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ABSTRACT

A numerical procedure is presented, yielding ra~idly convergent
and stable eigenvalues for the anharmonic interaction KX + Bx4, with
both positive and negative values of K and B. This non-perturbative met~
od consists basically of the diagonalizati?n of a finite pre-established
Hamiltonian matrix, whose eigenvalue equation resembles the Schrodinger
equation. This method can also be used succesfully for other kind of po-
tentials. It is similar in sorneaspects to the Calogero's method to com-
pute eigenvalues oi differential operators.

RESI1 lEN

Se presenta una técnica numérica que produce eigenvalores esta-
bles y rápidamente convergentes ?ara la interacción anarmónica KX2 + Bx4,
con valores tanto positivos como negativos de K y B. Este método no per-
turbativo consiste básicamente en la diagonalización de una matriz hamilto
niana finita preestablecida, cuya ecuación de eigenvalores asemeja a la -
ecuación de Schrodinger. Este metodo puede ser usado exitosamente para
otros potenciales. En algunos aspectos es similar al metodo de Calogero
para calcular eigenvalores de operadores diferenciales.
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1 . I~'TRODULTIO;':

In tllC past few years, a grcat deal oC analytical and nur.lCrical

researen on the calculation of the ei~envalucs aod ci.senfunctions of the
Schrodinger cquation £ay the quartic anharmonic interaction

V(x) 2 4KX + Bx _00 < x < 00 • (1)

have been carried out. Interest in this kind of potential has stemrned

from the faet that it is a simple, non-trivial nonlinear interactioo
having applications in molecular physics and field theor)'. Several meth

ods have becn applied to this problcm by nk1.ny authors.

Since the work of Bender and l~Ü(l). who proved that the pcrtur-

batian series in tenns of rhe I);Jr;uncter G £01' rhe ground state of rhe

arularmonic osciIlator is divergent, perturbativc-type mcthods have ex-
plaTed ne~ approachcs. So~ of thcse recent tpchni0ues can be found in

Refs. 2-8. Parallel to this, other nO'l-rerturb?tivf' r.lCthoJs have also

bcen applied to obtain approximate solutioTls of the Schro'din£er cauatian

for the potentifll given in Eq. (1) (scc for ex,~lrle refs. 9-l~').

It is \\Iell known that this interaction rcrresents different ~ily~
ical s)'stens according to the Iocation of the paranctcrs K and 6 on the

real lineo h'e have the following three cases:

a) K> 0,6> O. These ranges give rise to the anharnonic oscil-

lator which has hecn widel)' studied in the pasto In this case, mast of

the work deaIs with analytical exnrcssions, or numerical quantities, for

the approximants to the energy eigenvaIues.

b) K < O, B > O. For these ranges we have the double \~'ell, an-

other confinement problem. It has bcen studied, aIOOngothers, in Refs . .s,
lb-19, where approximants to both cigenvalues and cigcnfunctions are c3l-

culateJ. It is found aIso that thc cnergy spectrum has it5 lower"cigcn-

values bunched in pairs when the two minim3 of the potential are suffi-
cientl)' separated.

c) K > O, B < O. ~one en the papers ~ntioned previously. re-

port any explicit calculation for this non-confinement potential. but
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Chaudhuri and ~IDkherjee(19J, suggest a study through the stabilization
method(20J and the renormalization series approach(17,lIJ. On the other
hand, Flessas, "hitehead and Rigas(22) have obtained a class of exact
solutions of the Schrodinger equation far the potential V(x) KX2 +

Bx
4
,x> 0, K'>O, 8 < O, and have shown that the corrcsponL'ng eigenval-

ues are continuous, hOv.'ever, they have cut off this potential far both
positive and negative values of x.

In spite of the great number oC papers on anhanmonic oscillntors
the proceding remarks attempt to show that it may be dcsirable to have a
rnethod that besides yielding accurate and rapidly convergent results far
cases (a) and (h) aboye, was able to deal with thc anharmonic interactio,
(1) with 00, 8 >0.

