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ABSTRACT

Two "two-site" transition Hamiltonians are considered with regard
to the off-center dipolar problem. One of these (Hg) effects static
mixing of two degenerate electronic states to allow for a finite probability
of transferring a dipole between neighboring reorientational sites. With
the other (Hp), two states, split-off in energy, are mixed by coupling to a
promoting mode. On solving the eigenvalue problem in the adiabatic approxi
mation, both Hg and Hp lead to similar multiwell vibronic potential-energy
surfaces, composed of lower (Ej) and upper (Ey) parts, whose extrema along
the promoting-mode coordinate are displaced relative to each other, so that
the minima on Ey occur where do the maxima on E, and viceversa. A single-
frequency reaction-rate approach is applied to deriving the relaxation rate
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of horizontal energy-conserving transitions between any two neighboring
reorientational sites. The resulting formula depends on three adjustable
parameters: promoting-mode frequency, lattice-reorganization energy, and
saddle-point energy splitting between Ey and E;,. The theoretical rate is
then fitted to experimental data from various sources on off-center dipoles
in several host crystals to obtain relevant values of the above parameters.
Based on the obtained energy splittings, it is concluded that while Hp
pertains to creating the off-centered displacements, Hg more likely applies
to the reorientational motion. From the fitted-parameters data, the
intrawell separations, the off-center dipole moments, the electron-phonon
coupling constants, and the vibronic-level splittings are also calculated.
These are found to compare reasonably well with experimental data, where
available.

RESUMEN

Se resuelve el problema del dipolo "fuera de centro", considerando
dos Hamiltonianos de transicidén de "doble-sitio". El Hamiltoniano (H ) re-
presenta la mezcla estdtica de dos estados electrdnicos degenerados, permi-
tiendo determinar una probabilidad finita de transicién entre posibles si-
tios de reorientacidén. El sequndo Hamiltoniano (H_), mezcla dos estados de
Energia desdoblados, acomplandolos a un modo de oscilacidn promotor. La ob-
tencidn de sus valores propios, utilizando la aproximacidén adiab3tica, condu
ce a superficies de energia vibracional parecidas. Estas superficies de po-
zos mltiples de potencial estdn compuestas de una parte baja E y otra par-
te alta E_, cuyos extremos a lo largo de la coordenada del modo promotor se
encuentran desplazados uno respecto al otro, en forma tal que el minimo de
E coincide con el miximo en E_, y viceversa. Se usa el método de la "Ra-
zon de reaccidn monocromitica" para derivar la razdn de relajacidn de las
transiciones de energia entre cualesquiera posibles sitios de reorientacidn.
La formula obtenida depende de tres pardmetros ajustables: La frecuencia del
modo promotor, la energia de rearreglo de la red, y la separacidn entre E_ y
E_ en el punto critico (saddle-point). Los resultados obtenidosa través Hel
modelo tedricoc se ajustan a los datos experimentales reportados para diferen
tes redes en las que se ha realizado estudios de dipolos "fuera de centro".
En base a los valores obtenidos para la separacidn entre E_ y E_ se concluye
que mientras D genera los desplazamientos del dipolo "fuera de centro", H
se relaciona al movimiento de reorientacién. De los pardmetros ajustados
también se pueden calcular: la separacidn entre los pozos de potencial, el
momento del dipolo "fuera de Centro", las constantes de acoplamiento elec-
trén-Fondn, y las separaciones entre niveles vibracionales. Se encuentra
que &stas se comparan razonablemente bien con los datos experimentales con
los que se cuenta.

1. INTRODUCTION

Off-center isovalent impurity ions in crystalline materials
constitute an appealing object for solid state physics. Ever since their
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original discovery in 1965(1), it has been appreciated that these species
can be used as model systems for studying atomic tunneling and quantum
diffusion in condensed matter(z). This is largely due to the off-center
ion's ability to perform reorientational transitions between equivalent
positions around the regular lattice site involving low potential-energy
barriers in-between. The purpose of the present paper being far from
giving any comprehensive survey of the matter, the reader is referred to
the available review and original literature(3'4’5).

We shall focus instead on the physics that leads to favoring an
off-center position over a regular lattice site. From a classical point
of view this is the interaction between the charge of the foreign ion and
the electric dipole moment induced on the neighboring ions, the point-ion
force not acting to displace that ion from the on-center position(é). The
off-centered position is then stabilized by the balance between the
polarization force and the repulsion arising from the overlap of the
electronic charge clouds of adjacent ions according to the Pauli principle,
Clearly, the off-center displacement would be the larger, the smaller the
foreign ion's radius and the higher the polarizability. However, because
of the close-packed structure, the off-center occurence is not a large
effect in alkali halides. The equilibrium displacement from an on-center
position gives rise to an electric dipole moment of the resulting structural
entity that usually amounts to the order of 1 eR.

