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ABSTRACT

We evaluate the one electron enerqgy spectrum E(k) and the elec
tronic density of states N{(k) for different values of the interparticle
distance r , for the electron gas in the jellium. We are particularly
interested in the region near the Fermi level, because it determines the
behavior of transport properties (such as thermal an electrical conduc-
tivities). The state functions used in these calculations are expansions
of periodic functions with self-consistenly determined coefficients. Our
calculations are compared with the usual plane wave results.

RESUMEN

Se calculan para el gas de electrones en el modelo de jalea, el
espectro de energias de un electdn E(k) vy la densidad electrdnica de es-
tados N(k), para distintos valores de la distancia entre particulas carac
terizada por el para@metro r_. A fin de determinar el comportamiento de
las propiedades de transpor%e (conductividades térmica y eléctrica, por
ejemplo), se estudia especialmente la regidn cercana al nivel de Fermi.
Como funcidn de estado se propone un desarrcllo en funciones periddicas
cuyos coeficientes han sido determinados autoconsistentemente. Los re-
sultados obtenidos se comparan con los conocidos de onda plana.
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INTRODUCTTON

The electron gas in the deformable jellium model is a useful
model to obtain electronic properties for metallic systems(l), particu-
larly for the alkalines in which a crystalline structure is not always
the best model(z). For the electron gas in the jellium, one assumes
that the conduction electrons have experienced a charge density wave
(CDW) instabilityl3],

Calculations of one electron density of states ii(k) are very
interesting in order to predict many physical nroperties. Of paramount
interest in N(k) near and at the Fermi level, because it is directly con
nected with transport properties such as taermal and electrical conduc-
tivities, and with the characteristic optical absortion of the syste.(4%

In this work, we evaluate the one electron density of states
N(k). For that purpose and in order to have a better descrintion of the
system we also calculate the energy spectrum E(k). Taking into account
previous results to obtain the state function for a fermion gas in the
jellium modelis), we use as state functions for the calculations CDW type
functions that are expansions in terms of periodic functions (PF), whose
coefficients are self-consistenly determined. We have shown that these
state functions give a better ground state energy as compared with other
variational calcu]ations(b). These functions also produce a natural
change in the electronic and background density (deformable jellium) as
a function of the intermarticle distance Tos given periodic density dis-
tribution. In the low density limit, this behaviour resembles the Wigner
(8) " The results obtained for N(k) and E(k) with these
suitdble functions are compared with those obtained using plane waves

crystallization

(PW) as state function.

THEORY

The self-consistent wave function for the calculations in the

independent particle model is given by the Slater's determinant of the
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orthonormalized spin-orbitals:

Y= _./N: det [lPr_li’ Ai(fi)] g (1)

where wni’hi(zi) = ﬁn.(zi) Xy and X, are the spin functions
= - it

= i i .
The general expression for the orbitals we propose is

Njp N; N,
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(2)
in this equation |p> is a basis with an expansion in terms of a discrete
index. The function fk{f) is a plane wave because we know that PW are
adequate solutions for small Egn and in this case, the basis is select-
ed as

1]

JE> = Inx, ny, nz> = exp(-i qo ﬂz) , (3)

where n = T n_+ j n, + ?nz.

This state function guarantees the periodic character in three
independent directions. As a particular case we can describe some in-
teresting systems which present periodic behaviour in only one or two
directions{7)

The Hamiltonian for an electron gas in a positive background of
density n (R) is

_ it T N
fi=zx *7 45 Vi oy (4)

+
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j Jn@) n(R") VR-R') R &R
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i=1
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The first two terms belong to the electronic Hamiltonian and
and the third and fourth are the background-background and the elec-
tron-background interactions. Capital arguments are used for the back
ground variables.

In order to get the coefficients ¢, in Eq.(2) we have to solve
self-consistenly the following equations

s 70 <nykpnok, [Vingk, ,ngk, >

fie M3y s, {SEIEI!TIES&l} T

n4x’“4y’n4z

e B -
nBXHZYn?z n4xn4yn4z nSXHSynSX

(5)

£ G
rl1xn1ynlz nlxnlynlz

Once we have determined the coefficients, {.e., the state function, we
can use this function to evaluate properties of the electron gas.

It is interesting to observe that the self-consistent solution
is a plane wave for r, up to 32, when -N] = NZ, and for ro up to 65 when
Ny =0 and N, > 0. The solutions deviate from PW starting with these
values for T, The periodic character gives a localization of the elec-
trons, and this becomes more pronounced as r. increases. The transition
point in the case of symmetric functions is at T, = 32 and it is the same
for periodicity in one, two or three directions. The equivalent transi-
tion for non-symmetrical functions is at B = 65 and this is also the
same for periodicity in one, two or three directions. This result indi-
cates that for the Coulombic interaction the transition depends strongly
on general characteristics of the basis.

With these state functions, we evaluate first the one electron

energy spectrum E(k). This is given by

dapd
h <k 2k 2
ER = L e o P
1x 1y 1z 1x-ly- 1z £
e'ky ,
T T Zm nzn n % C; n. n C; y ol 1 Cn n. n (6)
=12 =54 “Ixlyls “2x-2y-lz 3x 3y 3z
(4B od
G § J kf Q kf + Q

Q - kf

+ 2 } "

laxlaylaz D'Rpelgy | TR In
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where Q = |k + 2Nk¢| and N = 'Bl - n,].