It this paper, a stable numerical procedure with these [catures
is prcscnted. It will be seen in Sec. 2, that this method consists bas-
ically in the diagonalization of a finitc, pre-estahlished Hamiltonian
matrix (l\noseeigenvalue equation resembles thc one-dimensional Schro'din-
ger equation) which is fitted v~a an extremal property where the poten-
tial is involved. In Seco 3, the results of diagonal ization in cases (a)
and (b) are given. The eigenvalues yielded by this proccdure are com-
pared with those calculated by other methods, and their stable nature in
ShOWTI. It is suggested that the propcr values obtained in case (e) are
the approximants to the resonance energics of this non-confincment poten-
tial. Tnis suggestion stems from the acceptable agreement of the lowest
eigenenergy obtained by this method for the model potential

1 2IX
Y(xJ

1 l l"2 x exp[-Ax J, x>O

(2;

and those given by Hazi and Taylor(20) for the resonance energies of this
problem. ~e conclude in Sec. 4 with a discussion of the main results
prespnted in this papero
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2. 11iE ME'lIDD

The method that we will describe in this section is based on
the suggestion marle in a previous work related with the harmonic 05ci1-
lator(23). In that paper, a diserete equation in a N-dimensional space
far the eigenvectors and exact eigenvalues oí the linear oscillator is
obtained by replacing the usual position and momentum operators by fi-
oite matrices, obtained by truncating the infinite matrices far these
operators in the energy representatían. Such eigenvalue equation has
the fonn

h2 N- ['
2m j ,k

~n(Xi)

-xkJ(xk -xj) + V(x.) ~ (x.)
1 n 1 (3)

where i = 1,2, ...,N; TI = 0,1, ...,N-l; r' means the sum aYer the values
which make a non-null denominator; h is the modified Planck's constant;
m is the mass of the partiele subject to the potential V(x) = 1mw2x2;
the points xI,xZ"",xN are the eigenvalues oí the firrite matrix repre-
senting the position operator (it turns out that, except for a constant,
they are a1so the N zeros of the N-th Hermite function); En is given by

r (n + t) hw• ()<no;N-2
E

(4)n
N - 1 hw, N-I-y- n =

and finally, ~n(xi)' i=1,2, ... ,N, are the components of the eigenvector
corresponding to En. It snould be said that Eq. (3) is the representa-
tion of the Hamiltonian in the x-basis, where the elements Pjk of the
finite matrix associate to the momentum operator are given by

j k

(S)
j I k
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where { stands far the imaginary unity. It is a150 shown in Reí. 23
that the points xl,x2""J~ satisfy the equatían

N
j~l 1 m

_x.)3 = 2h2
J

dV(x.)
1

dxi
(6)

far all x .. This equatían i5 the necessary condition far an extremal
1

property oí these zeras: the funetían

1
2-z. )

J

N
+ ¿'V(z.).. 1'.J

(7)

where - <Xl < Z. < 00, takes a stationary value in z. = x" It can be shm.¡n
1 1 1

that Eq. (7) (and therefore the extremal property) holds for certain pol
ynomical solutions of the Schrodinger equatían, and that Tr H(x) i5 an
absolute minimum if ~'(xi) > O for all Xi' This fact makes plausible the
conjecture made in Ref. 23 about Eqs. (3) and (6). In that paper it is
guessed that these equations are expected to hold for V(x) different from
the harmonic one. The guess comes from the resemblance of Eq. (3) with
the Schrbainger equatían and from the physical meaning of the extremal
property of Tr H(z). One of the purposes of this work is to test numer-
icaly this conjecture for the potentials (1) and (2).

A glance at Eq. (3) shows that in arder to handle it as an eige~
value equatían, it is necessary to have determined the points xi previ-
ously. This can be carried out by using Eq.(6). This is the majar dif-
ficu1ty of the method from a mnnerical point of view. The nonlinear na-
ture of Eq. (6) makes difficult to get sorneinformation about the depen-
dence of its solution on the numher N and on the parameters involved in
V(x). But, in principIe, ~ can solve numericalIy this equation and ob-
tain the set of N(N ~ 2) points x. which hereafter will be denoted by
N N N' N .Xi and ordered as usual: Xl < Xz < .00 < xN0 After the repIac~g of
these vaIues in Eq. (3), we can diagonalize it and obtain the N eigen-
vaIues and N eigenvectors which from now en will be denoted by ~ and
N . N N) N( N) N( N .~n(x) = (~n(xl • ~n x2 •.•.'~n xN) ) • respect1vely.