The quantum-mechanical explanation is based on the notion of the
pseudo-Jahn-Teller effect (PJ'I'E)(Z’7). An equilibrium displacement from
the on-centered position of an impurity ion in a degenerate electronic
state may lead to a self-consistent removal of the degeneracy. Consequent
ly, the circumstantial Jahn-Teller distortion will now be replaced by a
PJTE. A phonon coupling of sufficient strength then mixes the resulting
split-off states, say i and j, to promote the reorientational motion of the
off-center entity. The success of calculations based on the classical
model may be attributed to the fact that the shell model, designed to deal
with the induced polarization, is approximately equivalent to the i-j ad-
mixture of the vibronic model. As long as that admixture is the essential
physics, the classical calculations should do we11(7).

An alternative quantum-mechanical treatment can be based on the
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notion of a reorientation-promoting mode that couples phase-shifted at

180° to two physically-equivalent electronic states i and j, corresponding
to two neighboring equilibrium sites of an off-center ion(s). i and j

split off at the transitional lattice configuration because of the electron-
transfer interaction between the above sites.

The purpose of the present investigation is to reassess the
quantum-mechanical approach to the off-center problem. For this purpose
comparison of the theoretical predictions with available experimental data
will be considered to be the crucial checkup of the virtues of either
conceivable vibronic model. To simplify the theory so as to stress physics
and make mathematics less formidable, single-frequency models will be
discussed in either case. The authors are fully aware of the fact that
such a simplification, even though permissible in some, may be too crude in
other more complex experimental situations, and that it may not at all
satisfy the taste of readers for more sophisticated mathematical formulae,
In addition, the models to be considered will not at all incorporate any
promoting mode - accepting modes interaction terms. This is by no means
an absurd physical statement, for the relaxation of the excess energy
through vertical vibronic transitions, made possible by these interactions,
will be assumed sufficiently fast. Accordingly, the present analysis will
deal with only a part of the overall problem, namely, the one of the
horizontal tunneling transitions that lead to the redistribution of
populations between neighboring potential-energy wells.

2. HAMILTONIAN

We consider a single isolated dipolar entity I embedded into a
crystalline medium, regarded as a system of oscillators, each one associat
ted with a lattice ion in a given electronic state. The electronic state
of the impurity will be assumed degenerate. The relevant Hamiltonian of

the system is
Mo g i ) ’ (1)

where
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He = } [%- Bet/mg + Voler 0)) : an

Hy, = Z [']é‘ -ﬁlz/MI + %lelquz) o s am
and

Hor = § (Ve(Fe» a1) - Ve(Fer 0)) e

are, respectively, the electronic, lattice, and electron-lattice mteractlon
energy operators, The sum in (1') is over all electronic coordinates re
3nd momenta Ee, in (1'') it li over the lattice coordinates q, and momenta
P,, and (1''') sums over all r_ and q,. The relevant masses are Mg
(electronlc) and M, (nuclear), w; are the osc111ator s angular frequencies.
Ve(re, q,) is the electronic potential, and 0 stands for the manifold of
all q, = 0. The dots in (1'') will be discarded under the harmonicity- -of -
vibration assumption. For the reorientational transitions under considera
tion the interaction with the promoting mode at q = q; will be predominat-
ing, the remaining temms in (1) resulting in a constant contribution to
the energy of the system will further be disregarded. This simplifies the
Hamiltonian to give

H=He + Her * PI/MI+_'MIIqI . @)
Solving Schrédinger's equation
> -
HY(re, @) = BV(Te, q ) , (3
will further be made within the adiabatic approximation. Introducing
- 1 5 2 y
Hap = He * Her + 7 MW ag , (4)

the adiabatic Hamiltonian, we traditionally assume the total wave-function
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in (3) to factorize out into an electronic part ¥(re, q1), which only
depends on q; parametrically, and a nuclear component x(a;). Accordingly,
Schrédinger's equation (3) splits into two eigenvalue equations, as fol-
lows:

Hap?(Te, a1) = E¢(@DP(Tes ap) (5)

and
B’ Pr?/My + Et(ql)}xtn(ql] = EenXen(ap) . (6)

Here t and n are the electronic and vibrational quantum numbers, respecti-
vely. Next, the static electronic states w('fe, 0) will be defined as
eigenstates of the electronic Hamiltonian H,,

Hd (T, 0) = EN(Fe, 0) (7

to find the adiabatic potential-energy surfaces as average values of (5)
in the static states tp(?e, 0) = |t,0>. Assuming a linear coupling scheme
confining to the first-order term in the expansion of Hgy in q;, we obtain

1
Vee(a) = <t,0|Hap|t,0> = 5 Mo’q? + byeq + EY (8)

(subscript I thereon omitted), where
bet = <t,0|Her|t,0> (9

is the diagonal matrix element of the first-order electron-phonon coupling
operator. Equation (8) is that of a parabola whose minimm is at

Qe = -Dee/Mv? : (10)

For two different electronic states ¢ = i,j Eq. (8) defines two
parabolae whose minima correspond to two neighboring reorientational sites.,
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These parabolae cross each other at
a;3= (B4 - ER/(b;; - by . (11)

The energy difference between the minima of V4 and V,; is

Q= ¥galng) = Viglag) = sz[% @;*+ay - ag3)(ay-ayd .

