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ABSTRACT

The paramagnetic susceptibility of a one dimensional crustal with
a sinusoidal potential is examined in the second quantized formulation
where two electrons per lattice site are assumed to be under the influence
of the potential. Electron-electron interactions via Coulomb repulsion
are ignored. The Green's function equation of motion technique is utilized
to obtain an exact expression for the paramagnetic susceptibility for k,
the allowed linear momenta, restricted to the first two. Brillouin zones.
The expressions are numerically integrated with the aid of an electronic
computer to obtain values of susceptibility as a function of the inverse
absolute temperature.
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RESUMEN

Se examina la susceptibilidad paramagnética de un cristal unidimen
sional con un potencial sinusoidal usando la formulacién de la segunda cuan
tizacién, suponiendo que dos electrones por sitio de la red estén bajo la -
influencia del potencial. No se consideranlas interacciones repulsivas cou
lombianas entre electrones. Se utiliza la técnica de la funcidn de Green
de las ecuaciones de movimiento para obtener una expresidn exacta para la
susceptibilidad paramagnética con K, los momentos lineales permitidos, res-
tringidos a las dos primeras zonas de Brillouin. Las expresiones son inte-
gradas numéricamente usando un computador electrénico para obtener valores
de la susceptibilidad como funcién del inverso de la temperatura absoluta.

1. INTRODUCCTION

Recently{l), one of the present authors examined the electronic
specific heat of a one-dimensional crystal with a sinusoidal potential and
obtained results which showed semiconductor to metal behavior as a function
of temperature and well depth of the sinusoidal potential. The present
purpose is to examine the crystal to determine the semiconductor to metal
behavior for the paramagnetic susceptibility. As in the previous articleOJ,
it is assumed that two electrons per lattice site (one atom per site con-
tributing the electrons) are under the influence of the potential. The mo-
mentum vector will be restricted to the first two Brillouin zones. The
choice of two electrons per lattice site under the influence of the poten-
tial will automatically ensure that the first Brillouin zone is completely
filled at temperature T=0. (In the previous article(l); the graphs of
Figs. 2 and 3 should be interchanged, and the specific heat unit is ev/
(cm-k).) The momentum vector has been restricted to two Brillouin zones in
order to limit the amount of necessary calculations, but it is also assumed
that for reasonable temperatures, the probability of an electron jumping
energy gaps into a third or higher Brillouin zone is small.

2. ANALYSIS

For the one-dimensional, paramagnetic sample under consideration
one has, in the first quantized formulation, the Hamiltonian for one elec-
tron to be
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In: Egs. €13, H0 is the applied magnetic field, i is the gyromagnetic ra-
tio for spin of the electron, and Hp 1is the Bohr magneton. All other
symbols have their previous(l) meanings. One assumes that the matter
field is quantized in plane wave form to be

vz La e (), @)

where L is the sample length, K is the linear momentum vector, g is the
spin angular momentum, (o is the single particle spin state and Ay, 1s
the electron creation operator. One may then obtain the Hamiltonian for

electrons in the second quantized formulation to be
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where u, the chemical potential, is introduced so that one may obtain
Grand canonical ensemble results when using the Green's function tech-
nique of statistical mechanics. By using a procedure entirely analogous
to that done previously, one may obtain the Green's function equation of
motion to be

E<<A/B>> = - 1/2n<[A,B}+> + <<[A,H]_|B>>

With A = a;, , and B = aE 4» one obtains, using the above equation and
bl 2l

some manipulations

(E - AKl +1/2 g ugh,) <<aK1 ,++a,<2,+>>
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where one has AK = hZKZ/Zm -Uu/2-u . (5)

By a similar procedure, replacing A by ap 4 and B by a, , one can ob-
tain ¥ 2

+
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One now utilizes Eqs. (4) and (6) and appies them to the two
band model where one has for the first Brillouin zone (first band)

- —<K< -E-, and for the second Brillouin zone (second band), % < K <%,
= <K < -? . Any Green's function outside of the first two Brillouin
zones will be neglected. Due to symmetry considerations and the fact
that only wave numbers within the first two Brillouin zones are used, one
can see that all of the needed Green's function can be obtained from Eqs.
(4) and (6) for K>0.

