses El = E + 1/2 gslJBHo. One can now factor the denominator
and write Eq. (17) as

«aK t la~ t" =, ,

- 1/2n
E' 6- K - 2n/a

(E' - DI (K)) (E' - D2(K))
(18)

where one defines DI(K) and D2(K) to be
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Decomposing the right hand side of Eq. (18) into partial fractions, one
obtains

[

(O (K)- I!.-(I/lrr) 1 1 K-lrr/a
DI (K) 0l(K) (E' - DI (K))

Similarly, one can write Eq. (17) as

. (lO)

1-(I/lrr) O (K)-O (K)
1 l [

(DI (K)-I!.K-lrr/a)
(E"-O (K)) • -

1
(21)

where one uses E" = E - t gs BBo
By using a procedurc that is by now very familiar (only several

mentioned here(2,3,4.S) ane may obtain the pertinent correlation ftmctions
I

to be (using the definitions for E' and EII)

{
DI (K) - I!.K_ 2rr/a

exp( B (DI (K) -1/2gsu¡¡lio' + 1

(ll)
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and

(2:')

1

{

Dl(K) - 6K _ 2n/a

exp( a (DI (K)+1/2 gs~Bllol +1

D2(K) - 6K _ 2n/a }

exp( a(D2(K)+1/2 gs~BHo)l+l

The magnetization per unit length, 41>, is

<M> {

(Total numbcr of partieles having spin up) }

-(Total numbcr of partielcs having spin down)

Therefore, one has the magnetization per unit lcngth to be, using Eqs.
(22) and (23).

41> = gs~B 2
2L

D2(K) - 6K - 2n/a

exp( a(D2(K)-1/2g,f BHo)l+1

Dl(K) - 6K _ Z;l/a
exp( a (DI (K)+1/ 2gs~¡flo) 1+1

+ (24)

As in the previous paper, one can surnmarize that for U not very
large Ha ~ O, u for T : O would be oí thc arder of

(25)
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Kf being the Fermi momenturn. The ehemiea! potentia! is equa! to the
Fermi energy for U =0 (free partie!e), or,

2 2
Ef = ~ = h K f/2m (26)

By assurning that at T = O the first Brillouin zone (first band) is fil!ed,
ane may WTite that Ne, the number oí electrons, is

Ne = 4 \J=
K>O

Kf
4 (L/2 ) f dK =

O

such tha t ane has

Kf = (~/2) (Ne/L) (27)

Since ane has for this problem that Ne is twice the number oí 1attice
points (ene atoID per lattice point, two electrons contributed per atoro).
ane may wri te

Ne = ZN, L = Na, Kf = ~/a ,

where ~ Í are the ltmits oí the first Billouin zone. Now, going back to
Eq. (24) and by replaeing the surnby an integra!, one ean write

02 (K)

- eJ<P! B(02 (K)
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D¡(K) - 6K _ 2rr/a
- exp{ S(D¡ (K) + ¡lz gs~BHo)1+¡

<M>

,

-(D2(K) - 6K-2rr/a) [eXP{B(D2(k¡lz gs~BHo))+¡ - eXP{B(D2(K)~l/2gsííJid'"d}.

(28)

The susceptibility, X, is given by

x = - (. 41>/. H ) I H * Oo o

{
2K •
I~dK (O (k)l. O (K))

¡ 2

[(
D (K) - 6 )eBD¡(K) (D (K) - 6 )eSD2(K)] }¡ K-2Kf 2 K-2Kf

• (eSo¡ (K) + ¡)2 - (eS02(K) + ¡)2

From Eqs. (5), (25) and (26), one may write

6 = E J (K/K ) 2 • 1)K f' f

(29)
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By making a change of variables such that one has

x = I - K/Kf

one may write the Eqs. (30) in terms of x as

With the indicated changc of variables, Eq. (29) beC'nmes,

(31)

x =
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Making use of the parity of the functions involved, one has

x {! dx
DI(X) - DZ(X)

But frcm Eqs. (31), one has

frence, the susceptibility is finally written as

(33)

Equation (34) is solved by the aid of an electronic computer and
Simpson's rule for various values of KBT and well depth U. The results
are shown in the figures that follow.

5. RESULTS A'ID DISCUSSION

In Figs. 1-3, the par~lgnetic susceptibility is shown as a [une
tion oC l/KBT for various valucs oí well depth, U, for the situatían in
which thc first band is completely filled, second band empty, at T • D.
Vcry large temperature valucs (s~111 l/KBT) values) are unrealistic for a
salid, but such plots are given to examine the bchavior oí the analytical
function.

Figure 1 shows the para~lgnetic sU5ccptibility as a fWlction oí
l/KaT for the free electron model (U = 0.0 cv). Thc variatían oí tl1('
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SlIsccptibility is 35 expcctcd(6, 7 ,8) in that ene has metallie behavior
in the high temperature range (the typical lIT dependencc of susceptibi-
li ty) and a "flat" susceptibil ity curve far low temperatures.

In Figure 2, for a small well depth of U = 9.40 x 10.3 ey,
metallic behaYior seems to be eyident forO-e"I0.7 (ey).1 (KBT;;'0.93 x

-1 3 -1 -110 ey, T •• 1.05 x 10 k). For B > 10.7 (ey) (KBT •• 0.931 x 10 ey)
semiconductor behavior becomes evident; the susceptibility decreases due
to the attraction between the electrons and the ion cores.

