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ABSTRACT

An analytical implicit expression for the Zeeman resonances in
hydrogen at the zerofield ionization threshold is obtained by means of the
semiclassical Bohr model. Upon solving the semiclassical equations of
motion no approximation is made that is not contained in the foundations
of the model. As a result, it is shown that the agreement between
previous theoretical calculations using the Bohr atom and experiment is
fortuituous and a consequence of invalid assumptions.

RESUMEN

Se obtiene una expresidn analitica implicita para las resonancias
Zeeman en hidrSgeno en el umbral de campo cero de ionizaci®n usando el mo=-
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delo semiclisico de Bohr. No se hace ninguna aproximacidn que no esté con
tenida en las bases del modelo al resclver las ecuaciones de movimiento se
miclisicos. Como resultado, se demuestra, gque el acuerdo entre cdlculos -
tedricos previos usando el &tomo de Bohr y el experimento es fortuito y
consecuencia de suposiciones ilegitimas.

1. INTRODUCTION

The Zeeman effect in hydrogen is an old quantum mechanical problem
which has received a renewed attention because it is a useful model in
studying a number of physical phenomena that are of great interest nowadays.
Among them we can mention the magneto-optical properties of some dopped
semiconductors, Rydberg atoms ({.e. atoms with a highly excited electron)
in magnetic fields and p€2p§§ties of the matter on the surface of white

these phenomena is a hydrogenlike atom in a very strong magnetic field. A

dwarfs and neutron stars A simple approximate model to deal with
common feature to all these problems is that the interaction between the
electron and the field is larger than the Coulomb interaction.

Since the stationary Schrédinger equation for the Zeeman effect
in hydrogen is found to be non-separable, only approximate solutions can
be obtained. To this end several methods have been tried, such as pertur-
bation theory, the Rayleigh-Ritz variational procedure, the adiabatic
approximation and semiclassical methods. Comprehensive reviews on the
subject are available(l’z).

In 1969 Garton and Tomkins(S) investigated the quadratic Zeeman
effect in the Bal absorption spectrum. Their measurement extended to
quantum numbers as high as n = 75 and they used a magnetic field of 2.4 T.
One of the most striking features of the fascinating spectrum they obtained
is the existence of a series of ¢ lines, extending across the zerofield
series limit into the continuum, with a regular spacing of about 1.5 fw,
where  is the cyclotron frequency defined below. Obviously, the Landau
spacing fw does not offer a theoretical explanation of such experimental
observation. Since the spectrum is due to an electron in a highly excited

energy level, it seems to be reasonable to suppose that a semiclassical study
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of the Zeeman effect in a hydrogenlike atom must be useful in understanding
it

In fact, the Bohr atom and the Bohr-Sommerfeld quantization rule
led to the first theoretical explanation of the quasi-Landau

resonances(1’4’5).

Though this model is a very rough approach to the
actual problem, the predicted spacing between the energy levels appears to
agree closely with experimént. The purpose of the present paper is to show
that such an agreement is fortuituous as it is a consequence of invalid
assumptions. To this end the Bohr atom in a magnetic field is discussed in
Sec. 2 and the suppositions that lead to the experimental quasi-Landau
spacing are criticized. The semiclassical equations of motion are
rigorously solved in Sec. 3 and the predicted spacing is shown to be quite
different from that obtained previously 1'4’5).

We deem that the present treatment of the problem might be of
great pedagogical value for undergraduate students since it does not require
a large mathematical background and the model offers a nice physical
insight into the phenomenon. Besides, it is very instructive to realize
that some careless simplifying assumptions on a rough model may lead to a
strikingly accurate prediction. In addition to this, the Bohr atom is in
many ways a more realistic model of an atom than the isotropic oscillator
that has been recently used to illustrate some physical properties of atoms
in uniform magnetic fields(ﬁ).

2. THE BOHR ATOM AND THE ZEEMAN EFFECT IN HYDROGEN

The classical Hamiltonian for a hydrogenlike atom with nuclear
charge Z is

H = p?/2m - Ze?/Dr & (1)

where 5 = m?, m, 3, e and r are, respectively, the electron Cclassical linear
momentum, mass, velocity, charge and distance from the coordinate origin,
and D is the dielectric constant of the medium.