In order te be able to compare the numerical results yielded by
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this met~odfor the potential (1) with those reported in the literature,
Eqs. (3) and (6) must be rewTitten by putting h=m=1and 2V(x) equal to
the right-hand sirle of Eq. (1). Hereafter we will hear in mind these
changes whenever we refer to thosc equations whith potential (1).

3 . NU1'IER1CAl. RESUl. TS

It is no! diíficult to prove the following general properties
of Eqs. (3) and (6): If V(x) is a sYlIJnetric FlIDction, the points x~ are
s}1'JiiCtrically located aroLrrld thc origen and Eq. (3) has solutions oí dc-
finite symnetry, ~.e., ~~(.x) differs from ~~(x) at the most by a change
of sign, if the points x~ has becn proper1y orden'u. ~lore properties of
the solutions of Eqs. (1) and (6) in the specific case of potential (1)
will be uescribed numerically in this section. Befare continuing, let us
~~ke a remark on the computer technique used to obtain such solutions.
:;c"ton's r.et~od was used to salve Eq. (6) and the itcrations were stopped
when t~e maximum difference of two consecutive iterative values of points
x~ was less than 10.15. Such approximation gave as a result that Eq. (6)
~as satisfied at least within eleven significant figures among all the
values of K and B considereu. This is not a good approximation but eige!!
values in good agreement with those reported in the literature can be ob-
tained by diagonalizing the Hamiltonian involved in Eq. (1) as shown in
the following
Á. K > O, B > O

First of al1, it ~~ould be noticed that there will be no lack of
generali ty in our rcsul ts if 1( is constrained to be 1 far the present (a
5in~\le scaling is enough to recover K> O, K arbitrary). ~or this value
of K, it is possible to find a solution of Eq. (6) for B Iying in 10,10001
and [or N=2,3, ... ,35. Numerical work gives evidence of the existence of
solutions for larger values of B and :-.J.

As expected. the points X~(l,B) were faund to be symmetrically
located arolIDd zero. It tums out that I";(I,B)I, with fix"l N and
i=I,2, ...•N. is a very rapidly decreasing functian fer s~11 B whereas
far large B. it decreascs very slowly as il1ustrated in Fig. 1 where the
Eifteen positive ponts xi, correSI~ndine to N=30, are plotted against the
anhanmonic pararneter B.
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Fig. l. Plots oi the fifteen positive points x~, 1=16,17, ...,30, used to
fit the Hamiltonian matrix whose diagonalization yields approxi-
mants for the eigenvalues of the anharmonic oscillator V(x)=x2+8x4
(O < B r;;;; 10), against B.

Once the points x~ have beeo calculated, we replace them in Eq. (1)
in arder to salve far the proper values E~ and eigenvectors 4J~(X). h'hen
the resultant eigenvalues are arranged in increasing arder fay different con
secutive values of N, we obtain a family oE sequences that rapidly converge
to stable values of E~ fay n fixed. However, a spurious eigenenergy • .(.e..,

a non-stable eigenvalue that does not correspond to any energy sequence, al
ways appears arnong the ~ eigenvalues in everf dia~onalization. Its numeri-
cal value depends on N and it can be identified vcry easily. It plays the
same role as the eigenvalue !1I-l= [(N-l)/2]hw of the hannonic oscillator
Isee Eq. (4)J.

