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ABSTRACT

A numerical procedure is presented, yielding rapidly convergent
and stable eigenvalues for the anharmonic interaction KX¢ + Bx4, with
both positive and negative values of K and B. This non-perturbative meth
od consists basically of the diagonalization of a finite pre-established
Hamiltonian matrix, whose eigenvalue equation resembles the Schrodinger
equation. This method can also be used succesfully for other kind of po-
tentials. It is similar in some aspects to the Calogero's method to com-
pute eigenvalues of differential operators.

RESIEN

Se presenta una técnica numérica que produce eigenvalores esta-
bles y rapidamente convergentes para la interaccién anarménica kx2 + Bx*,
con valores tanto positivos como negativos de K y B. Este método no per-
turbativo consiste basicamente en la diagonalizacidn de una matriz hamilto
niana finita preestablecida, cuya ecuacidn de eigenvalores asemeja a la
ecuacidn de Schrodinger. Este método puede ser usado exitosamente para
otros potenciales. %In algunos aspectos es similar al método de Calogero
para calcular eigenvalores de operadores diferenciales.
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1. INTRODUCTION

In the past few years, a great deal of analytical and numerical
research on the calculation of the eigenvalues and eigenfunctions of the

Schrodinger equation for the quartic anharmonic interaction

V(ix) = sz + Bx4 . <o E N LW, (1)

have been carried out. Interest in this kind of potential has stemmed
from the fact that it is a simple, non-trivial nonlinear interaction
having applications in molecular physics and field theory. Several meth
ods have been applied to this problem by many authors.

(1)

bation series in temms of the parameter g for the ground state of the

Since the work of Bender and Wu'"’, who proved that the pertur-
anharmonic oscillator is divergent, perturbative-type methods have ex-
plored new approaches. Some of these recent technicues can be found in
Refs. 2-8. Parallel to this, other non-rerturbative methods have also
been applied to obtain approximate solutions of the Schrodinger equation
for the potential given in Eq. (1) (see for example Pefs. 9-1Y).

It is well known that this interaction represents different rhys
ical systems according to the location of the paraneters « and 8 on the
real line. We have the following three cases:

a) k>0, B > 0. These ranges give rise to the anharmonic oscil-
lator which has been widely studied in the past. In this case, most of
the work deals with analytical exnressions, or numerical quantities, for
the approximants to the energy eigenvalues.

b) k <0, B> 0. For these ranges we have the double well, an-
other confinement problem. It has been studied, among others, in Refs. 5,
16-19, where approximants to both eigenvalues and eigenfunctions are cal-
culated. It is found also that the energy spectrum has its lower eigen-
values bunched in pairs when the two minima of the potential are suffi-
ciently separated.

c) x>0, B <0. None on the papers mentioned previously, re-
port any explicit calculation for this non-confinement potential, but
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Chaudhuri and Mukherjee(lg), suggest a study through the stabilization
method(zo) and the renormalization series approach(17’21). On the other
hand, Flessas, Whitehead and Rigas(zz) have obtained a class of exact
solutions of the Schrddinger equation for the potential V(x) = sz +
Bx4, x>0, x>0, B <0, and have shown that the corresponc ng eigenval-
ues are continuous, however, they have cut off this potential for both
positive and negative values of x.

In spite of the great number of papers on anharmonic oscillators
the proceding remarks attempt to show that it may be desirable to have a
method that besides yielding accurate and rapidly convergent results for
cases (a) and (b) above, was able to deal with the anharmonic interactioa
(1) with x>0, B >0,

It this paper, a stable numerical procedure with these features
is presented. It will be seen in Sec. 2, that this method consists bas-
ically in the diagonalization of a finite, pre-established Hamiltonian
matrix (whose eigenvalue equation resembles the one-dimensicral Schrodin-
ger equation) which is fitted via an extremal property where the poten-
tial is involved. In Sec. 3, the results of diagonalization in cases (a)
and (b) are given. The eigenvalues yielded by this procedure are com-
pared with those calculated by other methods, and their stable nature in
shown. It is suggested that the proper values obtained in case (c) are
the approximants to the resonance energies of this non-confinement poten-
tial. This suggestion stems from the acceptable agreement of the lowest
eigenenergy obtained by this method for the model potential