This is the '"reaction heat" at 0°K. For a symmetric-well situation
pertinent to the dipolarcase Q = 0, which gives

1
Qi3 =3 (@3 +ay) . (12)

Eq. (8) gives but an approximate expression for the eigenvalues
Ey(q) of (4), since the static wavefunctions |t,0> differ considerably
from their adiabatic counterparts w(?e, q) = |t,q> near the crossover point
Q4 Were it not the case, the diapole would have localized in one of the
wells and no reorentational transitions between E;(q) and Ej(q] would have
been possible at all. On using the proper adiabatic eigenstates |t,q> the
degeneracy at q;jj is lifted and the transitions made possible. It is to be
stressed that the adiabatic formulation allows for the above transitions
only because |t,q> are in fact quasi-stationary quantum states, being just
approximate solutions to the Schrdinger equation (3).

Inasmuch as |t,q> are largely unknow, the relevant energy split
ting at q; can be accounted for by considering appropriate models based
on the static eigenstates |t,0>, while modifying the adiabatic Hamiltonian
(4). Physically the splitting results from the dipole-transfer interaction
between E; (q) and Ej (q) due to the mixing-up of states |i,0> and |j,0>.

We shall next consider two such models based on static and dynamic mixing
types, respectively. In both of them solutions of the eigenvalue equation
(5) will be sought in terms of a linear combination

lt,a> = Ali,0> + B|j,0> ! 13)

where |1,0> and |j,0> will be assumed orthonormal.
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2.1 Static mixing

The relevant Hamiltonian (4) is modified in a two-site formulation
to read

Hyp = Hy + Hop + 3 Ma2a? + Ky5(@)([1,05<5,0] + [3,05<i,0)) . (18)
From (14) we get

Vij(q) = <i,0[Hap|j,0> = bjyq + Ki4(q) i (15)
where

bjj = <i,0|Hez|j,0> (16)
is the off-diagonal matrix element of the linear electron-phonon coupling

operator. Next we solve Schrddinger's equation (5) with Hpp from (14) and
using (13) to obtain the following eigenvalues:

Bo/n(@ = 3 (Vis(@ * Vi3(@ # ((Vag(@) = Vi3@)* + 4[Vis|h)
= 7 (M2q? + (bis + bs5)a + (B + E3) + an

((yi - by3)%(a - a35)% + 4‘Viji2)l) 3

where V,;(q), etc. as given by Eq. (8) are the adisbatic surfaces. Ey(q)
and E(q) define two adiabatic surfaces, upper and lower, respectively.
They split by 2|V, (qij)l at the crossover coordinate.

For by; = -byy» a3 = -G, and from (12) and (11) we get q;4 = 0
and E{ = Eg. Now,

By @ =3 Mata? + B3 (%7 + 4500 ag

Physically, this is the case when the promoting mode, in driving the dipole
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from site i to site j, produces compression at j, while causing extension
at i. Consequently, the average force exerted by the surrounding lattice
on the outer shells of the impurity ion is dephased at 180° for i and j.
Note that the electronic states |i,0> and |j,0> are degenerate with the
same energy Eg. On going to |t,q> the degeneracy is lifted because of the
electron-transfer interaction at crossover.
Because of the symmetry hemmiteicity can be assumed so that

|Vij|? = Vi4%. The static mixing parameter

Kij(Q) w Vij(Q) = bijq

does not contain any electron-phonon interaction terms. In a donor-acceptor
model ZIKij(qij)I is simply the tunneling splitting of the electron-energy
level of a DA pair proportional to the square-root electron-transfer

probability W, at crossover(g)

IKij(qij)l = (hVe/")we% s (19)

where v, is the electron beating-frequency. Assuming coulombic potentials,
Kij(qij) has been calculated within the BWK quasiclassical approximation

to give

|Kij(qij)| = (hv/mexp-a(R) 5 (20)
where

] E(k)

a(R) = 4Rq(-2meEg/h?) : pire K(k)| (21)
with

R; = -e*/EE, ,

k=(1- 4R0)R)i
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K(k) and E(k) are the complete elliptic integrals of first and second
kind, respectively, of modulus k, € is the dielectric constant of the
host crystal. The electron frequency is given by

v, - e(-l?.e)3/21!(3(21!16]i (22)

E, is the electron energy at crossover.