In Eq. (4) for K1 = Kz = K, one obtains
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For Kl = K, K2 K a2 one has
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Using Eq. (11) in Eq. (8), one obtains

B
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One can write Eq. (7) as

<<ay plag >
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Substitution of Eq. (13) into Eq. (9) yields
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From Eqs. (12) and (14), one has
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From Egs. (7) and (9), eliminating <<a, _ gj_+|aK 4>>» one obtains
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By using a similar procedure with Eq. (b), one obtains
<< | Yoo =
AL
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From Eq. (16), one may write
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where one uses E' = E + 1/2 gsuBHo. One can now factor the denominator
and write Eq. (17) as

&
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where one defines DI(K) and DZ(K) to be

Dy(K) = 1/2 (B + By _ pr7a) * ¥ V/AIBG -0y _ 50l + (/)2
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Decomposing the right hand side of Eq. (18) into partial fractions, one
obtains
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Similarly, one can write Eq. (17) as
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By using a procedure that is by now very familiar (only several
mentioned here(2’3’ﬁ’5) one may obtain the pertinent correlation functions

to be (using the definitions for E' and E")
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and

<_+ >
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The magnetization per unit length, <M>, is

(l/Z)gsuB { (Total number of particles having spin up)
<M = —

L - (Total number of particles having spin down)

Therefore, one has the magnetization per unit length to be, using Eqgs.
(22) and (23),

g.u
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(24)

As in the previous paper, one can summarize that for U not very
large H, ~ 0, p for T = 0 would be of the order of

we bl /m - vz, (25)
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K¢ being the Fermi momentum. The chemical potential is equal to the

Fermi energy for U =0 (free particle), or,
e e D
Ef—u—h Kf/Zm . (26)

By assuming that at T = 0 the first Brillouin zone (first band) is filled,
one may write that Ne, the number of electrons, is

k Kf
Ne = 4 ff =4 (L/2) S dK = 2L/n Kf,
K>0 0
such that one has
Kf = (7/2) (Ne/L) . (27)

Since one has for this problem that Ne is twice the number of lattice
points (one atom per lattice point, two electrons contributed per atom),

one may write
Ne = 2N, L = Na, Kf = n/a ,

where :_%—are the limits of the first Billouin zone. Now, going back to

Eq. (24) and by replacing the sum by an integral, one can write

2Kf 1
M> = /27 dk .
< (ggug/2m) { ! 0,00 - D,

D, (K) - Ay 2n/a _ Do) = B gy
exp[ B(D, (K) - 172 gy ) 1+1 expl B(D, (K) - 172 g HpgH IT+1
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The susceptibility, x, is given by
X = - (3 <M>/3 H0)| H»0
CRISEN Z*ff . s
TR o ¥ B,®D
00 - b e 0,00 - efP2E) (29)
B0 (K 12 (P00 )2

From Eqs. (5), (25) and (26), one may write
b = EL /)Y - 1)
K f %

~ ! 2
By oke = Eg [(K/Ke - )7 - 11,
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D,(K) = Ec(1 - K/Kp)? + VAEZ[(1 - K/KE)|2+(U/)2 ,

D,(K) = Eg(l - K/xf)2 - 2|1 - K/KQ) |2 (u/a)?

By making a change of variables such that one has

x=1- K/Kf ;

one may write the Eqs. (30) in terms of x as

A, = Ax = Ef % (x-Z). 5

=4, = Ecx (x+2) ,

"

D,(K) = D, (x) = Ex” + YaEZ|x|2 + /s

D, (g = Egx’ - J3E§|x|2 + (U/4)2

D, (K)
With the indicated change of variables, Eq. (29) becomes,

(g.m )28 :
e 1
=—— XK _{ dx DI - 0,0
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B0, )2 0 7

(30)
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Making use of the parity of the functions involved, one has

z(gsuB)2 BKf } dx
i 5

m Dl(ﬂ = Dz (X)

(0, (x) - Efxzjesnl(x) 0,0 - Ext)ef 21X -
€1 () 4 qy¢ 2% & )¢
But from Eqs. (31), one has
B D, (x) + D,(x)
il
2
Hence, the susceptibility is finally written as
(i) 8Ke | [ -8 48D, ()
st ) “BD; (X)y2 © (BD,(X)¥1,2 (34)
0 (1+e "1¥)= (e 2 )

Equation (34) is solved by the aid of an electronic computer and
Simpson's rule for various values of KBT and well depth U. The results
are shown in the figures that follow.