5 x<0,

o =
=

V(x) = (2

=

i—xz exp(-xxzj, x>0
and those given by Hazi and Taylor(zo)for the resonance energies of this
problem. We conclude in Sec. 4 with a discussion of the main results

presented in this paper.
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2, THE METHOD

The method that we will describe in this section is based on
the suggestion made in a previous work related with the harmonic oscil-
lator(zs). In that paper, a discrete equation in a N-dimensional space
for the eigenvectors and exact eigenvalues of the linear oscillator is
obtained by replacing the usual position and momentum operators by fi-
nite matrices, obtained by truncating the infinite matrices for these
operators in the energy representation. Such eigenvalue equation has
the form

w2 N o (x5)
i zﬁ.j?k O 3 0 %) P V) 40 = Ep g0k, (3)

where i = 1,2,..,,N; n = 0,1,...,N-1; £' means the sum over the values
which make a non-null denominator; h is the modified Planck's constant;
m is the mass of the particle subject to the potential Vix) = %mmzxz;
the points X15Xo5 000Xy are the eigenvalues of the finite matrix repre-
senting the position operator (it turns out that, except for a constant,

they are also the N zeros of the N-th Hermite function); En is given by

(o + %) hu, O<nN-2

By = (4)
Nodon, n=N1 ;

and finally, ¢n(xi), i=1,2,...;N; are the components of the eigenvector

corresponding to En' It should be said that Eq. (3) is the representa-
tion of the Hamiltonian in the x-basis, where the elements pjk of the
finite matrix associate to the momentum operator are given by

01 5 1=k ;
pjl(= (5)

g i .
('&)Ws J#k ’
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where { stands for the imaginary unity. It is also shown in Ref. 23

that the points X]9Xgsene Xy satisfy the equation
N, 1. _ m dV(xi)
Ry s ©)
(xi -xj) 2 dxi

for all ;- This equation is the necessary condition for an extremal
property of these zeros: the function

ne N 1 N
Tr H{zl,zz,...,zN)=Tr H(z) = I ey @ V(z. ) i 7]

1, (25 -2))" 1]

where - LT, < takes a stationary value in z; = X;. It can be shown
that Eq. (7) (and therefore the extremal property) holds for certain pol
ynomical solutions of the Schrodinger equation, and that Tr H(x) is an
absolute minimum if V"(xi) > 0 for all X;- This fact makes plausible the
conjecture made in Ref. 23 about Egs. (3) and (6). In that paper it is
guessed that these equations are expected to hold for V(x) different from
the harmonic one. The guess comes from the resemblance of Eq. (3) with
the Schrodinger equation and from the physical meaning of the extremal
property of Tr H(z). One of the purposes of this work is to test numer-
icaly this conjecture for the potentials (1) and (2).

A glance at Eq. (3) shows that in order to handle it as an eigen
value equation, it is necessary to have determined the points X3 previ-
ously. This can be carried out by using Eq.(6). This is the major dif-
ficulty of the method from a numerical point of view. The nonlinear na-
ture of Eq. (6) makes difficult to get some information about the depen-
dence of its solution on the number N and on the parameters involved in
V(x). But, in principle, we can solve numerically this equation and ob-
tain the set of N(N # 2) points X3 which hereafter will be denoted by
x? and ordered as usual: XT < xg € e 2 xg. After the replacing of
these values in Eq. (3), we can diagonalize it and obtain the N eigen-
values and N elgenvectors wh1ch from now on will be denoted by EN and
@ (x) = (¢ (le, ¢ (xz),. .,¢ (xN) ) , respectively.

In order to be able to compare the numerical results yielded by
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this method for the potential (1) with those reported in the literature,
Eqs. (3) and (6) must be rewritten by putting h=m=1 and 2V(x) equal to
the right-hand side of Eq. (1). Hereafter we will bear in mind these
changes whenever we refer to those equations whith potential (1).