Generally, the dependence of l(i 3 (q9) on the promoting-mode
coordinate q is unknown. It depends on the mode symmetry in the parti
cular case. Nevertheless, Kij can be expected to be significant at
the crossover only, and to drop rapidly on both sides of it. On the
other hand, the dynamic-mixing parameter (16) will be assumed small,
|bij| << lbiil , in a static-mixing scheme. Under these conditions E,()
and EL(q) will tend asymptotically to the corresponding diabatic branches
far from crossover. The extrema of the adiabatic surfaces are easily
found from (18) then. There is one at q = 0 (minimum of EU(q) and
maximum of EL(q)), as well as two additional extrema (minimz) on EL(q)
at q; and qj (qi = -q.), respectively. The maximum at q = 0 (the cros-
sover) on EL(q) is that of the barrier between the two reorientational
sites at q; and Q- The barrier energy (at q = 0) is E' = Ei" -|}(ij(0)|.
The barrier height relative to the minima on E (@) is E = (l/Z)Muzqi -
K5 O]

2.2. Dynamic mixing

Now a promoting mode of sufficient strength mixes the two differ
ent-parity electronic states |i,0> and |j,0>, already split in energy by
Eij = Ei - EJ.. Following Fowler 7), the relevant adiabatic Hamiltonian
of the system is

1 - z ; i 1
HAD - 7 Eij(|1’0><1’ol - IJ ,0><j vol) =2 % M”zqz b
(23)
8;59(11,0><j,0] + ]j,0><1,0] ,

where g; j is a linear-coupling constant. Solving again Schrbdinger's
equation (5) by means of (13) we obtain the eigenvalues
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o) (24)

- A 2
EU/L(q) = '2' (MquZ = (43 iquz + Eijz)
Equation (24) resembles (18) except for the fact that Eyy is independent
of q, while K5 is not. The extrema of (24) are: one at q = 0 (minimm of
Ey(q) and maximm of E;(q)), as well as two minima on E;(q) at

ai/5 = 3 ((4gg32/MaD)? - BysD) gy : 25)
The condition for the existence of the latter extrema is
E.>% Bl (26)
ar” ¥ 1Fij ’
where
Eyp = 834"/’ @n

is the Jahn-Teller energy. Egp should-, therefore, exceed a quarter of the
energy splitting between |i,0> and [j,0> for the off-center sites to occur
at q; and Q- In the absence of splitting (Eij = 0) the dipole stabilizes
in one of the wells, say i, and no transitions to well j are possible.

2.3, Static versus dynamic mixing

Clearly, while the Jahn-Teller distortion is the main factor that
determines the off-center displacement of the impurity ion, it is the
electron-energy splitting |E;;| which makes finite the probability of re-
orientational transitions between neighboring off-center sites. In the
static-mixing model the off-center sites are determined by the nonmixing
electron-phonon interaction, while the transfer probability is finite
because of the electron-tunneling splitting 2|Kij(qij)] at crossover.
Comparing Eqs. (18) and (24) reveals the formal conversion relationship
between the corresponding static and dynamic parameters in the two cases:

|Kijl"%’ |Es51
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[ ] # lg; 51 i (28)
ER = EJT ’

where
Ep = 7 Mo*(q; - a,)° (29)

Energy

Fig. 1.

0 £ £ £

Configurational Coordinate

Potential-energy profile along the promoting-mode coordinate per-
taining to the off-center dipole motion. The upper and lower
adiabatic surfaces are sectioned by solid lines. The diabatic
surfaces are depicted by dashed lines in the vicinity of the
crossover configuration only; far from the crossover these coincide
with the corresponding adiabatic branches. Transitions between

the two wells are only possible at finite crossover splitting
between the adiabatic energies. See the text for further details.
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is the lattice-reorganization energy of any pair of diabatic parabolae.
It should be stressed, however, that different physics is involved in the
two cases. Inasmuch as the two models lead to two pairs of adiabatic
surfaces each which are experimentally indistinguishable, preference to
one or the other can only be given based on the obtained values of the
parameters (28). The latter can be determined by measuring the rate of
attaining thermal equilibrium after a population difference between
reorientational sites has been created by some initial external perturbat-
ion. The potencial-energy profile along the promoting-mode coordinate £
is exemplified in Fig. 1 applying to both the static and dynamic mixing
models.

