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ABSTRACT

Far from equilibrium properties of a one dimensional lattice model
of the Lorentz gas are studied by means of a correlated walk description.
The exact time evolution of the distribution function of the non-Markovian
stochastic process underlying the walk is obtained. The time relaxation of
the system, the Boltzmann entropy and other time dependent thermodynamic
potentials are given in exact and closed form. It is also shown that the
local equilibrium condition is satisfied, even though the system is far
from equilibrium. Finally in the limit of long times, the ideal gas
thermodynamic properties are obtained.
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RESUMEN

Se estudian las propiedades lejos del equilibrio de un modelo de
red unidimensional del gas de Lorentz usando una descripcidn de camino co-
rrelacionado. Se obtiene la evolucidn temporal exacta de la funcidn dis-
tribucidn del proceso estocistico no-Markoviano asociado al camino. La re
lajacidn temporal del sistema, la entropia de Boltzmann y otros potencia-
les termodindmicos dependientes del tiempo se dan en forma exacta y cerra-
da. Se demuestra ademds que se satisface la condicidn de equilibrio local,
a pesar de que el sistema estd lejos del equilibrio. Finalmente en el 1limi
te de tiempos largos, se obtienen las propiedades del gas termodindmico .
ideal.

1. INTRODUCTION

The study of nonequilibrium phenomena is beset with many dif-
ficulties of physical and mathematical nature. These difficulties have
motivated theorists to devise and study the simplest models which exhibit
any resemblance with the systems occurring in the real world, with the hope
that the deeper insights offered by the exact treatment, or the mathematical
trasparency of the models, will compensate for the unrealistic simplifications
in the formulation.

One of these models is that of a system of independent particles
meving among randomly distributed fixed scatteres. This system is commonly
known in statical mechanics, at least when the scatteres are hard spheres,
as the Lorentz gas 1) or Sinai's billiards(z). Here we shall consider the
particular case of a uniform distribution of scatteres to model the scat-
tering of particles by the lattice points of a solid.

It has been shown by Fujita et a£.(3] that the dynamics of a
Lorentz gas molecule may be simulated in terms of a correlated walk®) on
a cubic lattice by assuming that when a particle hits a fixed scatterer,
the particle will suffer forward or backward scattering with different
probabilities. The fixed scatterer is not necesarily a hard sphere, it may
be an anisotropic scatterer, for instance an electric dipole, or even an
isotropic scatterer in the presence of an external field.

So far, the only analytic solution that has been found for this
Lorentz lattice gas, corresponds to the particular case of initial conditions

where all the particles are located at some point in the 1attice(8’g'10).
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Unfortunately this solution is cumbersome and difficult to handle. We will
show in this paper that for spatially homogeneous initial conditions the
corresponding solution is elementary and so the dynamics of the model can be
analyzed at the light of straighforward calculations.

More specifically, we consider the one dimensional version of this
model which corresponds to the X projection of the three dimensional motion
of the particles. We will show that for periodic boundary conditions and
far from equilibrium initial conditions, the exact and analytic time
evolution of this Lorentz lattice gas can be derived.

For this purpose we first analize the non-Markovian process
underlying a walker moving of a one dimensional periodic lattice with 1lat-
tice constant a, = 1 and lenght L. The probability of finding the walker
at the discrete position X = xa, at the discrete time t = Nt,, if the walker
is moving form left to right (positive velocity), is described by P_(X,N).
Similarly, when the walker moves from right to left (negative velocity),
the corresponding probability is P_(X,N). Clearly, the knowledge of these
distribution functions provides a complete description of the stochastic
process associated with the motion of the walker, since the specification
of P, and P_ is equivalent to the knowledge of a one particle distribution
function, f(x,v,t), of the Lorentz type. In fact,

m

P, (X,N) f(x = Xa,, v>0, t = Nrg) . (1.1a)

P_(X,N)

m

£(x = Xa,, V<0, t = Nrg) , (1.1b)

where the magnitude of the velocity, v, is a constant given by v = a,/1, .
Thus, P, and P_ describe the time evolution of a Lorentz lattice gas whose
phase-space consists of (q = 2L) points, as shown in Fig. 1.

In the next section 2 we give the finite difference equations
that the above distributions satisfy and we discuss the physical
interpretation of the parameters involved. A solution of these equations
is obtained for spatially homogeneous initial conditions in section 3 and
its evolution towards equilibrium is studied. Using this solution, in
section 4 we explicitly evaluate some non-equilibrium thermodynamic
potentials of the system and show that the local equilibrium hypothesis
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holds for any degree of departure from equilibrium. Finally, in section 5
some thermal equilibrium properties, like the equation of state and the
internal energy, are obtained.
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Fig. 1. Phase space for one dimensional periodic lattice of lattice constant
ap = 1 and length L.