3. NUMERICAL RESULTS

It is not difficult to prove the following general properties
of Eqs. (3) and (6): If V(x) is a symmetric function, the points x? are
symmetrically located around the origen and Eq. (3) has solutions of de-
finite symetry, {.e., ¢§(-x) differs from ¢§(x) at the most by a change
of sign, if the points x? has been properly ordered. More properties of
the solutions of Eqs. (1) and (6) in the specific case of potential (1)
will be described numerically in this section. Before continuing, let us
make a remark on the computer technique used to obtain such solutions.
Newton's method was used to solve Eq. (6) and the iterations were stopped
when the maximum difference of two consecutive iterative values of points

x? was less than 10 1°,

Such approximation gave as a result that Eq. (6)
was satisfied at least within eleven significant figures among all the
values of «and Bconsidered. This is not a good approximation but eigen
values in good agreement with those reported in the literature can be ob-
tained by diagonalizing the Hamiltonian involved in Eq. (1) as shown in
the following

A. k>0, B>0

First of all, it should be noticed that there will be no lack of
generality in our results if x is constrained to be 1 for the present (a
simple scaling is enough to recover « > 0, k arbitrary). For this value
of k, 1t is possible to find a solution of Eq. (6) for B lying in [0,1000]
and for N=2,3,...,35. Numerical work gives evidence of the existence of
solutions for larger values of 8 and N.

As expected, the points x?(l,ﬁ) were found to be symmetrically
located around zero. It turns out that !x;(l,s)ﬁ, with fixe! N and
i=1,2,...,N, is a very rapidly decreasing function for small B whereas
for large B, it decreases very slowly as illustrated in Fig. 1 where the
fifteen positive ponts x?, corresponding to N=30, are plotted against the
anharmonic parameter f.
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Fig. 1. Plots of the fifteen positive points x¥, i=16,17,...,30, used to
fit the Hamiltonian matrix whose diagonalization yields approxi-
mants for the eigenvalues of the anharmonic oscillator V(x)=x2+Bx4
(0 < B <10), against B.

Once the points xN have been calculated we replace them in Eq. (1)
in order to solve for the proper values E and eigenvectors ¢N(x) When
the resultant eigenvalues are arranged in increasing order for different con
secutive values of N, we obtain a family of sequences that rapidly converge
to stable values of Ei for n fixed. However, a spurious eigenenergy, {.e.,
a non-stable eigenvalue that does not correspond to any energy sequence, al
ways appears among the N eigenvalues in every diagonalization. Its numeri-
cal value depends on N and it can be identified very easily. It plays the
same role as the eigenvalue Ey ;= [ (N-1)/2]hw of the harmonic oscillator
[see Eq. (4)].

The number N for which the stable value (up to 15 figures) of Eﬁ
is attained depends on n and B. For instance, if B=1, Eg is stable for N=13
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whereas Eg is stable for N220; N=35 yields stabilized values for the
first twenty-three eigenvalues. Fig. 2 illustrates the fast stabilizat-
ion of the nine first eigenvalues as functions of N. Table I shows the
stable ground state energies found for several values of B compared with

those calculated by Biswas ez.at.(14), who used the Hill determinant tech
35
7 ’
calculated for some values of the anharmonicity, compared whit those ob-

tained in Ref. 14. In Table III, the first twenty levels obtained for
£=1000 and N=35 are shown.

nique. In Table II we present the excited energy levels Egs and E

Lizs T T T T T T T
e E;g "
& s
€. =
J
Loms + €o K= L0 .
€ B = o=z
| € €a
€ i Los . 5 es T i
: & »
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o.87s 1 1 L 1  J 1 a :
2 - e s 10 12 14

Fig. 2. Fast stabilization of the nine lowest approximants to eigerener-
gies for the anharmonic oscillator V(x) = x2 + 0.2 x4, calculated
by the present method. The plots are those of the ratios €. =
E?/E%5 against parameter N, for 320,10 veyBa J
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TABLE 1
8 EO(SS) EO(Bis)

G.2 1.118 292 654 367 03 1.118 292 654 367 03
0.4 1.204 810 327 372 50 1.204 810 327 372 49
0.8 1.337 545 208 148 17 1.337 545 208 148 17
2 1.607 541 302 468 54 1.607 541 302 468 54
10 2.449 174 072 118 38 2.449 174 072 118 38
50 4.003 992 768 277 62 4.003 992 768 277 62
60 4.243 081 446 423 64 4.243 081 446 423 64
100 4.999 417 545 137 59 4.999 417 545 137 58
500 8.461 642 629 081 18

+000 10.639 788 711 328 0

Table I. Ground state energies (in a.u.) of the anharmonic oscillator
for several values of the anharmonicity. E 35’ are the stable
values yielded by the present method and E(PiS) are those ob-
tained by Biswas ef.af., (see Ref. 14).