3. RELAXATION RATE

The overall two-site rate of energy-conserving horizontal dipolar
relaxation transitions at the quantized energy levels of the potential-
energy profile composed of E;(q) amd Ey(q) along the promoting-mode (relaxa
tion) coordinate q will be calculated using the reaction-rate metlwd(ll),

(8,12) )

as done elsewhere The reaction-rate constant is given by

kij (T) = 2vsinh(hv/2k,T) E L (En)we (En)exp- (En/kBT) " (30)

where Wy (E,) and W,(E,) are, respectively, the probabilities for lattice
rearrangement and electron transfer at level E , v is the mode frequency,
and T is the temperature. h and kg are Planck's and Boltzmann's constants,
respectively. For overbarrier transitions (E, >> Ep),

(31)

]
—
-

Wr(En)

W,(E,) = 2(1 - exp-(2My,))/ (2 - exp-(2My,)) : (32)

while for subbarrier ones (E, << E))
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T Fnn(£0,E0) 2 .
Ep —Wexp (Eg/hv) ’
(32)
ZYI'.I
W(E) = 2n(y) exp-(2v)/Tly)? v,
Here
Y, = (K 2/2h) EglE, - B : 9

where E; = Ep, + |Kj4| is the crossover energy of the diabatic parabolae
relative to their common minima, Ep = 4E_.. The quantized energy levels
Ep = Ept are, strictly speaking, to be obtained as eigenvalues of the
vibronic equation (6) with E¢(q) = Ey,r(q). These will, however, be ap-
proximated by the harmonic-oscillator eigenvalues,

1
By = hofn + 3] : (34)
along the entire energy axis. Relaxation of the excess energy during the
reorientational process occurs through vertical intralevel transitions,
which, as stated before, will be considered fast enough to give that energy

away to the lattice by virtue of strong promoting-mode -accepting-modes
coupling. In (32)

an(E,o,Ec) = EOHO(E_-C)Hn(EC—EO) - Zn Hﬂ—l(Ec]Hn_l(Ec'Eo) *
2n H (€ )H . (E_-Eo) (35)
is a binary form composed of Hermitian polynomials H (),
£ = 2/} (q - (36)

is a dimensionless mode coordinate, , and £, are those coordinates,
corresponding to the minimum of well j (a5 - q; = qu) and the crossover
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point (qij - gy = -q;), respectively, all relative to the minimm of well
i dat ;-

Eq. (30) is often presented in an equivalent form:

ki (T) = x(T) (2kgT/hv)sinh(hv/2kgT)vexp- (By/kT) (37)

]

x(T) = W ()W, (E,) exp-((E, - B,)/kgTIA(E, /lT) . (38)

n

X(T) is a quantum or adiabaticity correction to the rate constant, present
ed otherwise in its conventional classical form. For adiabatic transitions
(We = 1) around Christov's characteristic temperature T, x(T) is well
approximated by

x(M = (n/2)(T/T)/sin((n/2) (T/T)) » (39)

for §T_< T<w, at which temperature T, the overall rate is due to equal-

weight overbarrier (classical) and subbarrier (quantal) transitions. For
a strongly nonadiabatic process (We << 1) occuring through classical over-
barrier jumps (W, = 1), x(T) has been shown to be (for a weakly-quantized

system (hv << E’b) L
X(T) = 2 (Ky52/hv) (n*/EgkgD) (40)

for |Kijl << Eb

Although all the above equations in Section 3 have been presented
in terms of the quantities relevant to the static-mixing model, the
transition to the dynamic-mixing counterparts can easily be performed by
means of (28).

For an experimental determination of the relaxation rate, one of
the wells, say i, is overpopulated by some appropriate initial perturbation,
while j is depopulated. The method is measuring the rate of reattaining
thermal equilibrium as the perturbation is switched off. On applying the
rate equations of this Section to experimental dataz obtained in the above
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manner, it will be assumed that the transition rate does not depend ap-
preciably on the magnitude of the perturbation. Clearly, this holds true
for small perturbations only.

4., COMPARISON WITH EXPERIMENTAL DATA

4,1, Quantal dipofes

Experimental relaxation time vs. temperature data, available
from the literature or from previous work, on three off-center ions:
F-(13), Ag+(14’15), and Li+(16), all exhibiting evidence of quantal
reorientation at low temperature, were processed by means of the reaction-
rate equation. In applying the two-site formula (30) to data obtained for
an otherwise multiwell energy surface, the experimental relaxation time
was assumed to relate to kjj by way of

-1
Teel = (g klj) ’

where g was set equal to 4 for all the <110>-symmetry dipoles, and to 1
for the one of <111>-symmetry. In each case the procedure involved fit-
ting Eq. (30), dependent on three free parameters: rotational frequency v,
lattice-rearrangement energy E,, and electron-energy splitting term |Ki4|,
to the corresponding experimental data by means of an appropriate computer
program, Fits obtained in this way are shown in Fig's 2 through 7. In
some cases (Li+ in KC1, F in NaBr) they are to be considered preliminary.
The resulting values of v, E_, and |Kij| from those fits are listed in
Table I. All the data for <110> dipoles pertain to a 90° hopping.