As it is known the electronic density of states is given by
a term which depends in the inverse derivative of E(k), <.e., ﬁ%%hl ]'}
In order to have explicit calculations for the behaviour of N(k) in terms
of the wave number and of the density parameter e, and because of its
simplicity we will take the particular case in which the electron gas
has periodicity in only one direction and homogeneity inthe other two.
Without any further loss of generality we can take = ny = 0 and
0 < n, < n. This conditions in Eq.(2) lead to Wigner crystallization in

only one axis. Then

hZk
e hoke 0

2+ k
|Cn, |“ (— - 2n, cos 8)
dk m n, =0 1 ke ’

ezkf n n n n b ok T G
s S T I I & C
2m 5% i i =0 Pp*my,Nz*n, nyp T, Tngon
nI-O nZ—O n3—0 n4 0 2’ 1 2 5 4
2.2
(k+2Nkf cos 9)(k +k +4N kf+4Nkf k cos 6)
¥ 372
f [k +4N kf + 4Nkf k cos 8]
/k2+4N2k2+4Nkfkcos 8+ k 2(k+2Nk . cos 8)
2 Ll v 5+ .o
/k2+4N2k%+4Nkf kcose - k¢ k“+4N kf+4Nk+k cosh

Taking into account that we have gotten very good convergence
in previous calculations for the ground state energy(e) when the upped
limit is n=3, we have taken this value in Egs.(6) and (7). The differ-
ence between the energy results for n=3 and n=4 or greated is less than
1%.

RESULTS AND DISCUSSION

The results obtained with periodic functions are compared with
the corresponding for the plane wave. We show in the figures the one
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electron energy spectrum E(k) and the electronic density N(k). In Fig.l
we see the one electron energy spectrum in terms of the wave number k.
The full lines belong to calculations with periodic functions and the
dashed line is obtained using the plane wave solution. As it can be
seen E(k) is lower for the periodic function that for plane wave at By =
100. The slope becomes infinite with respect to the wave vector at the
Fermi level for the three cases shown in the figure.

In Figs. 2 to 4, we show the electronic density. The conven-
tion will be as in Fig. 1, full lines for results with periodic func-
tions and dashed lines for results using plane wave state function. In
Fig. 2, we show the electronic density of one electron states near and
at the Fermi level, for different values of the parameter r_. The self-
consistent periodic solutions begin with ¥ = 65, so we have drawn re-
sults at this value of the parameter and for = 100. As it can be seen,
the electronic density goes to zero at the Fermi level. Figure 3 is an
enlarged view of the region near the Fermi level in Fig. 2. Here we can
see that the electronic densities with plane waves go to zero faster than
those obtained with periodic functions. In Fig. 4, we have results for
periodic and plane waves at e @ 100, in order to compare results for the
same value of the parameter. As can be seen in the Figs. (2-4) the elec-
tronic density N(k) goes to zero at the Fermi level. This is a conse-
quence of the fact that the Coulomb interaction is singular for zero mo-
mentum transfer. It is interesting to notice that the electronic density
with pericdic functions is considerably greater than the PW electronic
density in the neighborhood of the Fermi level as can be seen in Figs. 3
and 4. We conclude that this fact affects some properties of the system
which are strongly dependent in the values of the densities near the
Fermi level, such as transport properties and optical absorption(g).

APPENDIX

We outline here the main results of Ref. 8 on the derivation of
Eq. (5). Starting with Eq.(4), the ground state energy for the elegtron
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Fig. 1. One electron energy spectrum in terms of the wave number, k.
Full curves are for calculations with periodic functions, dashed
curves are for PW results.
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Fig. 2. Electronic density in terms of the wave number, k. Full curves

are for PF calculations and dashed curves for PW results.
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Fig. 3. Electronic density of states in the Fermi level neighboring
region. The convention is the same as is Fig. 2
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Fig. 4. Electronic density in terms of k for r_ = 100. The convention

‘for the curves is the same as in Fig. 2.
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gas in the jellium model can be written &s

=z

2

= Pi ] )
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1]

=
ez
o

[ <win® viz; - wlwdR

+ 31 [o@ne) vk - R @R re (A.1)

The application of the Hellman-Feynman theorem to Eq. (A.1),
using the background density n(R) as a variational parameter, {.e.,

oE (5)

5@} = 0, gives

N
[ ey ves &) S - 5wl vl 4.2)

Equation (A.2) is the condition statisfied by the background
density in order to get optimum energy, at first order in n(R).

Now, is the independent particle model, the wave function is
given by the Slater determinant of the spin-orbitals of Eq. (1). Using this
state function, the ground state energy becomes

E=I§<n |T|n>-l ¥ n.|V(r, r'j|n., n.> (A.3)
jop HUET T 75 Ay e DS G 2 ’
i#]

vhere p _ = |Qi> are the spin-orbitals. This means that the ground
28
state energy is only given by the kinetic energy and the exchange terms.
On the other hand, in the independent particle model, Eq. (A.2)

N
A®= Ity ® t, ® (A.4)
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that means that the background is deformed according to the electron's
density. Then, we have local neutrallity as it can be expected. Now in
Eq. (A.3), we use the orbitals of the type given by Eqs. (2) and (3) ob-
taining for the energy

E= £ cx <n kA fT|n kA,> C
A, Pyt Myt L D =2 n3dg g,

n3x’n3y'n32

% Zk AZA n nZ n n C; ’
kX M1%2 MMy ™z M ’n2y’ 2z bcrﬂy‘nlz 22y M2z

n3x’n3y’n32 Myx? 4y’ Nz

<n-k-x

nk A,k szlvln k ot k. A >C C ;. (A,5)

- Myx ’n4y’n4z n3x’n3y’n32

Taking the variation with respect to the coefficients Cn and
using the ortnonormality condition we get the HF equations given by Eq.

(5).
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