The number N for which the stahle value Cup to 15 fir,ures) of t~
is attained depends on n and B. For instance, if 6=1, FÓ is stable for ~;;?:13
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whereas E~ is stable for N~O; ~=35 yields stabilized values for the
first twenty-three eigenvalues. Fig. 2 illustrates the fast stabilizat-
ion oE the nine first eigenvalues as functions DE N. rabIe 1 shows the
stable ground state energics found for several values of 8 campa red with
those ealculated by Biswas tt.al. (14), who used the Hill dete~inant tech
nique. In rabIe 11 we present the excited energy levels E~5 and E~S,
ealculated for sorne values of the anharmonicity. compared whit those ob-
tained in Ref. 14. In rabIe 111, the first twenty levels obtained for
B=IOOO and ~=35 are shown.

,..
"

'0•••
O.• 7S

1.lze

1.10 EN
E:J•

J

£•• El~
J

I.O~ (o
K' '.0
J3 . o."

• £e (, E:.E: 1.05
.1

1.02.0

0.00

N

Fig. 2. Fast stabilization of the nine lowest approximants
gies for the anharmonic oscillator V(x) = x2 + 0.2
by the present method. The plots are those of the
E~/E~5 against parameter N, for j=O,1, ...,8.
J J

to eigertener-
x4, calculated
ratios £.

J
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TABLE I

6 E (35) E (Bis)
o o

G.2 1.118 292 654 367 03 1.118 292 654 367 03
0.4 1.204 810 327 372 50 1.204 810 327 372 49
0.8 1.337 545 208 148 17 1.337 545 208 148 17
2 1.607 541 302 468 54 1.607 541 302 468 54
10 2.449 174 072 118 38 2.449 174 072 118 38
50 4.003 992 768 277 62 4.003 992 768 277 62
60 4.243 081 446 423 64 4.243 081 446 423 64
100 4.999 417 545 137 59 4.999 417 545 137 58
500 8.461 642 629 081 18
;000 10.639 788 711 328 O

Table l. Ground state energies (in a.u.) oE the anharmonic oscillator
for several values oE the anharmonicity. E(35) are the stable
values yielded by the present method and E(bis) are those ob-
tained by Biswas U.al .. (see Ref. 14).

On the other hand, it is found that, as expected, t:1C eigenvec'
tor5 ~~(x) have a definite parity: their components satisfy

n=O,l, ... ,N-l,

"."here-x~ is al50 an eIernent of the set oC points satisfying Eq. (6). Be-
sirles, the linear interpolation oC thc components <pN(x~), j=l ,2, ... ,N,

N n Jdenoted from now on by £(~ ), has exactly N-I-n nades. Fig. 3 shows
35 35 35 n .£(~O ), £(~I ) and £(~2)' obtamed for 6=0.1.

Two interesting fea tu res of this interpolating process can be
pointed out. The first is the way in which it depends on~. The plots
of £(~65) and £(~~5) ,ho.TIin Fig. 4 illustrate this dependence. The
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TABLE 11

6 E (35) E (Bis) E (35) E (Bis)'3 3 7 7

3 17.859316502 141 4 17.859 316 48.073 337 128 514 4 48.073 337
6 22.009 467 099 122 2 22.009 467 59.7436583595738 59.743658
9 24.965 808 107 073 2 24.965 808 68.006 918 953 755 O 68.006 918
10 25.806 276 215 055 6 25.806 276 70.351 051 939 234 6 70.351 051
50 43.321 550 474 406 9 43.321 550 118. 953 883 032 244 118.953 88
100 54.385 291 571 603 1 54.385 291 149. 545 657 443 288 149.545 65
500 92.620 596 454 251 5 255. 092 750 615 571
1000 116. 603 198 937 293 321. 244 760 274 354

Table Ir. Third and seventh excited energy levels (in a.u.) oi the anharmonic oscillator for sorne values
of parameter B. E(35) are the eigenvalues ealculated by the present method and E(Bis) are those
obtained by Biswas et. al., (see Ref. 14).
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TABL[ [11

J [55 j E.35J J

O 10.639 783 711 328 04 10 502.336 399 284 715 7
I 33.086 333 459 382 28 11 567.686 2..t3 636 189 9
2 74.681 404 200 164 81 12 63.1.39..t 2.12 871 355 2
3 116.603 193 937 293 I 13 702.906 871 196 509 9
4 162.802 3f.t 196 975 .i 14 773.133 614 21ú 443 3
5 212.594 133 409 734 3 15 344.994 531 /.17 -liS 9
b 265.519 951 673 230 2 16 918.418 407 996 414 7
7 321. 244 7ÚO 274 35-1 ti 17 993.341 319 346 245
3 379.511 31 I 173 728 8 18 1069.705 509 8'- 030.,
9 440.114 532 233 655 , 19 1147.453 485 632 109

Table II!. The first twenty energy levels of the anharmonic oscillator
ealculated by the present method for 6=1000 with N=35.