Using the Table I values we calculated the interwell separation

1
pq = (2B /Mu?)? ; (41)
the off-center dipole moment
Py = eAq/YZ for <110> and p, = enqx(v3/2 ) for <111> , 42)

the linear electron-phonon coupling constant
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1
[bys| = 7 Aq M? i (43)
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Fig., 2. TFit of the reaction-rate equation (30) (solid line) to experimental
relaxation-time data (circles) on off-center Lit in kcC1 (Ref. 16).
The fitted parameters are listed in Table 1I.

as well as an upper limit to the vibronic splitting from
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Fig. 3. Same as Fig. 2 for off-center F  in NaBr (Ref. 17).
fi; (hv/vr)wl,(fz’,,)l ’ (44)

where E is the highest-lying subbarrier vibronic level used for obtaining
the Table I data. The results are presented in Table II, as compared with
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Fig. 5. Same as Fig. 2 for off-center F_ in RbI (Ref. 13).
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Fig. 6. Same as Fig. 2 for off-center Aq+ in RbBr (Ref. 15).
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Fig. 7. Same as Fig. 2 for off-center Ag in RbBr (Ref. 14).

experimental data where available.

One striking feature of the fitted values for the splitting term
IKij] in Table I is the nearly perfect nonadiabaticity of the electron
transfer exhibited in all the cases listed therein. Generally, the split-
ting magnitude 2|Kij| seems too small to be attributed to any energy sepa
ration |E;;| between two static states |i,0> and [j,0> at crossover.
Alternatively, we attempted to interpret the calculated splitting in terms
of the static mixing parameter |Kij|. On using the quasiclassical formulae
(20) - (22), |K;4| depends on both the diabatic energy E, = E; of the
degenerate electronic system at crossover and the donor-acceptor separation



TABLE 1

Promoting Lattice- Energy- Number of Refer-
’ -mode reorgani- 2 Barrier levels ence to Fitting
Impurity Host Symmetry z splitting ; 78
ion crystal of dipole frequt::ncy gﬁ;;MI parameter h’ehﬁz ‘5,) used :;g::i of Eqi_r.x . (30)
v(s ) Er(mg‘):') K. . (meV) E'b Noverbarrier data )
1) subbarrier
5 KC1 <111> 4.6 x10'! 6.0 0.1 1.4 6: 16 This work
F NaBr <110> 8.45x10'° 4.12 8.1 x107 1.03 2 17 q
KI k: 2:25% 10%* 8.60 1.34x10"" 2.15 6'2' 13 "
RbI W 2,75% 102 20.8 2.71x10”" Sk 6: b 1
Ag' RbC1 L 7 ®x10¥ 20 0.036 5 6, 15 "
RbBr i 3.38 % 10 40 0.091 9.9 7 14 18

Table I. Fitted values of free parameters
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TABLE II

Force s Electron- . ; -
Miss Sonstaté Well- D1polee|r£ment cghorlzc_amn Vibronic :Eghttmg
Ion Host M (at.u.) Mo? separation Pa conugtan'% Alem™)
(Ref. 20) (meV/A2) Aq(A) Calcula- Experimen- byl Calculated Experimental
ted tal it
(meV/A)
it ka 6.941 6.0091 1.41309 1.22 105 2 4,48270 2.21070 "0.8 *
F~ NaBr 18.99840 0.55505 3.85298 2.72 1.06930 0.00557
KI " 3.93536 2.09061 1.48 4.11364 1.63486
RbI u 5.87874 2.66014 1.88 7.81914 5.70248
Ag" RbC1  107.868 216.267 0.43006 0.30 0.78 46.5045 9.67902 £0.1%°
RbBr el 50.4229 1.25959 0.89 0.95 31.7562 0.08 1®

Table II. Calculated parameters of off-center dipoles
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R. Neither of these is precisely known. Nevertheless, R can be inter-
preted as the difference between the average electronic radial coordinate
r in states |i,0> and |j,0> at the crossover configuration q = 0. Using
the proper adiabatic eigenstates pertaining to the lower potential-energy
surface E;(q), that difference can be shown to be equal to the one between
the average r in states ii,qi} and [j,qj>, corresponding to the bottoms of
the two wells, which is given by the interwell separation Aq. However,
substituting aq for R in Eq's (20) - (22) and solving numerically for
[E_|, leads to values of the crossover diabatic energy which are too high
to be taken as realistic. It follows that the quasiclassical equation
simply does not work which is not surprising when donor-acceptor separa-
tions of the order of the interionic spacing are involved. At such separa

tions a quantum-mechanical analysis would do much better.

4,2, Discussion

In any event, small electron-exchange matrix elements may well
result from the static mixing of different-parity states. Consequently,
the Table I data on [K;,| seem to give the preference to the static-mixing
model of Section 2.1. This implies that the transition Hamiltonian (14)
therein may be the one driving the heonientational process. Even though
the apparent Jahn-Teller energy (E;) exceeds abundantly the quarter of the
crossover splitting (2|Kij|), as required by (26), for all the cases listed
in Table I, the dynamic reorientational model can be considered unrealiable
based on the low splittings obtained. At the same time, however, the dyna-
mic-mixing Hamiltonian (23) of Section 2.2 may be regarded as rather the
one responsible for creating the off-centered sites.