5. RESULTS AND DISCUSSION

In Figs. 1-3, the paramagnetic susceptibility is shown as a func
tion of l/KBT for various values of well depth, U, for the situation in
which the first band is completely filled, second band empty, at T = 0.
Very large temperature values (small I/KBT) values) are unrealistic for a
solid, but such plots are given to examine the behavior of the analytical
function.

Figure 1 shows the paramagnetic susceptibility as a function of
l/KéT for the free electron model (U = 0.0 ev). The variation of the
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susceptibility is as expected(6’7’8) in that one has metallic behavior
in the high temperature range (the typical 1/T dependence of susceptibi-
lity) and a '"flat" susceptibility curve for low temperatures.

In Figure 2, for a small well depth of U = 9.40 x 10_3-ev,
metallic behavior seems to be evident for(J=&<10 7 {ev}' (K T= 0. 93
10_1 ev, T>= 1.05 x 103 k). Forg> 10.7 (ev)_ (K T 10 931 X 10 ev)
semiconductor behavior becomes evident; the SUSCeptlblllty decreases due
to the attraction between the electrons and the ion cores.

In Figure 3 for a well depth of U = 0.40 x 1072
more than in Fig. 2), the susceptibility starts deviating from the metal
lic behavior at around 8 =1.1 (ev) !, KT = 0.98 ev, T = 10% k. One
should note that as the temperature increases beyond that which gives
K T> U/2, the band gap (T = 2 x 10 , B =0.05 (ev)” ), one observes a
gradual change towards metallic behav1or giving a typical Curie plot at

ev (10 times

higher temperatures. One might explain this the following way: the
thermal energy of electrons becomes so high that the assumed sinusoidal
potential has minimal effect on them, and they behave as if thew were
free electrons.

The results for the model for the first band completely filled
and second empty at T = 0 are as predicted(s), {.e., semiconductor or
insulator behavior is predicted when the first band is conpletely filled
or when there is as even number of electrons per lattice site available
for conduction.

It should be stated that susceptibility calculations were made
by one of the present authors (A.T.)* for the situation in which the
first band is half-filled and the second band is empty at T = 0 (one el-
ectron per atom available for conduction). For such a calculation, the
Fermi temperature is Tg= 5.0 x 10* k, which is half the Fermi temperature
for when the first band is completely filled at T = 0. For all well
depths, the suceptibility as a function of 1/KBT is approximately the
same. The deviation from metallic behavior is not as pronounced as in

* Much of the present work is from A.T.'s Masters' Thesis presented to
the University of Texas at El Paso for partial fulfillment of M 8.
degree requirements, July, 1982.
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the presented figures and the results for the susceptibility are nearly
the same as for the free electron model. Such should be the case when
there are odd numbers of electrons per lattice site available for conduc
tion.

The above calculations have been made without including the
realistic electron-electron interactions. If such interactions had been
included in our calculations, however, in addition to the obvious added
mathematical manipulations, one should see an upward shift in the
susceptibility, especially in the low temperature region. In the low
temperature region, this shift would also be nearly temperature indepen-
dent. Such will be the case because in an electron's energy there will
be a shift due to a change in the distribution of electrms with which a given
electron interacts. What proves to be significant is the negative ex-
change energy term. The overall qualitative features for the susceptib-
ility calculations should be the same, however.
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Fig. 1A, 1B. Temperature dependence of the paramagnetic susceptibility for
U = 0.0 ev (free electron model).
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Fig. 3A, 3B. Temperature gspendence of the paramagnetic susceptibility for
U=9.4 x 10 electron volts.





