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An analytical implicit expression fer the Zeeman resonances in
hydrogen at the zerofield ionizatlon threshold la obtained by means af the
semiclassical Bohr modelo Upon solving the semiclassical equations af
metian no approximation 15 mada that 15 not contained in the foundations
ai the modelo As a result, it 15 shown that the agreement between
previous theoretical calculations using the Bohr atoro and experiment 15
fortuituous and a consequence af invalid assumptions.

RESlf.lEN

Se obtiene una expreei6n analltic4 i~pl!cita para las ~esonAnciAs
Zeeman en hidr6geno en el Ulltbral de campo cero de ioniz,,".ciÓQ !"Isan4o el p:¡o_
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delo semicl~sico de Bohr. No se hace ninguna aproximación que no esté con
tenida en las bases del modelo al resolver las ecuaciones de movimiento se
miclasicos. Como resultado, se demuestra, que el acuerdo entre calculos
teóricos previos usando el átomo de Bohr y el experimento es fortuito y
consecuencia de suposiciones ilegítiroas.

1. INTROOOCflON

The Zceman effect in hydrogen is an oid quantum mechanicaI prob1em
,",'hichhas received a renewed attention because it is a useful model in
studying a number oí physical phenomena that are oí great interest nowadays.
Among them we can mention the magneto-optica1 properties of sornedopped
semiconductors, Rydberg atoms (¡.e. atoms with a high1y excited e1ectron)
in magnetic fields and properties oí the matter on the surface oí white
dwarfs and neutron stars(1,2). A simple approximate model to deal with
these phenomena is a hydrogenlike atom in a very strong magnetic fie1d. A
eornmon feature to a11 these problems is that the interaetion between the
eleetron and the field is larger than the Coulomb interaetion.

Sinee the stationary Schr&linger equation for the Zeeman effeet
in hydrogen is found to be non-separable, only approxUnate solutions ean
be obtained. To this end several methods have been tried, sueh as pertur-
bation theory, the Rayleigh-Ritz variational proeedure, the adiabatie
approximation and semielassieal methods. Comprehensive reviews on the
subject are avai1ab1e(l,2).

In 1969 Garton and Tomkins(3) investigated the quadratic Zeeman
effeet in the BaI absorption spectnun. Their measurement extended to
quantum numbers as high as n = 7S and they used a magnetic field of 2.4 T.
One of the JIDst striking features of the fascinating speetnun they obtained
is the existenee oí a series oí cr lines, extending across the zerofield
series limit into the eontinuUInJ with a regular spaeing of about I.S t1wJ
where w is the cye1otron frequency defined below. Obviously, the Landau
spacing fu.udces not ofíer a theoretieal explanation oí such experimental
observation. Sinee the speetnun is due to an electron in a highly exeited
energy level, it seems to be reasonable to~se thata semiclassiea1 study
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of the Zeeman effect in a hydrogenlike atoo! must be useful in understanding
it.

In fact, the Bohr atom and the Bohr-Somrnerfeld quantization rule
led to too first theoretical explanation of the quasi-Landau
resonances(1,4,S). Though this rnodel is a very rough approach to the
actual problcm, the predicted spacing bctween the energy levels appears to
agree closely with experimento The pullJOsc oí the present paper is to show
that such an agreement is fortuituous as it is a consequence oí invalid
assumptions. To this end thc Bohr atom in a magnetic ficId is discussed in
Sec. 2 and the suppositions that lead to the experimental quasi-Landau
spacing are criticized. The sem~classical equations oí motion are
rigorously solved in Sec. 3 and the predicted spacing is shown to be quite
different from that obtained previously(1,4,S).

We deem that the present treatment of too problem might be of
great pedagogical valuc fer undergraduate students since it dces not require
a large mathematical background and the model offers a nice physical
insight into the phenomenon. Besides, it is very instructive to realize
that sorne careless simplifying assumptions on a rough model may lead to a
strikingly accurate prediction. In addition to this, the Bohr atoro is in
many ways a more realistic model oí an atom than the isotropic oscillator
that has bcen recently used to illustrate sorne physical properties of atoms
in uniform magnetic fields(6).

2. TIIE BOHR ATCM AND lllE ZEE'oIANEFFECf IN HYDROGEN

The classical Hamiltonian for a hydrogenlike atoro with nuclear
charge Z is

H = p'/2m Ze'/Dr
(1)

where p : mV, m, V, e and r are, respectively, the electron classical linear
momentum,mass, velocity, charge and distance írem too coordinate origín,
and D is the dielectric constant oí the medium.