On the other hand, it is found that, as expected, tie eigenvec
tors ¢§(x) have a definite parity: their components satisfy

e = GOV ) L ne0,1,0 8,

where —xN is also an element of the set of points satisfying Eq.(6). Be-
sides, tie linear 1nterpolat10n of the components ¢ (x Yoo T5L a2 o N
denoted from now on by £{¢ ), has exactly N-1-n nodes Fig. 3 shows
£0637), £(43°) and £(43%), obtained for B=0.1.

Two interesting features of this interpolating process can be
pointed out. The flrst is the way in which it depends on N. The plots
of £{¢0 ) and £(¢0 ) shown in Fig. 4 illustrate this dependence. The
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TABLE II

8 E3(35) Es(Bis] E7[35) E7(Bis]
3 17.859 316 502 141 4 17.859 316 48.073 337 128 514 4 48.073 337
6 22.009 467 099 122 2 22.009 467 59.743 658 359 573 8 59.743 658
9 24.965 808 107 073 2 24.965 808 68.006 918 953 755 0 68.006 918
10 25.806 276 215 055 6 25.806 276 70.351 0SI 939 234 6 70.351 051
50 43.321 550 474 406 9 43.321 550 118, 953 883 032 244 118.953 88
100 54.385 291 571 603 1 54.385 291 149. 545 657 443 288 149.545 65
500 92.620 596 454 251 5 255. 092 750 615 571

1000 116. 603 198 937 293 321. 244 760 274 354

Table II. Third and seventh excited energy levels (in a.u.) of the anharmonic oscillator for some values

of parameter B. (35
obtained by Biswas ef. af.,

are the eigenvalues calculated by the present method and E (Bis)
(see Ref. 14).

are those
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TABLE TT1
5 Ejss ; Ejss
0 10.639 788 711 328 04 10 502.886 399 284 715 7
1 38.086 833 459 382 28 11 567.686 243 636 189 9
2 74.681 404 200 164 81 12 634.394 242 871 855 2
3 116.603 198 937 293 1 13 702.906 871 196 509 9
4 162.802 374 196 975 3 14 773.133 614 216 448 3
5 212.594 183 409 734 3 15 844,994 531 747 478 9
6 265.519 951 678 280 2 16 918.418 407 996 414 7
7 321.244 760 274 354 6 17 993.341 319 846 245 1
8 379.511 311 178 728 8 18 1069.705 509 825 030
9 440.114 532 233 655 5 19 1147.458 485 682 109

Table III. The first twenty energy levels of the anharmonic oscillator
calculated by the present method for B=1000 with N=35.

envelopes of these curves become smoother as N is increased and in the
case of 8= 0 (harmonic oscillator) the unnormalized ground state wave
function can be fitted pretty well with the envelope of f(¢ ) The sec
ond is the resemblance of the 1nterpolat10n1[(¢ 2]to the square of the
n-th elgenfunctlon of the harmonic oscillator. In Fig.5 we nlot‘ﬂ(¢ ) ]
£[(¢l J% and f[(¢35)2] obtained for two different values of B. The de-
pendence of these interpolations on is also illustrated in this figure.
i 3 £K¢ ) ] approximates the square of the wave function (as suggested by
the B= 0 case) then, from Fig. 5 it is clear that the confinement of the
particle is greater for large A. This confinement incresases rapidly if

B is small and slowly if B is large.
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Fig. 3. Linear interpolation L(¢.”) of the first three eigenvectors ®.7,
yielded by the present method for the anharmonic oscillator V(X) =
x2 + 0.1 x4,
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Fig. 4. Dependence on the parameter N of the linear interpolation £(¢>N)
of the first eigenvector ¢N obtained by the present method for
the anharmonic potential V(x) = x2 + 0.2x4, with N=15 and N=35.
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Fig. 5. Linear interpolations L'[(dJ:?S}z] of the vectors formed by the squar
ed components (¢35) of the first three corresponding eigenvectors
*1’%5 obtained for)the anharmonic potential V(x) = x2 + Bx? by the
present procedure for B=0.0 and B=1000.
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In this case, parameter £ will be constrained to be 1 and © will
be allowed to lie in [-100,100}. Tt is possible to find solutions of
Eq.(6) for several values of N in the whole range of «. The plots of

the fifteen positive functions fo{<,1) shown in Fig. 6 suggest the ex-
istence of solutions for larger values of «.

