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ABSTRACT

The Bernoulli's method, used in brachistochrone problems, is
presented in a different way. Instead of the Snell's law we use the ray
equation, whose integration seems easier when some kind of symmetry is
present. We apply it in two examples: the classical brachistochrone
problem agd in the cases with gravitational potential energies of the form
V(r) =or .

RESUMEN

Se presenta de una manera diferente el método de Bernovilli, que
es usado para el problema de la braquistdcrona. En lugar de la ley de
Snell, usamos la ecuacidn de los rayos, cuya integracidén parece ser mas
facil cuando existe algiin tipo de simetria. Se aplica a dos ejemplos: el
problema cldsico de la braguistdcrona y para potenciales gravitacionales
del tipo V(r) = ar®,
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Recently, P.K. Aravind(l) used Bernoulli's method to find the
brachistochrone of a particle moving inside a homogeneous spherical ball
of matter of mass M and radius R. This method is based on an optics-
mechanics analogy. The reason is that in geometrical optics light chooses
the trajectory which requires the minimal time of travel (Fermat's
Principle). Besides its beauty it allows a new way of attacking the problem,
which avoid the conventional approach of solving the Euler-lLagrange
equations(z). Instead, all one has to use is the Snell's law and that
n = % , with v calculated from the energy conservation theorem with the
adequate potential, In reality this is only a way of shortening the
mathematical steps, since Snell's law can be obtained from Fermat's
princifile via the Euler-Lagrange equations.

In this note we apply this method in a different way. We will
start with the eikonal equ&tion(s):

(v8)? = n? . (1)

As is well known, even without the knowledge of the eikonal S it is possible

from Eq. (1) to obtain the ray equation(4):
gg[n gg] - : ©

where T is the position of an arbitrary point in the trajectory of light
and ds is the differential of the arc length. Even though the ray equation
is very difficult to solve in the general case, it permits a more systematic
way of using the method. The symmetries of each problem can be implemented
directly and integration of Eq. (2) often becomes immediate. Let us see

in two examples.

We first solve the classic brachistochrone problem of a particle
moving in a constant gravitational field. This case has of course a plane
symmetry. Thus, n = % is a function of one variable only, say y, the
vertical distance from a given horizontal plane to the origin O, taken at
the initial point of motion. We then write Eq. (2) in the form



531

~

gg{n(}’)"f) = %n)—, i ’ (3)

5
where T = g— and J are unit vectors along the ray directionand the vertlcal

direction, respectively. MJltlplymg both sides of (3) vertically by _] we
obtain

d a5

F@~0=0 . )
which implies

n sing = cte p (5)

where § is the angle between 3 and :E . Substituting n = %we have

L (C = cte) ) (6)

From the conservation theorem for the energy of the particle we have that

oW

where x is the horizontal coordinate of the particle. From (6) and (7)

we can write
sin?g = C? 2gy i (8)

Using the trigonometric identity 2sen?s = 1- cosZp we get

g
4gC?

y(8) = R(1- cos2s), with R = (9)

The expression for x(g) can be obtained from
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;‘j% = 2g Cy ) (10)

which derives directly from (6) and (7) if we multiply both numerator and
denominator of the L.H.S. of (6) by v. Inserting (9) in (10) we easily see
that

-E% g-,‘z- - nf%] (1 - cos26) , (11)

where we assumed a time parametrization for g§. We are free to choose
conveniently this parametrization. Choosing one so that

de _

dt A ’ (12)
we see that

x(8) = {Zlcﬁ] (26 = sen2e) (13)

is a solution of (11). All we have to do now is to calculate the constant
A, This can be done if we force Eq. (7) to be valid. Inserting Eqs. (9),
(12) and (13) in (7) we obtain

1 {A%sen?(29) + C?’g’cos®(20)} + . B {1- 2cos(28)} =
actg? ac? (14)

- gl (1 - cos2f)
c?
From (14) we see that A must be given by

A=gC . (15)

Substituting (15) in (13) we obtain

x(0) = R(28 - senzB) , (16)
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where we used that R = 1

4gC?

Equations (9) and (16) are the parametric equations for a cicloid,
confirming a well known result for this problem(S).

Now, we are going to treat more general gravitational fields,
whose potentials are given by

V{E) = p" . (17)

where o is a constant, r the distance from the center of force and n a non
zero integer mumber. P.K. Aravind(l) in his article solved a particular

case for (17), with a = G and n = 2. The differential equations which

determine the brachistocﬁggnes for these potentials were obtained by
Ramesh Chander(s) via the Euler-Lagrange equations. In this article we
reobtain these differential equations with the Bernoulli's method as exposed
before.

Since central potentials have spherical symmetry the 'index of
refraction" in this case is a function of r alone and we can write Eq. (2)

in the form
O ; (18)

where £ is the unit vector in the T direction. Multiplying both sides of
(18) vectorially by T we obtain

g-s—(n TaD) =10 ) (19)

From the last equation we have
n r sing = cte i (20)

where B is the angle between 1" and t. In this case the energy conservation
theorem gives the relation
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-3
n(r) = ;f%T i c{%% fqp = T“)} . (21)

Substituting (21) in (20) we obtain

T sinB

r_ﬂ_}_}_ = k (k = cte) = (22)

where q is the distance from the point where the particle was initially at
rest and the center of force (see Fig. 1). To obtain the differential
equations for the brachistochrones we easily see that

rd¢
sinf = —— 23
= (23)
and
dr)? d¢)?
[a_;;] +rz[aii]=1 . (24)

From (23) and (24) we find
Pak
sing = [ . [%g]:[ ; (25)
Inserting (25) into (22) we finally have

1

)
gt ve ) '

which coincides with Eq. A.5 of R. Chander's(s) paper if we identify our k
with his constant of integration o.

In this article we used Bernoulli's method in a little different
manner. Instead of the Snell's law, we started with the eikonal equation
and ray equation, It seems easier to use the symmetries of each problem
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Fig. 1. Brachistochrone between points Q and P in a radial gravitational
field with center of force at o.
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in the integration of this last equation. Thus, in applying the method to
other cases (with axial symmetry for instance) or in more complicated
brachistochrone problems this new point of view may also be used. Besides
its charm, the simplicity of the Bernoulli's method makes it understandable
by any undergraduated student. Therefore, it would be interesting if those
students used it more often.

REFERENCIAS

P.K. Aravind, Am. J, Phys., 49(9) (1981).

K.R. Symon, Mechanics, Reading, Mass, Adisson-Wesley (1972).

H. Goldstein, Cfassical Mechanics, Reading, Mas., Addison-Wesley (1950).
S. Borowitz, Fundamentos de Mecdnica Cudntica, Editorial Reverté, S.A.
(1973).

5. Ramesh Chander, A.J. Phys., 49(9) (1977).

WM e
e o e .