Different modes may be expected to be involved in the above two
processes: While off-centered displacements may mainly result from coupl-
ing to some Ajg-type vibration, coupling to both Ajg- and Tyg- simmetry
modes is conceivable as the driving force in rotating an <110> dipole.
Generally, the curvature along the transition path in lattice-configuratio
nal space between any two reorientational sites will be the more signifi-
cant, the larger the A1g~contribution. Thus the present single-mode
analysis, based on Eq. (30) assuming in effect motion along the chord bet
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ween those sites, has underestimated both the interwell separation and the
related off-centered displacement. This is clear from the Table II data
where the calculated dipole moments are often inferior to the measured
ones. The misfit can undoubtedly be expected to be dependent on the
relative magnitudes of the coupling to the modes promoting the dipolar
motion. Similar considerations apply to the fitted values of v, which is
then to be regarded as an effective frequency which results when approxima
ting for a multimode-driven motion, characterized by more than one
frequency. Nevertheless, the estimated frequencies are of the expected
order of magnitude, being generally some ten times smaller than the
longitudinal-optic phonon frequencies of the corresponding host materials.
At the same time, however, the obtained barrier heights Ey are quite
realistic, as long as the quality of the fits to the experimental rates
extends to the higher-temperature range, the Arrhenius range in particular.

Under the above circumstances, the purpose of the present study
has mainly been to check whether the reaction-rate method works at all,
as applied to off-center reorientation, even though at the expense of
introducing some effective frequency to describing the otherwise multimode-
promoted motion. Clearly, although the net result is encouraging, future
theoretical work will have to concentrate on extending the reaction-rate
equation, so as to account for coupling to several promoting vibrations of
various frequencies.

The rotation of all the quantal dipoles examined presently invol
ves a nonadiabatic electron transfer, characterized by very small values

of the electron-exchange matrix element |K;;|. Consequently, the reorien
tational motion of an off-center dipole is significantly impeded relative
to the one of a free rotor because of the low probability for changing the
electronic state, even though the barrier height is relatively low. This
introduces novel physics, as compared to previous treatments, since now
the dipole is also "dressed electronically" in addition to being coupled
to the lattice, the more effective the dressing, the more easily the dipole
rotates. Clearly the "electron dressing" is spatially anisotropic which
may account for some of the marked difference in reorientational rates of

<110> dipoles between 90° and 60° jumps(13s14).
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4.3. 0ff-centen Cu’

The temperature dependences of the dipolar relaxation time of
off-center Cu' in three host materials, KC1, KBr, and KI, have been
measured using the ITC technique(z:l). These have been interpreted in
terms of an apparent classical behavior, the experimental points falling
well along the straight line in the Arrhenius plot in all the three cases.
The pre-exponential frequency factors and activation energies obtained
from the plots are listed in Table III along with the ITC peak temperatures
The respective LO-phonon frequencies Vo are also listed for the sake of

comparison.
TABLE III
LO-phonon Frequency " . "
frequency Factr Activation ITC-peak
Host v, (s-1) (s-1) energy temperature
crystal LO Veff E, (eV) Ty (K)
(x 101%) (x 1012)
KC1 6.40 2.1029 0.177 62
KBr 5.11 3.7560 0.196 70
KI 4.30 1.3191 0.232 83

TABLE III. Experimental frequency factors and activation energies for
reorientation of off-center Cu' (data from Ref. 21).

All the three frequency factors are seen to be of the order of
Vio. Inasmuch as the actual promoting-mode frequencies V are expected to
be lower, and alternative analysis in terms of the adiabatic intermediate-
dipole ocurrence was attempted(lz), using instead Eqs.: (37) and (39) to
process the experimental arrays of points. The result is presented in
Fig. 8, while the corresponding mode frequencies v, characteristic
temperatures T., and barrier heights Ep, regarded as fitting parameters in
Eqs. (37) and (39), are given in Table IV. Also listed in that table are
the valn)aes of the electron-exchange matrix element |K;j|, calculated
£ m(lz
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TEMPERATURE (K)

4 90 80 80 70 60
10 T T T T T T
0> KI:Cu*

102 KBr!Cu®
Kcl:cu*
)
o
0! 1 1 1 4 1 1
1" 12 13 14 15 16 17
3
10 -1
= {K)
T

Fig. 8. Fits of reaction-rate equations (37) and (39) (solid lines) to
experimental relaxation-time data on off-center cut in KC1, KBr,
and KI (Ref. 21) (circles). The fitted parameters are listed in
Table IV.