T T T T T T T T I T  § T T T T T T L] X

a8

-

&

s
X

a

3

2

!

o

100 -s0 o s0 fete)

Tig. 6. Plots of the fifteen positive points x?, i=16,17,...,30, used teo fit

the Hamiltonian matrix whose diagonalization yields approximants
for the potential V(x)=xx2 + x4 (-100 €k < 100), against .
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Table IV shows the stable eigenvalues Eis, n=0,1,2,3, calculated
for various values of x and compared with those obtained by Chan and Stel
1man{24), Chaudhuri and Mukherjee(lg) and Killingbeck(l7). Table V exhib
its the eigenvalues Egs and E?S yielded by this method for the potential

O 4 1
V(x) = -x" + Ax * g3 (8)

ith some values of A They can be checked with those calculated by Banerjee
and Bhatnagartlﬁ).

The characteristic feature of this kind of potentials is shown
in Tables IV and V: the lower eigenvalues are associated in very close
pairs when the two minima are sufficiently separated, i.e., whenk < < 0
[» < < 1 in potential (8)]. It turns out that for this k interval the
lower cigenstates do not exhibit tunneling; this effect is present in cer

tain range of x close to zero, as can be appreciated from Fig. 7.

C. >0y B< 0

If « and B are allowed to move in the positive and negative
semiaxes, respectively, (1) becomes a non-confinement potential: it has
two symmetrical maxima around zero and then it goes to minus infinity
when |x| is increased and therefore, it can not be considered as a model
potential for physical problems, but it can be worked out to illustrate
some aspects of the present method. Parameter « will be constrained to
be 1.

When @ is decreased, the maxima become sialler and, along with
this, the number of possible resonant nseudostates should diminish. There
fore, a critical 8 should be expected to exist such that no pseudostate
could be found for B smaller than this value.

If we are interested in studying via this method the limit values
of g for which only few pseudostates are permitted, we have to take N small
and to look for solutions of Eq. (6). The minimal g can be found by this
way and, as expected, it increases negatively as N is decreased. Approxi-
mate values to the minimal ones are -0.005 and -0.011 for N=30 and N=16
respectively. Table VI shows the first eigenvalues obtained for an extrem
al and common Bwith N=2,3,4,.
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TABLE 1V

= B g g

0 1.060 362 090 484 197 1.060 362 63
3.799 673 029 801 397 3.799 675 46
7.455 697 937 986 741 7.455 702 48
11.644 745 S11 378 16 11.644 750 2
=1 0.657 653 005 180 715 g 0.658
2,834 536 202 119 305 2.835
6.163 901 256 963 070 6.164
10.038 646 120 711 58 10.032
-10 -20.633 576 702 947 80 §E 4% o 5 @ ~20:633 576 7
-20.633 546 884 404 91 -20.633 546 8
-12.379 543 786 013 30 ~12.378 543 7
-12.375 673 720 705 61 -12.375 673 B
-100 -2485.867 880 342 076
-2485.867 880 342 075
-2457.643 822 698 833
-2457.643 822 698 833

Table IV. The first four eigenvalues for the double well sz - x4 with
some values of K. E are the stable values calculated by the
present method and ECS, ECM, and EK are those obtained by Chan
and Stellman (see Ref. 25), Chaudhuri and Mukherjee (see Ref.
19), and Killingbeck (see Ref. 17), respectively. All of these
values are given in a.u.

If we put N=2, Eq. (6) can be solved only if £>-1/8. When the
equal sign holds, the nonstable approximant (9 /2 + 2)/8 to the ground
energy level can be obtained. The agreement of the results yielded by
this procedure in cases A and B with those calculated by other methods
and the continue nature of the igenvalues obtained in the present case
(thet tend to those given by Eq. (4) as 8 goes to zero), suggest that

8 = -1/8 as in approximate value to the real minimal bound of parameter
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TABLE V
35 ) BB
. 25 Eg
55 BB
El El
0.01 1.404 048 605 297 706 1.404 048 605 297 7
1.404 048 605 297 707 1.404 048 605 297 7
n.03 1.382 601 444 053 782 1.382 601 444 053 8
1.382 605 783 831 367 1.382 605 783 831 4
0.07 1.323 274 074 208 5292 1.323 374 074 208 5
1.343 365 616 287 377 1.343 365 616 287 4
0l 1234 507 162 78673 15 1.2%4 507 162 786/ D
1.346 940 868 922 550 1.346 940 868 922 5
0.2 0.941 750 342 076 866 0.941 750 342 076 9
1.535 530 204 085 822 1.535 530 204 085 8

%This eigenvalue differs from that given in Ref. 16 by the fifth signifi
cant figure. However, that particular stable value was always obtained
by this procedure for different values of N.