In Figure 3 for a well depth of U = 0.40 x 10.2 eY (10 times
moTe than in Fig. 2), the susceptibility starts deviating fram the metal
Jie behavior at around B 01.1 (ey)-1. K3T o 0.98 ey, T o 104 k. One -
should note that as the temperature increases beyond that which gives

S .1~BT;;'U/2, the band gap (To 2 x 10 k, B 00.05 (ey) ), one observes a
gradual change towards metallic behavior giving a typical Curie pIat at
higher temperatures. One might explain this the following way: the
thermal energy of electrons becomes so high that the assumed sinusoidal
potcntial has minimal effect on them, and they behave as if thew were
free electrons.

The results for the model for thc first band completely filled
and second empty at T = O are as predicted(8). ~.e.• semiconductor or
insulator behaYior is predicted when the first band is conpletely filled
ar when there is as even number of electrons per lattice site available
for conduction.

It should be stated that susceptibility calculations were made
by one of the present authors (A.T.)' for the situation in whieh the
first band is half.filled and the second band is empty at T = O (one el.
ectron per atom available for conduction). For such a calculation, the
Fermi temperature is TF= 5.0 x 104 k, which is half the Fermi temperature
for when the first band is completely filled at T = O. For a11 we11
depths, the suceptibility as a function oí l/KaT is approximately the
same. The deviation from metallic behavior is not as pronounced as in
* Much of the present work is frorn A.T.'s Masters' Thesis presented to

the University ef Texas at El Paso fer partia1 fulfillment of M.S.
degree requirements. July, 1982.
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the prescnted figures and the rcsults far the susceptibility are ncarly
the same as far the free electron modelo Such should be the case when
there are odd nlmIDerS of clectrons pcr lattice site availablc far condu£
tion.

The ahove calculations have becn made without including the
realistic electron-electron intcractions. If such interactions had becn
includcd in OUT calculations, however, in addition to the obvious added
mathematical manipulations, ane should sce an upward shift in the
susccptibility, especially in the low tcmperature region. In the low
temperature region, this shift would a150 be ncarly tcmperature indepen.
dento Such will be the case b('cause in an elcctron's energy there will
be a shift due to a change in the distribution of elcctrols ",ith .....hidl a given
electron interacts. ~hat proves to be significant is the negative ex-
change energy tenn. The overall qu:llitative features for the susceptib-
ility calculations should be the samc, howcver.

REFERENCES

1. J.O. Lawson, Ji Nuovo C-ún,nto V. 1 (1982) 449.
2. D.N. Zubarev, Sov~e1 Phya~C6 Uap,fhi, 3 (1960) 320.
3: J.O. LawsolI and 5.J. Brient, le Nuovo C-ún,nto s, 15 (1973) lB.
4. J.O. Lawson, S.J. Brient, and R.E. Bruee, le Nuovo-c-ún,nto S 20 (1974)225.
5. Richard C. 5mith and J.O. Lawson, Phya~ca. B3A (1976) 505.
6. F. Reif, Fu"dam,ntatI. 06 StaU6t<.cat a"d Thvuna1 Phya~C6, MeGraw-Hi11,Ne>! York (1965).
7. N.W. Asheroft and N.O. Mermln, Sotid Stat, Phya~C6. Ho1t, Reinhart andWinston, New York (1976).
8. C. Kittel, l~oduct£o" to Sotid Stat, Phya~C6, 5th Ed., John Wi1eyand 50ns, lne., New York (1976).



0.12

0.24

354

0.40
~

'"'=1
N~~~~
~
:e:'~
~
~
u~
~

(1\ 0.16
'S

0.08

0.1 o , 0.1 0.4 0.5

l/Ka! (ElECTRON VOLTS)-l

0.6 0.7 0.8

0',;; 0.16

ro 0.08

lO 90 120
1/'o':B1 IllEC1RON

150

VOUS)-l

l!lO 210 240

Fig. lA, lB. Temperature dependence of the paramagnetic susceptibility for
U : 0.0 ev (free electron model).



355

•• 0.40
~
~
N~~ 0.32=>'"~,
~~o
>
15 0.24
~
u~~~
'l' 0.16o
M

>~
:::¡
~ 0.08
o:~
uv>=>
"

0.1 0,2 0.3 0.4 0.5 0.6 0.7 o.a
lIKB 1 (ELECTROIT VOlTSl'1

0.40
;r
w~
~

N~ 0.32~=>'"~,
~~o
> D,2/.,¡
z
o~
u

"'.,
w

'l' 0.16
o.,
>

"
O.os

o

~
u~

~
;;;

30 60 90 120 150 lOO 210 240
l/KB T (El[CTRO~ VOUS ¡.1

Fig. 2A, 2B. Temperature dependence of the paramagnetic suscf'ptilibity for-3U ~ 9.4 x 10 electron volts.



356

;;: 0,40
:e
w
'i~~~
~ 0.32,
~
w
'?
~ O,2io
~
u
w
w
"'~
'S O, ló

;: 0.08~
w
U~~~

a, I 0,2 O, 1 J,4 0,5 a,o 0,7 0,8
1/'a1 (ELECTRQlj VOUS}-l

~
w

~ 0.40
~~~~~~,
~ 0.32
<3
>
zo~
~ 0.24
w

'"~
;= 0,16

~
~~
tj ~),O8~~~

o~ 90 120 ISO 180 210 240
l/Ka 1 (El£(TR~~VOLTS)-l

Fig. 3A, 38. Temperature ~2pendence of the paramagnetic susceptibility for
U : 9.4 x 10 electron volts.