('nvelopes of thcsc curves hccornc 511100thc1' as N is incrcased and in the
case ofB = O (hanoonic oscillatorl the LUlnonmli:cd grOlmd statc wave
fWlction can be fitted pretty ,,'ell with the envelope of I(~35). The sec

ond is the resemhl.:mcc of the intcrpolation.c[(<p~)1 to the s~uare of the
n-th cigenflll1ction of the harmonic o5cillator. 7n Pig.S",,'c fll0t£{(~~5)2J.

I[ (~f5r1 and I[ (~~5)2J obt"ined for two different ""Iues of 8. 11,e de-
pcndcncc cf these intcqlOlations on is also illllstratcd in this figure.
If .c{(1J~)2] approximatcs the sqU.1rc of the wavc fUllction (as sugg('stcd by
the 8 = O case) thcn, from Fig. 5 i t is cl('ar that the> confincrrent of thc
particlc is grcatcr for largc 8. 'Ihis confincfn<mt incrcsascs rapidly if
S is small .md slowly if B is largc.
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Fig. 3. Linear interpolation £($~5)of the first three eigenvectors ~:5,
yielded by the present méthod ior the anharmonic osci lldtor V(t)
x2 + 0.1 x4.



o.z!::.

o

- OZ!5

- O.!5

391

f3 = 0.2

03

O.l!:!>

o

- OI!5

-0.3

-5 - 2.!:!>

_2.!:!>

o

o

25

j3= 0.2

2."

Fig. 4. Dependence on the parameter N oi the linear interpolation £($N)
of the first eigenvector $~ obtained by the present rnethod fo~
the anharmonic potential V(x) = x2 + O.2x4, with N=lS and N=3S.
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Fig. 5.
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ed components (¡;p.:}5¡2 oi t~e first three corresponding eigenvecto~
~j5 obtained forJthe anharmonic potential V(x) : x2 + Bx4 by the
present procedure for 6=0.0 and 6=1000.
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roigo 6. Plots of the fifteen positive points x~, i==16,17, .... 30, usedt('fit
the llamiltonian matrix whose diagonalization yields ilI'proximants
for the potenlial V{x) ==,:x2+ x4 (-100 < •.: < 100), agalnst ,'.
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Tabie IV ShOW5 the stable eigenvalucs E~5, n=0,1,2,3, calculated
far various values of K and compared with those obtained by Chan and Stel
1~>n(24), Chaudhuri and ~llkherjee(19) and Killingbeck(17). Table V exhi~
its the cigenvalues E~5 and EiS yielded by this method [ay the potential

V(x) _x2 .•. AX 4 + 4\ (8)

hi th sOJOO values of A. They can be eheeked wi th those ealculated by Banerjee
and Bhatnagar(16) .

The charactcristic feature of this kind of potcntials is shown
in Tabies IV and V: the lo,~er eigenvalues are associated in very clase
pairs when the two mínima are sufficiently separated, i.c .• whenK < < O
{A < < 1 in potential (8)]. It turos out that for this K interval the

lower eigenstates do not exhibit tunneling; this cffcet is prcsent in cer
tain range oí K clase to zera, as can be apprcciated froID Fig. 7.

