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¡I;lSTRACr

We eva1uate the one e1ectron enerqy spectrun E(k) and the e1e£
tronic density of states N(k) for different values of the interpartic1e
distance r , for the electron gas in the jellium. We are particularly
interestedSin the region near the FerMi level. because it deterMines the
behavior of transport properties (such as thermal an electrical conduc-
tivities). The state f~,ctions used in these calculations are expansions
of periodic functions with self-consistenly determined coefficients. Our
calculations are compared with the usual plane wave results.

Se calculan para el gas de electrones en el modelo de jalea, el
espectro de energías de un electón E(k) y la densidad electrónica de es-
tados N(k), para distintos valores de la distancia entre partículas cataC
terizada por el parámetro r. A fin de determinar el comportamiento de-
las propiedades de transporEe (conductividades térmica y eléctrica, por
ejemplo), se estudia especialmente la región cercana al nivel de Fermi.
Como función de estado se propone un desarrollo en funciones periódicas
cuyos coeficientes han sido determinados autoconsistentemente. Los re-
sultados obtenidos se comparan con los conocidos de onda plana.
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The eleetron gélS in the Jefonnnble jellium model is a u5e£ul
model to obtain electronic propcrties [01' mctallie systems(l), particu-

larly for rile alkalines in which a crystall ine structure is no! always

rhe best model(2). For rhe eleetron gas in rhe jellim. one assumes
that the conduction elcctrons have experienced a charge density wave
(CDW)inst3bi1ity(3).

Calculations of one eleetran density of statcs tICk) are very

interesting in arder to predict roany physical ~rorerties. Of paramolmt
interest in .~(k) near and at toe Fenni level J becaus(" it is dircetly ca.2

nectcJ \.;ith transport propcrtics SUC:1 as t;lennal and electrical conduc-

tivities, anJ with the charactcristic optical ahsortion of the system(~~
In this work, we evaluate the one electron density of states

N(k). For that purpose aoó in order to havc a better de5cri~tion of the
system we also calculate tlle energy s?Cctrum E(k). Taking into ~Keount
previous results to obtain the state function [al' a [ennion gas in tile
jellium mouel(S), we use as statc functions for t;le ealculations CDi\' type
[tmct ions that are expansions in tenns of periodic funet ions (PF). \vhose
cocfficients are self-consistenly detennined. I'lc havc shown that thesc
statc ftUlctions give a bettcr grolUld statc energy as comparcd with other
variational calculatiolls(6). These functions 03150 produce a natural
change in tne electronic and background dcnsity (defonnable iellium) as
a function of the intet;Jarticle distanee rs' given pcriodic dcnsity di 5-
tribution. In the loh' density limit, this hehaviour rcseJTIbles the Wi~ner
crystalli:ation(6). The resuHs obt3ined for N(k) "nd E(k) with these
suil¡fble ftlllctions are compared wit!l those obtaincd using plane wavcs
(Pi\") as state function.

THEORY

The self-consistent wave ftffiction for the calculations in the
independent ?article model is given hy the Slater's ¿eterminant of the
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orthonormalized spin-orbitals:

.••..here ~n" ,A,'(~i) = ~n. (~i) XA. anu XA. are the spin functions
- -1 1 1

The general cxprcsston f0f tlic orbitals we propase is

(1)

N2
L

n =~
y 1

( 2)

in this equation b,> is a basis with an cxpansion in tcrms of a discretc
indexo The function fk(~) is aplane wave bccausc wc know that PW are
adequate solutions [ar-smal} r , and in this case, the basis is select-s
cd as

exp(-i q n'r'0-"-' (3)

wherc n = t n • 3 n + knx y z
This state function guarantees the periodic character in three

independent directions. As a particular case we can describe sorne in-
teresting systems which present periodic behaviour in only ene ar two
directions(7) .

The HarrUltonian far 3n electron gas in a positive background of
ueosi ty D (19 is

N
Li=l

2
Pi 1
-+-2m 2

N
.L.
1 , J

V(r.-r.)
-1 - J (4)

N f- L D(ll) V(r. - 19 d3Ri=l -1
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in Eq.(2) we have 1.0 solveget the coefficients e
n

fa llowing equations (8) .

Thc first two tenns belong 1.0 the electronic llamiltonian and
and the third and fourth are the backgrOlrnd-backgrotmd and the clec-
tron4backgrr.HlI1d intcractions. Capital argtnllcnts are used far the bac~
grolmd variables.

In arder 1.0

sclf-consistenly the

C* C* }n~n2vno n4 n4 n 1~ ,.z x y I Z
Cn n n3x 3y 3x

(S)

Once we have detenmined the coefficients, ¡.e., the state function, we
can use this function 1.0 evaluate properties of the electron gas.

It is interesting 1.0 observe that the self-consistent solution
is aplane wave [ar Ys up 1.0 32, when -NI = ~2' and far Ys up 1.0 65 when
:\1 O anu .'J2 > O. The solutions deviate fTcm PI\'starting with these
values [ay T

S
' The pcriodic char3cter gives a localiz.ation of the elec-

trons, and this becomes more pronounceu as rs increases. The transition
point in the case of symmetric functions i5 at rs = 32 and it is the same
[or periodicity in one, two or three directions. The equivalent transi-
tion for non-symmetrical functions is at f

5
= 65 and this is also the

same for periodicity in one. two or three directions. This result indi-
cates th3t for the Coulombic interaction the transition depends strongly
on general characteristics of the basis.