|Kg5| = 2B/ (kT /ho - 1) . (45)

>3
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TABLE IV

Promoting Character- Electron- Lattice-

mode istic Barrier exchange reorgani- Interw:}} e moEent
Host frequency temperatu- height matrix zation sepg:a = Pa(eA)
vivTh Te Ey, (eV) element energy rq(h) calcu- experi-
(x 101?) Te(K) IKijl(eV) Eg(eV) a lated mental
KC1 2:35 70 0.1832 0.386 2.28 1.78 1.54 1.49%0.20
KBr 2.22 95 0.20 0.222 1.688 1.62 1i41  1.92+0.1
KI 1.2 90 0.236 0121 1.428 2.76 239 2.6 0.13
Electron- Oscillator
lattice force
coupling constant
constant 2 5%
by (eV/A) Skt
1.28 1.44
1.04 128
0:52 037

Table IV. Values of free parameters from fitting equations (37) and (39) to the experimental temperature
dependences from Ref. 21, and calcula;ed characteristics of adiabatic potentials pertinent to
the rotation of off-center Cu dipole

+
* Oscillator mass assumed equal to the Cu atom mass, M = 63.546 atom units.
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Using the data on E,, |Kj;|, and v, the interwell separations Aq and the
dipole moments pg were also computed from (41) and (42), respectively, the
latter based on the presumed <111> symmetry of the cu® off-center dipole,
as well as the resulting values of the electron-phonon coupling constant
|bj;| from (43).

Again, in view of the single-mode approximation adopted present-
ly the fitted values of the free parameters v, Tc, and B, in Table IV
should be regarded as effective ones, particularly the mode frequencies
and the resulting interwell separations and dipole moments. Nevertheless,
the relatively good fits obtained all reveal quantal effects due to
tunneling near the barrier top which is almost as effective as the over-
barrier jumps in the vicinity of the characteristic temperature Té(lz).
This comes to stress several important features, namely

i) the apparent arrangement of relaxation times along a straight line
in the Arrhenius plot do not always imply a purely classical
behavior;

ii) the slope of an Arrhenius plot may be some percent lower than the
one corresponding to the actual barrier height;
iii) quantum-mechanical tunneling is not the sole feature of low

temperatures only.

Another remarkable implication is that the rotational motion of the off-
center Cu' dipole involves an adiabatic electron transfer, unlike the quan
tal dipoles of Section 4.1. Clearly, more theoretical work is needed
before this peculiar behavior is further clarified.

REFERENCES

1. G. Lombardo and R.0. Pohl, Phys. Rev. Lett., 15 (1965) 291.

2. V.S. Vikhinin, L.S. Sochava, and Y.N. Tolparov, in Defects 4in Insultat
ing Cnystals, ed. by K.K. Shvarts, Springer Verlag, Berlin (1982). -
R.0. Pohl and V. Narayanamurti, Revs. Mod. Phys., 42 (1970) 201.

A.S. Barker and A.J. Sievers, Revs. Mod. Phys., 47 (1975) S122.

F. Bridges, Cnitical Revs. 4in Sofid State Sci., 5 (1975) 1.

[ S 2 0 — ]
s s s s

Proc. XV Cofloq. Ampere, Amsterdam-London (1969).
W.B. Fowler, Radiation Effects,64 (1982) 63.
M. Georgiev and A. Gochev, Phys. Rev. B (accepted).

oo~

R. Smoluchowski, in "Magnetic Resonance and Radigfrequency Spectroscopy",



504
9.

10.

11.
12.
13.
14,
15.
16.
17=
18.
19.
20.

21

S.G. Christov, Coflision Theorny and Statistical Theory of Chemical
Reactions, Springer, Berlin (1980).
M. Georgiev, A. Gochev, S.G. Christov and A. Kyuldjiev, Phys. Rev.
B 26 (1982) 6936.

S.G. Christov, Phys. Rev. B, 26 (1982) 6918.
C. Medrano and M. Georgiev, Phys. Rev. B (submitted).
A. Diaz-Géngora, Doctoral Thesis, ESFM-IPN 1975.
S. Kapphan and F. Liity, Phys. Rev. B 6 (1972) 1537.
0. Kanert, Phys. Reponts, 91 (1982) 183.
R. Osswald and H.C. Wolf, Phys. Status Sofidi B, 50 {1972) K93.
R.J. Rollefson, Phys, Rev, B 5 (1972) 3235.
A.D. Gochev, Sotid State Commun., 49 (1984) 1181.
F. Bridges, Phys. Rev. B §_(1972) 3321.
Periodic Table of the Elements, Sargent-Welch Sci. Co., 1979;
Fundamental Physical Constants, Nat. Bureau of Standards, NBS Special
Publ. 344, 1974.
M.S. Li, M. de Souza and F. Liity, Phys. Rev. B 7 (1973) 4677.