C. K > O, B < O
If K and B are allowed to move in the positive and ncgative

serniaxes, rcspectively. (1) becomes a non-confinement potential: it has
two symmctrical maxin~ around zero and then it goes to minus infinity
whcn Ixl is increased and therefore, it can not be considered as a model
potential for physical problems, but it can be workcd out to illustrate
sorne aspects of the present method. Parameter K will be constrained to
be 1.

l~en B is dccreased, thc rnaxima becofiles;,lallerand, along with
this, the number of possible resonant pseudos tates should diminish. lhere
[ore, a critical 8 should be expectcd to exist su eh that no pseudos tate
could be found for B smaller than this value.

If we are interested in studying viathis method the limit values
of 8 for whieh only few pseudos tates are pennitted. we have to take N small
and to look for solutions of Fq. (6). The minimalB can be fOlmd by this
way and, as expected, it increases negatively as N 1S dccreased. Appraxi-
mate values to the minimal ones are -0.005 and -0.011 far N=30 and N=16
respectively. Table VI shows the first eigenvalues obtained foy an cxtrem
al and corrunonB wi th N=2, 3,4 •.
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TABLE IV

K E35 [es rtN [k
o 1.060 362 090 484 197 1.06036263

3.799673029801397 3.799 675 46
7.455 697 937 986 741 7.455 702 48
11.644 745 511 378 16 11.644 750 2

-1 0.657 653 005 180 715 0.658
2.834 536 202 119 305 2.835
6.163 901 256 963 070 6.164
10.038 646 120 711 58 10.032

-10 -20.633 576 702 947 80 -20.633 576 7
-20.633 546 884 404 91 -20.633 546 8
-12.379 543 786 013 30 -12..179 543 7
-12.375 673 720 705 61 -12.375 673 8

-100 -2485.867 880 342 076
-2485.867 880 342 075
-2457.643 822 698 833
-2457.643 822 698 833

Table IV. The first four eigenvalues tor the double well KX2 _ x4 with
sorne values Di K. E35 are the stable values ealculated by the
present method and ECS, ECM, and Ek are those obtained by Chan
and 5tellman (see Ref. 25), Chaudhuri and Mukherjee (see Ret.
19), and Killingbeck (see Ref. 17), respectivcly. All of these
valucs are given in a.u.

1f we put :<=2. Eq. (6) can be solved only if r;>-l/8. \~en the

equal sign hOlds, the nonstable approxim:mt (9 12 + 2)/8 to the ground
energy level cm be obtained. Thc agrccmcnt of thc rcsul t5 yiclded by
this procedure in cases A and B with thosc calculated by othcr mcthods
and the continue naturc of thc igcnvalucs obtaincd in thc prcscnt case
(thct tend to those given by I:q. (4) as B goes to zero) , suggest that
B = -l/S 3S in approximatc value to thc real mini mal bounu of parameter
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TABLE V

[35 [BB
\ O '0

[35 EBB1 1

0.01 1.404 048 60S 297 706 1.404 048 605 297 7
1.404 048 605 297 707 1.4U4 048 605 297 7

n.03 1.382 601 444 U53 IR2 1.382 601 444 053 8
1.382 605 783 831 367 1.382605783831 4

0.07 1. 323 274 074 208 529" 1.323 374 074 208 5
1.343 365 616 287 377 1.343 365 616 287 4

0.1 1.234 507 162 786) 15 1.234 507 162 786 O
1.346 940 868 922 550 1.346 940 868 922 5

0.2 0.941 750 342 076 866 0.941 750 342 076 9
1.535 530 204 085 822 1.535 53U 204 085 R

~his eigenvaluc differs fram that givcn in Ref. 16 by the fifth signifi..
cant figure. However, that particular stahle value was ah.,'ays obtained
by thig procedure far different values of N.

b ." . 2, 4 /)Ta le V. Tne fllC"St two e~genvalues for the Dotentlal -x + I'.X 1 4.
with sorne values of 1-. E35 are the- stable values ealculated by
the present method and EBS are those obtained by sanerjee and
Bhatnagar (see Ref. 16). All of these values are given in a.u.
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Fig. 7. Linear interpolations3~[ 1Q35)2] of the vectors formed by the
squared components (~ ) gf the first corresponding eigenvector
~A5 obtained by the p~esent method for the dauble well V(x}=Kx2 +
x~ sith K = -2, -5, -10.