In the first approximation the electron motion along the field
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direction is neglected and the electron is supposed to move along a
circular orbit in a plane perpendicular to the magnetic induction B. This
situation occurs when the Lorentz force Fj = eBv/c, the centripetal force
mv2/r and the Coulomb force Ze2/Dr? obey the relationship

mv2/r = Ze?/Dr? + eBv/c . (2)

The allowed energies are given by Bohr-Sommerfeld quantization
condition

§ P.dd=nh , n=1,2, «eu 3

where the integral is over the whole circular path, h is the Planck constant
and B = p - ek/c. Since the vector potential X and the magnetic induction
3 are related through B = rot X, then the left-hand side in Eq. (3) is
easily integrated by invoking the Stokes theorem. The result is

mvr - eBr?/2c = nh 3 (4)

where h = h/2m.
If BEq. (4) is solved for v and the result is introduced into
Eq. (2) the following relationship is obtained

r/a, + T*/4R* = n? . (5)

where a, = h2D/Zme? and R = (ch/eB)i are the Bohr and Landau radii,
respectively. The only possitive real root of Eq. (5) gives us the radius
of the only allowed electron orbit for each n and B values. It is very
easy to show that

lim r = n?a, " (6)
B0
lim = 2R ) ™

z+0
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The semiclassical eigenvalues are obtained by introducing Egs. @)
and (5) into the classical Hamiltonian function (1). A straighforward
algebraic manipulation leads to

E,(Z,B) = rheB/2mc + e?B?r?/dmc? - Ze2/2Dr " (8)

where r is the possitive real root of Eq. (5). The semiclassical
eigenvalues, Eq. (8), fulfil

E,(Z,B) = BE, (2B, 1) ; ©

E_(Z,B) = n"“E, (Z,b) , b=Bn? . (10)

Eq. (9) is exact in the sense that it is also obeyed by the eigenvalues of
the quantum-mechanical Hamiltonian operator. On the other hand, Eq. (10)
is approximate and it has been verified experimentall)rU). This equation
is very instructive because it clearly shows that high-field effects occur
at smaller fields when large n values are considered. Both Egs. (9) and
(10) follow immediately from the change of variables r = ax where a = B~
and a = n?, respectively.

At zero magnetic field Eqs. (5) and (8) yield exactly the
eigenvalues of the isolated hydrogenlike atom:

E_(Z,0) = - Ze?/2Da,n? 5 an
On the other hand, in the very large magnetic field limit we obtain
E,(Z,B) = nhy - chne32/2mm:n)l + 0(1) s (12)

where w = Be/mc is the cyclotron frequency. The leading term in Eq. (12)
gives us the celebrated Landau formula for the large-field energy level

spacing(1+2),
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In what follows we will obtain the energy level spacing in the
neighbourhood of the ordinary series limit (E=0) predicted by the Bohr
model according to the treatment given in Refs. 1 and 5.

For large n values, the influence of the magnetic field dominates
and the effect of the Coulomb field on the orbit radius is §upposed to be

negligible. Therefore, if r in Eq. (8) is replaced by (2n) °R we have(5)
E, = nhy - (ZzeSB/SDZnhc)i ’ (13)
which leads to the following energy level spacing
dE,/dn = 3hw/2 - Ep/2n ‘ (14)

The close agreement between Eq. (14) and the experimental value
AE/Mn = 3ﬁw/2{3) is striking. However, there is a mistake in the reasoning
given above. It immediately follows from the condition E, = 0 that Ban
(cf. Eq. (10)). Therefore, if a rigorous power series in n-3/2 for the
energy is tried (as suggested by the change of variables r = n%q in Eq. (5))
it is realized that every term in the expansion is of the same order
(O(n"*)). This fact can be easi%y verified without any calculation by
noticing that Ep(Z,B) = BnE,(Z/Bn*/?, 1) (cf. Eas. (9) and (10)). Due to
this, the truncation of the power series expansion leading to Eq. (13)
omits an infinite number of terms which are not negligible at all. This
conclusion is supported by Garstang's earlier remark(l) that a numerical
calculation for B = 2.4 T and E =0 (n = 44) yields dEw/dn = 1.97 hw
instead of 1.5 hw.