2. PROPERTIES OF THE MODEL

The probabilities for making succesive steps, P, and P_, introduced
in the previous section are described through transition probabilities that
keep memory of the previous step and which are defined as

a: probability of stepping right if the previous step was to the right
b: probability of stepping right if the previous step was to the left
c: probability of stepping left if the previous step was to the right
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d: probability of stepping left if the previous step was to the left

In terms of these quantities the equations of motion describing
the correlated walk on the lattice are found to be

P (X, N+1) = aP_(X-1,N) + bP_(X-1,N) g (2.1a)
P_(X, N+1) = cP_(X+1,N) + dP_(X+1,N) E (2.2b)
Notice that the normalization condition (CONSERVATION OF
PARTICLES)
) {PJX,N) + P_(X,N)} =1 (2.2a)
X
implies that
at+t¢c=1] H b+d=1 (2.2b)

and, therefore, there are only two independent transition probabilities.
Actually, in order to describe more clearly the physical role of the
transition probabilities, it is convenient to introduce two independent
parameters, namely, the bias factor e (also called the external field
parameter), defined by

e=a-d=b-c (2.3)
and the correlation factor, ¢ defined as
g=a~hmd~¢ . (2.4)

€ is a measure of any bias in one direction, it may depend on an external
field (which does not perform any work on the system) or on anisotropies
of the lattice or any other perturbing effect. Its range is -1 s ¢ s + 1.
On the other hand, § measures the amount of correlation between two suc-
cesive steps, in such a way that for maximum correlation the walker
eventually will keep full motion in the same direction of the external
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field. Clearly, for vanishing correlation two succesive steps will be
statistically independent and the whole problem is reduced to the usual
random walk. For bias toward the right (e>0) the range of § is
0sésl - &.

Hence the stochastic process may be described in terms of either
of the two sets (a,b,c,d,) or (g,8) with the following connection between

them
Za=1+e+4 ,
2b=1+¢g = 6§,
(2.5)
2c 2l =B = 8y
Zd=1 =g+ § »

3, SOLUTION FOR HOMOGENEOUS INITIAL CONDITIONS

In order to solve the set of equations (2.1) we have to choose a
boundary condition at X = 0 and X = L-1. Since for a large volume we
expect that the effect of the boundary condition will not be so important
on the bulk properties of the gas, we choose periodic boundary conditions
for mathematical simplicity. This periodic character of the solution, sug-
gests the use of finite Fourier series, so we define the transformation

L-1
Br,N) = § PXX,Nexp(i2nrX/L) . (3.1)
X=0

Under this transformation the coupled set of equations (2.1) may

be written as
B(r,N) = M- P(r,N-1) (3.2)
>
where the probability vector P is defined as

. L (T,N)
P(r,N) = (3.3)
P_(r,N)
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and the transition matrix M is given by

Ao B
M= (3.4)
C D
i ; g "
with A = ae” , B= belk, C=ce lk, D = de ik and where
k = 2m/L - (3.5)

Clearly the solution of Eq. (3.2) is given by
Br,N) = M« B(r,N=0) (3.6)
with
M = M - sa(¥-1) 1 - (3.7
where a(N) depends on the eigenvalues },, )_ of the matrix '1:1_ 5
3
22, = A+D3: [(A+D)z = 46:|

through the expression

lN =)
a(N) = i [ e WYY (3.8)
) SR o

Therefore, the final solution P(X,N) is given by the inverse

Fourier transform of (3.6), namely

L-1 s
POX,N) = % rzo B(r,N)exp(-i2nrX/L) . (3.9)

[Gxo

| o

The most important initial condition P(X,N=0) =
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which generates the Green's function, has been discussed elsewhere(s’s’g’loJ.
Unfortunately this analytic solution is rather involved and will not be
considered here. However, there is one initial condition which generates
the easiest analytic solution, namely, any homogeneous (position independent)
initial condition, P(X,N=0) = P(N=0). For this case we have

B(r,N=0) = BON=0)L&; ny, , m = 0,41,22, ... (3.10)

We have choosen this particular initial condition, hoping to show
how the irreversible behavior of the system develops, having at the same
time a very transparent and elementary mathematics.