S in the Schrodinger Equation. Ihis suggestion 1S rcinforccJ by testing
rhe procedurc fol' othcr non-confinement potential. used to model the clas-

tic scattering phenomcna: we choase that given in Eq. (2) and workcd out
by Haziand T3y10r(20). This potential has a barrier whose size dccreases
when A is increascd, giving way to the occurencc of on1y few rcsonances
[01' suitable A.

¡\'e find numerically that a maximal value of A cxists in this casco

It is obtained with N=2 and its value is approxim;ltely 0.295. Table VII

shows thE' first two nonstable eigenvalues calculated for sorne values of A

with N=Z,3 .md compared váth those reported in Rcf. 20. These mnnbers lITe

not much fortlmate, but, befare something about this approxiITk"ltion can be

said, the following points should be cOT\sidered. First, the selectcd val-
ues of A make the potential a difficult one to deal with, however, to ob-
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TABLE VI

~ 2 ~ 3 ~ "1

[0: 0"981 840 O"930 280 0.937 SI)O

"s
2.S2I 050 2. 27~ R47

t:
l

F'i 4.360 091.,

Table VI. Approximants E~ (in a.u.) for the first two eigenvalues of the
potential V(x) = x2 + 8x4 with B = -0.07, yielded by the pre-
sent method.

tain those valuC's o[ L; (or E~) it is sufficient to diagonal izc a simple

2 x 2 (01' 3 x 3) matrix. Secand, the proper instable naturc of thcsc
eigcll\';l1ucs makcs themselves pOOl' approximations to the real ones . .\'cver
thelcss, thcse rcsults suggest that the aboye discussion abotlt the eigen-

valucs of the Schrodingcr Equation for intcraction (1) .•.•'i th B < O and the
minimal houno for this par3JTleter, makes sensc.

4. FINAL RB>\\RKS

As ShO ....l1 in Seco 3, the technique presented in this papel' yields

good approximants for the eigenenergies and eigenfLmctions of nontrivial

problcms: by the very sinvle diagonalization of, e.g., certain 3x3 ~ltrix

an .1cceptable approximation to the ground energy level of sorne complicat-

ed potcntials can be obtained, and if a greater accuracy and/or more eige,!!.
VJ.lucs are dcsin.'d, the diagonalization of a matrix of suitahle order

yielus this .1t once. Resides, the linear interpolations of the correspo,!!

ding eigenvectors yielu the cx-pected fonn of the cigcnsolutions of the

Schrodingcr Equation. Thus, the mnnerical results shown in Seco lIT sug-

gest that Eq. (3) can he considered in sorne sense as the proyection of
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TABLE VII

E2 E3 ~rr
O O '()

0.125 0.461 986 0.465 602 0.472 940

0.15 0.452 035 0.466 105

0.19 0.433 281 0.453 536

0.225 0.412 441 0.441 333

Table VII. Comparison of the first approximant Eg yielded by the present
method for the potential studied by Hazi and Taylor and the
resonant energies EMT obtained by them for extremal values of
A (see Ref. 20). These values are in a.u.

the Schr6dinger Equation 011 a [inite dimensional spacc foy sorne potentials,

amI Eq. (5) as the reprcscntativc of thc diffcrcntial operator - ihd/dx.
Recent1)', F. Calogcro has introduced a rncthoJ to compute the eigen

values of differential opcrators(Z5,26). Thc proccdurc presented in this -

papel' is similar to Calogcro's t('chnique: both are basca on the substi-

tlltioll of the di ffercnt ial operator d/d.x by a fini te rnatrix with non-dia-

gonal elernents given by Eq. (S). They have, hm.¡eveT, two different featu-

res: the rnatrix to he JiagooalizeJ i5 Hennitian aoJ the ioitial conclitions

are, arparentl}', abseot in the rnethod outlineJ io Seco 2.

The aim of futurc work ,.,rill be to search for the relatio_1between

the initii11 conclitions and Ec. (6), and for the thcoreticalj,13tificJtioo

of this technique.
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