In too first approximation the electron IOOtion along the ficId
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direction is neglected and tOo electron is supposed to move along a
circular orbit in a plane perpendicular to tOo magnetic induction -a. This
situation occurs when the Lorcntz force FL •• eBv/c, the centripetal force
mv'/r and the Coulombforce Ze' /rte' obey tOo relationship

mv'/r • Ze'/rte' + eBv/c (2)

The allowed energies are given by Bohr-Sommerfeldquantization

condition

n == 1,2, ... , (3)

wOoretOo integral is over the whole circular path, h is too Planck constant
and JI • ji - eAlc. Since the vector potential "1. and the magnetic induction

~ are related through ~ = rot "l., tOon tOo left-hand side in Eq. (3) is

easily integrated by invoking the Stokes theorern. The result is

mvr _ eBr'/Zc = nh (4)

wOorefl = h/Zn.
If Eq. (4) is sol ved for v and the result is introduced into

Eq. (Z) tOo folloWÍllg relationship is obtained

r/a, + r" /4R" = n' (5)

where a, • fl'D/Zrne' and R • (cfl/eB)l are tOo Bohr and Landau radii,
respectively. The only possitive real root of Eq. (5) gives us the radius
of the only allowed electron orbit for each n and B valoos. It is very

easy to show that

liro r • n2ao
8-+0

lirn r • (Zn)lR
z-+O

(6)

(7)
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The semiclassical eigenvalues are obtained by introducing Eqs. (4)
and (5) into the c1assical Hamiltonian ftmction (1). A straighfotw.lrd
algebraic manipulation leads to

~(Z,B) • nheB/2mc+ e'B'r'/4mc' - Ze'/ZDr

where r is the possitive real root of Eq. (5). The semiclassical
eigenvalues, Eq. (B), fulfil

and

(B)

(9)

-,En(Z,B) • n E,(Z,b) b = Bn' (10)

Eq. (9) is exact in the sense that i t is also obeyed by the eigenvalues of
the quantum-mechanical Hamiltonian operator. 01 the other hand, Eq. (10)
is approximate and it has been verified experimenta11y(7). This equation
is very instructive because it clearly shows that high-field effects occur
at sma11er fields when large n values are considered. 80th Eqs. (9) and
(JO) fo11ow imnediately fran the change of variables r • ax where a • B-l
and a - n2, respectively.

At zero magnetic fi.eld Eqs. (5) and (B) yield exact1y the
eigenvalues of the isolated hydrogenlike atoo:

E (Z,O) = - Ze'/2Da,n'n

On the other hand, in the very large magnetic field liJnit we obtain

En(Z,B) • nhw - (hBe'Z/ZmncD)1+ 0111

(11)

(12)

where W • Be/mc is the cyclotron frequency. The leading tenn in Eq. (12)
gives us the celebrated Landau formula for the large-field energy level
spacing(l,2).
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In what follows we will obtain the energy leve! spacing in thc
ncighbourhood of thc ordinary series limit (E. O) prcdictcd by the Bahr
model according to thc treatment given in Reís. 1 and 5.

For largc TI valucs, the influence oí the magnetic fieId dominates
and thc eHect of the Coulomb field on the orbit radius is supposed to be
ncgligible. Thcrefore, if r in Eq. (S) is replaced by (Zn)lR we have(5)

En • nhw - (Z'e'B/SD'nhc)!

which leads to the following cnergy level spacing

(13)

(14)

The close agreement between Eq. (14) and thc experimental value
óE/~ , 3hw/Z(3) is striking. However, there is a mistake in the reasoning
given aboye. It inmediately follows fror.lthe condition En = O that B« n-'
(cf. Eq. (10)). Thereforc, if a rigorous power series in n-'/' for thc,
cncrgy is tried (as suggested by thc change of variables r = n'q in Eq. (5))
it is realized that every tcrm in the expansion is of the sarne arder
(O(n-')). This fact can be easily verified without any calculation by
noticing that E"(Z,B) ~ BnE,(Z/Bln'/', 1) (cf. Eqs. (9) and (10)). Due to
this, the truncation of the pü"~r series expansion leading to Eq. (13)
omits an infinite number oí terms which are no! negligiblc at al1. This
conclusion is supported by r~rstang's earlier remark(l) that a numerical
calculation for B = Z.4 T and En. O (n = 44) yiclds dE<;,/dn= 1.97 hw
instead of 1.5 bw.

