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The Bernoulli's method, used in brachistochrone problems, is
presented in a different way. Instead of the Snell's law we use the ray
equation, whose integration aeems easier when sornekind of symmetry i5
present. We apply it in two examples: the classical brachistochrone
problem and in the cases with gravitational potential energies of the forro
V(r) = arn.

RESlJt.1EN

Se presenta de una manera diferente el método de Bernovilli, que
es usado para el problema de la braquistócrona. En lugar de la ley de
Snell, usamos la ecuación de los rayos, cuya integración parece ser más
fácil cuando existe algún tipo de simetría. Se aplica a dos ejemplos: el
problema clásico de la braquistócrona y para potenciales gravitacionales
del tipo v(r) = arn,
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Reeently, P.K. Aravind(l) used Bernoulli's method to find the
brachistochrone of a particle moving inside a homogeneous spherical ball
of matter of mass M and radius R. This method i5 based on an optics-
mechanics analogy. The Teason is that in geometrical aptíes light chooses
the trajectory which requires the minimal time of travel (Fennat1s
PrincipIe). Besides it5 beauty it a11ow5 a new way of attacking the problem,
which avoid the conventional approach of solving the Euler-Lagrange
equations(2). Instead, a11 ane has to use is the Snell's law and that
n = ~ ' with v calculated from the energy conservatían theorem with the
adequate potential. In reality this is only a way of shortening the
mathematical steps, since Snell t s law can be obtained from Fennat I s
princiñle vía the Euler-Lagrange equations.

In this note we apply this method in a difíerent way. We will
start with the eikonal equation(3):

('15)' = n'

As is well known, even without the knowledge of the eikonal
from Eq. (1) to obtain the ray equation(4):

(1)

S it is possible

(2)

where r is the position oí an arbitrary point in the trajectory oí light
and ds is the differential of the are length. Even though the ray equation
is very difficult to solve in the general case, it permits a more systematic
way of using the method. The symetries of eaeh problem ean be implemented
direeUy and integration of Eq. (2) often beeOl!l<"inmediate. Let us see
in two examples.

We íirst solve the cla5sic brachistochrone problem oí a particle
moving in a constant gravitational field. 111i5 case has of course aplane
symnetry. Thus, n = ~ is a ftmction of one variable only, say y, the
vertical distance Erom a given horizontal plane to the origin O, taken at
the initial point of mtion. Wethen write Eq. (2) in the fonn
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(3)

... dr ':'where t = as and J are nnit vectors along the ray directionand t1E vertical
directíon, respectively. MJltiplying both sides of (3) vertically by j we
obtain

d "as (nj "T) i!

which implies

n sine = ete

where e is the angle between j and t. Substituting n = £ we havev

(4)

(S)

sine = c
v

(C = cte) (6)

From the conservation theorem for the energy oí the particle we have that

v' = [~]' + [~]' = 2gy (7)

where x is the horizontal coordinate of the particle. From (6) and (7)

we can write

sin'e = C' 2gy

Using the trigonometric identity 2sen2a = 1- cos2e we get

(8)

y(e) R(l- cos2e).
1

with R =--
4gC'

(9)

The express ion for x(e) can be obtained from
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dx
<lt = Zg Cy

which derives directly from (6) and (7)
denominator of the L.H.S. of (6) by v.
that

dxdO [1]de <lt = \IT (1 - cosZO)

(10)

if we rnultiply both numerator and
Inserting (9) in (10) we easily see

(11)

where we assumed a time pararnetrization far e. We are free to choose
conveniently this parametrization. Choosing ane so that

we see that

x(O) = [4~](ZO "senZo)

(IZ)

(13)

is a solution oí (11). All we have to do now is to calculate the constant
A. This can be done if we force Eq. (7) to be valid. Inserting Eqs. (9),
(IZ) and (13) in (7) we obtain

_I_{A'sen'(ZO) + C'g'cos'(ZO)\ + _1_{1_ Zcos(ZO)}
4C'g' 4C'

= _1_ (1 - cosZO)
ZC'

Frem (14) we see that A must be given by

A = gC

Substituting (15) in (13) we obtain

x(O) = R(ZO - senZO)

(14)

(15)

(16)
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where we used that R = 1__
4gC'

Equations (9) and (16) are the parametric equations for a cicloid,
confinning a well knownresult for this prob1em(3).

Now, we are going to treat more general gravitational fields,
whose potentials are given by

Ver) = al"' (17)

where o is a constant, r the distance from the centcr oí force and n a non
zera intcger number. P.K. Aravind(l) in his article solved a particular
case fer (17), with a = ~ and n = Z. The differential equations which
determine the brachistocfi~nes for these potentials were obtained by
RameshÜlander(5) via the Eu1er-Lagrangc equations. In this artic1e we
reobtain these differential cquations with the Bernoulli's method as exposed
befare.

Since central potentials have spherical synanetry the "index oí
refraction" in this case is a funetian oí T alone and we can write Eq. (2)
in the fonn

d A) dn AOs (n(r)T = Or r

where ? is the unit vector in thc r direction.
(18) vectoria11y by ; wc obtain

From the last equation we havc

n r sinB :: ctc

(18)

Mu1tip1ying both sides of

(19)

(20)

where B is the angle betwcen 1- and T. In this case the energy conservation
theorem gives the relation
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c {2an(r) == = c-v~r J m (21)

Substituting (21) in (20) we obtain

r sinB
k (k = cte) (22)

where q is the distance from the point ~here the particle was initially at
rest and the center of force (see Fig. 1). To obtain the differentia1
equations for the brachistochrones we easily see that

rd~
sina "-

ds

and

[~]' + r' [~]'= 1

From (23) and (24) we find

lnserting (25) into (22) we finally have

,
~ = } {r' . k'(qn . rn)}'

(23)

(24)

(25)

(26)

which coincides with Eq. A.5 of R. Chander's(5) paper if we identify our k
with his constant of integratían o.

In this article we used Bernoulli's method in a littIe different
manner. Instead oí the Snellts law, we started with the eikonal equation
and ray equation. It seems easier to use the sYJIIIletries of each problem
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Fig. 1. Brachistochrone between peints Q and P in a radial gravitational
field with canter oí force at o.
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in the integration of this last equation. Thus, in applying the method to
other cases (wi th axial synrnetry for instance) or in more complicated
brachistochrone problems this new point oí view maya150 be used. Besides
its charm, the simplicity of the Bernoulli' s method makes it understandable
by any undergraduated student. Therefore, it would be interesting if those
students used it more often.
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