It is surprising that a rigorous algebraic manipulation of the
semiclassical equations of motion has not been tried. We will do this in
Sec. 3.

3. RIGOROUS CALCULATION OF THE LEVEL SPACING AT E, = 0

let us suppose that a hydrogenlike atom is placed in a uniform

magnetic field and that the energy level spacing Ep,y - E, is measured in
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the neighbourhood of E, =0. An analytical expression for the energy level
spacing in terms of n and B is obtained by differenciating Eq. (10) with
respect to n:

dE/dn = -2n" 'E, + n” *(dE, (Z,b)/dn) i (15)
where

E,(Z,b) = heb/2mc + e?b2x2?/4mc? - Ze?/2Dx 5 (16)
and x = r/n? is the positive real root of

X/a, + b2e2x"/4c?h? = 1 . an
Clearly, E, depends on n implicitly through b and x. Therefore,

dE,/dn = -2n 'Ej, + 3bn *{(3E,/3b), + (3E;/3x)y, (ax/3b)} , (18)
which leads to

dE /dn = E_/n + 3Ze?/2Dn%x % (19)
On eliminating b between Eqs. (16) and (17) we obtain

m2E2x3/hY + 3m?Ze’E,x2/DhY + {9m2Z%e*/4D%h* - 2mE,/h?}x

(20)

- 2mZe?/Dh? = 0 .
which tells us that x depends on n and b implicitly through E,. Therefore,
it is very easy to obtain the radius of the electron orbit when E_ = 0
(ef. Eq. (10))s &

X, = x(E, = 0) = 8Dh?/9Ze’m . (21)

1t follows from Egs. (17) and (21) that the quantum number for
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which E, =0 is the integer that lies most closely to n o, where
1/3
ny = (27/32y) (22)

In this last equation y = B/B, is the dimensionless field in units of
B, = Z%3m%c/D%*h3 = 2,35 x 105 T.

When B = 2.35 T Eq. (22) yields n,= 44 which agrees with
Garstang's numerical calculation(l) .

Upon using Eqs. (16) and (17), Eq. (19) can be rewritten as

dEn/dn = (flu}/Z) {1 + (1 - x/au)-i} 3 08 % < a, » (23)

which gives us the energy level spacing for each n and B. In the series
limit E, = 0 we obtain

(dEp/dn) (E, = 0) = 2hy (24)

which differs markedly from 0'Connell's prediction(® and from the Landau
spacing. Egs. (23) and (24) are completely rigorous and show that
0'Connell's assumptions, which lead to the actual experimental energy
level spacing, are not valid. Besides, when B = 2,35 T Eq. (24) agrees
with Garstang's numerical result (dE,/dn) (E =0 ) = 1.97 Ry.

In order to verify that our analytical results are correct, we
have calculated E, - E,_; numerically for B = 2,35 T and the results are
compared with those obtained using Eq. (23) in Table I.

TABLE 1
a b
n G, = . (dE_/dn)
40 2,.3798 2.3261
41 2.2762 2.2282
42 2.1835 2.1404
43 2,1003 2.0615
44 2.0254 1.9905
45 1.9579 1.9264
46 1.8969 1.8684
47 1.8416 1.8158

Table I. Energy level spacing in units of Aw for B = 2.35 T and zZ =1,
(a) numerical calculation, (b) Eqs. (17) and (24).
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4. (CONCLUSIONS

It was shown that the Bohr model does not predict the experimental
Zeeman resonances at the zerofield ionization threshold as suggested by
O'Cmuuﬂl(s) and the failure of his simplifying assumptions were made clear.

The model just discussed is an oversimplified picture of the
actual problem since the electron motion along the field direction is
completely neglected. Inclusion of such a motion is a quite difficult task
because the semiclassical equations are found to be non-separable. However
this is possible(s’g) using the Einstein-Brillouin-Keller quantization
theory(lo}.

In closing, we want to remark that the present prediction that
noylfaz 0.95 is quite similar to that obtained using the two-dimensional
JWKB method: noy'/? = 1.16(11+12)
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