It is surprising that a rigoTous algebraic manipulatían of the
scmiclassical equations oí motían has no! been tried. We will do this in
Sec. 3.

3. RIOJrotJS CALCULATION OF ll!E LEVEL SPACING AT Ea = O

Let us suppose that a hydrogenlike atoro is placed in a unifonn
magnetic ficId and that the cnergy level spacing En+l - En is rncasurcd in
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the ncighbourhood of En;;:;O. /In analytical exprcssion for the cnergy lC\'el
spaeing in terms of n and B is obtained by diffcreneiating Eq. (la) with
respect to n:

,,"'here

E,(Z,b) = ncb/Zmc + e'b'x'/4mc' - Ze'/ZDx

and x = r/n2 is the positive real root of

(15)

(16)

x/a, + b'e'x'/4e'fi' = 1 (Ii)

Clcarly, El depcnds on n implicitly through b and x. Therefore,

""hich leads to

(19)

On eliminating b bctween Eqs. (16) and (Ii) we obtain

m'Elx'/n' + 3M'Zc'E,x'/Dfi' + {9m'Z'e'/4D'fi' - ZmE,/fi'}x
(20)

- 2mZe'/IJI¡' = O

whieh tells us.that x depends on n and b implieitly through E,. Thercfore,
it is very easy to obtain the radius of the electron orbit whén En = O
(eL Eq. (la)):

x, = x(E, = O) = SDñ'/9Ze'm (21)

It follows frOM Eqs. (Ii) and (21) that thc quantum number for
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which El1;: O is the integer that lies JOOst closely to no, where

(22)

In this.Iast equation y = B/B, is the dimension1ess fie1d in units of
B, = Z'e'm'c/D'f¡l = 2.35 x 10' T.

IIhen B = 2.35 T Eq. (22) yie1ds n,; 44 which agrees with
Garstang's numerica1 ca1cu1ation(1).

!'ponusing Eqs. (16) and (17), Eq. (19) can be rewritten as

dEn/dn = (f¡w/2) {1 + (1 - x/a,)-l¡ (23)

which gives us the energy 1eve1 spacing for each n and B. In too series
limit En :::Owe obtain

(dEn/dn) (E, • O) = Zhw (24)

which differs markedIy fran O'Conne11's prediction(5) and from the Landau
spacing. Eqs. (23) and (24) are compIete1y rigorous and show that
O'Cormell's asstmlptions, which lead to the actual experimental energy
1eve1 spacing, are not va1id. Besides, wOOn B • 2.35 T Eq. (24) agrees
with Garstang's numerica1 result (dEn/dn) (En; O ) = 1.97 ñw.

In arder to verify that OUT analytical results are correct, we
have ca1cu1ated En - En_1 numerica11y for B • 2.35 T and the resu1ts are
compared with those obtained using Eq. (23) in Tab1e 1.

TABLE 1

n (E - E )a (dE /dn)bn n-1 n
40 2.3798 2.326141 2.2762 2.228242 2.1835 2.140443 2.1003 2.061544 2.0254 1.990545 1.9579 1.926446 1.8969 1.868447 1.8416 1.8158

Table l. Energy level spaCin9 in units ef hw for B ~ 2.35 T and Z _ 1.
(a) numerical calculation, (h) Eqs. (17) and (24).
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4. OlNCWSIONS

It was shoMl that the Bohr modeI does not predict the experimental
Zeeman resonances at the zerofield ionization threshold as suggested by

o'conreU(S) and the fai1ure of his siroplifying assLUTq:>tionswere made c1ear.
The mode1 just discussed is an oversirop1ified picture of the

actual problem since the electron motion along the fieId direction is
completely neglected. Inclusion of such a metían is a quite difficult task
because the semiclassical equations are found to be non-separable. l-bwever

this is possible(B,9) using the Einstein-Bri11ouin-Keller quantization
theory(10) •

In closing, we want to remark that the present prediction that
n,y1/' , 0.95 is quite similar to that obtained using the two-dimensional

1/' (11 12)JWKB method: n,y '1.16 ' •
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