Table V. The first two eigenvalues_for the potential e e G 1/4X
with some values of . E are the stable values calculated by
the present method and EBB are those obtained by Banerjee and
Bhatnagar (see Ref. 16). All of these values are given in a.u.
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-4 = -2 - =} <
Fig. 7. Linear interpolations ‘E;[ c:J ) ] of the wvectors formed by the
squared components (¢ of the first corresponding eigenvector
??5 obtained by the present method for the double well V(x)=Kx?2 +
sith K = =2, =5, =10

R in the Schrddinger Equation. This suggestion is reinforced by testing
the procedure for other non-confinement potential, used to model the elas-
tic scattering phenomena: we choose that given in Eq. (2) and worked out
by Hazi and Taylor[zg). This potential has a barrier whose size decreases
when A is increased, giving way to the occurence of only few resonances
for suitable A.

We find numerically that a maximal value of A exists in this case.
It is obtained with N=2 and its value is approximately 0.295. Table VII
shows the first two nonstable eigenvalues calculated for some values of X
with N=2,3 and compared with those reported in Ref. 20. These numbers arec
not much f{ortunate, but, before something about this approximation can be
said, the following points should be considered. First, the selected val-

ues of A make the potential a difficult one to deal with, however, to ob-
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TABLE VI

N =2 N=3 N =4
L'B 0.981 840 0.930 280 0.937 817
L\]J 2.821 050 2.273 847
gl 4.366 091

Table VI. Approximants EY (in a u.) for the first two eigenvalues of the
potential V{x) = x2 + £x% with B = -0.07, yielded by the pre-
sent method.

tain those values of Eé (or ES} it is sufficient to diagonalize a simple
2 x 2 (or 3 x3) matrix. Second, the proper instable nature of these
eigenvalues makes themselves poor approximations to the real ones. Never
theless, these results suggest that the above discussion about the eigen-
values of the Schrddinger Equation for interaction (1) with £ < 0 and the
minimal bound for this parameter, makes sense.

4. FINAL REMARKS

As shown in Sec. 3, the technique presented in this paper yields
good approximants for the eigenenergies and eigenfunctions of nontrivial
problems: by the very simple diagonalization of, €.g., certain 3x3 matrix
an acceptable approximation to the ground energy level of some complicat-
ed potentials can be obtained, and if a greater accuracy and/or more eigen
values are desired, the diagonalization of a matrix of suitable order
yields this at once. Besides, the linear interpolations of the correspon
ding eigenvectors yield the expected form of the eigensolutions of the
Schrddinger Equation. Thus, the numerical results shown in Sec. ITI sug-
gest that Eq. (3) can be considered in some sense as the proyection of
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TABLE VII

2 3 T
A B By EB
0.125 0.461 986 0.465 602 0.472 940
0.15 0.452 035 L 0.466 105
0.19 0.433 281 o 0.453 536
0.225 0.412 441 oL 0.441 333

Table VII. Comparison of the first approximant Eg yielded by the present
method for the potential studied by Hazi and Taylor and the
resonant energies EgT obtained by them for extremal values of
A (see Ref. 20). These values are in a.u.

the Schrédinger Equation on a finite dimensional space for some potentials,
and Eq. (5) as the representative of the differential operator - (hd/dx.

Recently, F. Calogero has introduced a method to compute the eigen
values of differential operators(ZS’ZG). The procedure presented in this
paper is similar to Calogero's technique: both are based on the substi-
tution of the differential operator d/dx by a finite matrix with non-dia-
gonal elements given by Eq. (5). They have, however, two different featu-
res: the matrix to be diagonalized is Hermitian and the initial conditions
are, apparently, absent in the method outlined in Sec. 2.

The aim of future work will be to search for the relatioabetween
the initial conditions and Ec. (6), and for the theoretical justification

of this technique.
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