1\'ith these state ftmctions, ,.,reevaluate first the one electron
energy spcctrum E(k). This is given by

E (!') ICn n n 1
2

Ix Iy Iz

,
2n )"-1

¡:
!!-l!!Z

en n n4x 4y 4Z , kf + Q I
In Q _ k

f

(6)
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where Q = I~ + 2~~fl and N = 1.".1- -"-41.
As it is known(l) the electronic density of states is given by

a tenm which depends in the inverse derivative of E(k), ".e.,l~fk) J-:
In arder to have cxplicit calculations far the behaviour oí ~(k)in terros
oí the wave number and oí the density parameter T

S
' and because oí its

simplicity we will take the particular case in which the electron gas
has pcriodicity in only ane direction and hO~Dgenetty inthe other two.
Without any further 1055 oí generality we can take TI = TI = O and

x y
O<"z < n. This conditions in Eq.(2) lead to Wigner crystallization in
only ane axis. Then

dE(k)= h2kf " 2 k
n ~O ICnll (-- 2n, cos e)dk m 1 kf

2e kf " " " "E E E E Ó C. C. C C2iI n =0 n =0 n =0 n =0 "1+°2'"3+"4 ni n2 n3 n4
1 2 3 4

{ -

In
(k2+4N2k~+4Nk(kcOS e
(k2+4N2J<~+4Nkf kcose

+ _22~(k_+_2Nk_f_CO_S_e_)__ } .
k +4N2k~+4Nk+k cose

(7)

Taking into account that we have gotteo very good convcrgcncc
in previous calculations far the ground state energy(Ó) when the uppcd
limit is ,,=3,we have taken this value in Eqs.(6) and (7). The differ-
ence between the energy results fay n=3 and n=4 ay greatcd is lcss than
n.

RESULTS AND DISCUSS10~

The results obtained with periodic functions are compared with
the corresponding fey the pIane wave. We show in the figures the one
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electron energy spectrum E(k) and the electronic density N(k). In Fig.l
we see the ane electron energy spectrum in tenms of the wave number k.
The full lines be long to calculations with periodic functions and the
dashed line is obtained using the pIane wave solution. As it can be
seco E(k) is lower fay the periodic function that far plane wave at T

S
100. The slope becomes infinite with respect to the wave vector at the
Fermi leve! far the three cases shawTI in the figure.

In Figs. 2 to 4, we show the electronic density. The conven-
ticn will be as in Fig. 1, full lines fay results with periodic func-
tiaos and dashed lines fay results using plane wave state furretían. In
Fig. 2, we show the electronic density of ane electron sta tes near and
at the Fermi level, for different values of the parameter rs' The self-
consistent periodic solutions begin with rs = 65, so we have drawn re-
sults at this value of the parameter and for rs = 100. As it can be seen,
the electronic density goes to zero at the Fermi level. Figure 3 is an
enlarged view of the region near the Fenmi level in Fig. 2. Bere we can
see that the electronic densities with plane waves go to zero faster than
those obtaincd with periodic functions. In Fig. 4, we have results for
periodic and plane waves at rs = 100, in arder to compare results for the
same value of the parameter. As can be seen in the Figs. (2-4) the elec-
tronic density N(k) goes to zero at the Fermi level. This is a eonse-
quence of the faet that the Coulomb interaction is singular for zero mo-
mentum transfer. It is interesting to natice that the eleetronic density
with periodic functions is considcrably greater than the PW electronic
density in the neighborhood o£ thc Fermi level as can be seen in Figs. 3
and 4. We conelude that this fact affects sorne properties of the system
which are strongly dependent in the values of the densities near the
Fermi level, such as transport properties and optical absorption(9).

APPENDIX

We outline here the main results oí Ref. 8 on the derivation of
Eq. (S). Starting with Eq.(4), the graund state energy far the ele~tran
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Fig. l. One electron energy spectrum in terms of the wave number, k.
Full curves are for calculations with periodic functions, dashed
curves are for PW results.
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Fig. 2. Electronic density in terms of the wave number, k. Full curves
are for PF calculations and dashed curves for PW results.
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Fig. 3. Electronic density oi states in the Fermi level neighboring
region. The conventioo 15 the same as i5 Fig. 2.
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Fig. 4. Electronic density in terrns of k for r
-fer the curves 1s the same as in Fig. 2. 100. The conventioo
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gas in the jellium model can be written eS

~ PÍ
E = <wIAlw> = í <wl 2mi=l

423

CA.!)

using
dE

3~ C;S)

The application of the l~ll~'TI-Feynman theorem to Eq. CA.l).
the background density n(~)as a variational paran~ter,~.e.,
= O. gives(S)

N

.¿ <wl (r. ;s.) Iw>1=1 -1,
(A.2)

Equation (A.2) is the condition statisfied by the backgrowld
density in arder to get optimum energy, at first arder in n(~).

Now, is the independent particle model, the wave function is
given by the Slater determinant of the spin-orbitals of Eq. (1). Using this
state function, the graund state energy becomcs

~E = ¿ <n.ITln. >i=l -1 -1

1 N
.." .L. <n_l" n.jV(r, TI)ln., n.>
" l.) -) - - -) -1

l#j
(A.3)

where' = 1n.> are the spin-orbitals. This rneans that the graund
!li. -1state energy is only given by the kinetic energy and the exchange terms.

On the othcr hand, in the indepcndcnt particle model, Eq. (A.2)

(A.4)

•
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that rneans that the background i5 deformed according to the eleetron's
dcnsity. Then, we have local neutrallity as it can be expected. Now in
Eq. (A.3), we use the orbitals of the type given by Eqs. (2) and (3) ob-
taining fay the energy

(A.S)

Taking the variatían with respect to the coefficients en and
usin2. thc ortjlononnality conclítioo we get the HF equations given by Eq.
(5) .
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