Thus, using Eqs. (3.9), (3.10) and after some elementary algebra
we find that

P,(N=0) o P.(N=0)
—_— + b(1- &) —— (3.11)
8

P, (X,N) = [a(l- 8 =&~ 6“‘1)]

and
P, (N=0) .1 P.(N=0)
P_(X,N) = c(1- &) T [dcl -8 - s- & 1)} ——-312)
w8 = 8

It should be stressed that these solutions are valid only for
arbitrary homogeneous initial conditions that satisfy the normalization
condition, Eq. (2.2a). We now consider two particular initial conditions.
First a far from equilibrium case where initially all the walkers in the
lattice are moving to the right. Then

P,(N=0) = : P_(N=0) =0 , (3.13)

Lol LN

where Q is the mumber of points in phase space (@ = 2L).
Substituting Eq. (3.13) into Egs. (3.11) and (3.12) we obtain

P,(N) =-;-[1:5 te%—-—_-a-;] : (3.14)
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These solutions imply that as a result of the collisions between
walkers and lattice scatteres the initial condition Eq. (3.13) can not
persist, instead it evolves in time according to Eq. (3.14) toward a
stationary state given by

D=

PN+ w) = [1:1-‘;—3] = (3.15)

Notice that for zero bias factor (e = 0) the stationary
distribution is @' for both directions of motion, which is just the micro
canonical distribution. Of course, for non-vanishing bias factor the
stationary distribution is different according to the direction of the
velocity with respect to the external field. As for the dependence on the
correlation factor §, note that for vanishing correlation there are two dif
ferent stationary distributions

D)=

lim P (N + w) =
&0 ~

(1te€) (3.16)

and for maximum correlation, § = 1- ¢ one of the initial distributions
persists, namely

lin PN+« =2 , (3.17a)
&+1-€
lin  P.(N+w) =0 : (3.17b)
§+1-€

Hence for maximum correlation the walkers move unconstrained in the direc-
tion of the bias factor and never have the chance of reversing its motion.

As a second initial condition let us now examine the case where
the system is in thermal equilibrium,

3 (3.18)

el

P (N=0=P_(N=0) =

This equation corresponds to a microcanonical distribution without an
external field. Substitution of Eq. (3.18) into Egs. (3.11) and (3.12)
leads to
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RN = & [1 T A (3.19)

which describes how the thermal equilibrium distribution evolves in time
after the bias factor is turned on. Notice that for this case the stationary
distribution is precisely the same as the previous initial condition, Eq.
(3.15). That this is true for the general case of arbitrary homogeneous
initial conditions can be proved from Egqs. (3.11) and (3.12). Taking the
long-time 1limit of these equations we find

PN+ ) -1 [1 i]—-e—é-J (3.20)

which proves that the stationary state is indeed independent of the
particular form of the homogeneous initial conditions and so, after some
time, the system forgets any initial distribution.

As a first consequence of our dynamical description notice that
we can easily find the relaxation time of the system. For this purpose note
that in Egs. (3.11) and (3.12) the time dependence occurs only through the
factor &Y. But since 0 < § < 1, this is a monotonically decreasing function,
so we may write the identity

& = exp(-N 1n 6 ) (3.21)
and clearly the relaxation time is given by
-1.-1
No = (Ins§ ) . (3.22)

Notice that for a vanishing correlation, §+ 0, the relaxation
time is zero. This is to be expected since for a non-correlate walk, the
homogeneous probability distribution does not even change in time, it
remains in a stationary state. On the other hand, for maximum, correlation
the relaxation time depends on the external field as N, & s-l, if |eg| << 1.
So, the external field induces the particles to reach their stationary state
at a faster rate. Finally, for maximm correlation without external field,
& + 1, the relaxation time is infinite and the particles never reach

equilibrium.
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4. NON-EQUILIBRIUM POTENTIALS

Let us first consider the Boltzmann entropy defined by
S(t) = -K[£(x,p,t) 108 £(,p,0) dxdp = -k H(Y) (4.1)

where k is Boltzmann's constant. For the correlated walk with homogeneous
initial conditions Eq. (4.1) reduces to

s = - B2 I:P+[N) log P,(N) + P_(N) log P_(N)] . (4.2)

From this equation we can study our two particular cases, namely, thermal
equilibrium initial conditions, Eq. (3.18), and far from equilibrium initial
conditions, Eq. (3.13). For the first case we have

N N
FS, M) = loga- 7 [1 B lTT%—-]log [1 g lf._dr} i
(4.3a)
N N
- l_
Hlelr‘é's—] log [1‘9*’1%55—]
and for the second one
N N
1- 1-8
BS,00 - doga -3 [1e 6" e ki) dog (1o dte 1] -
(4.3b)

S R

In these equations  represents the number of accesible points in phase-
space for a system with constant energy. However, since in the next section
we shall describe the equilibrium properties of our model, it is suggested
by the usual treatment of the microcanonical enesemble(é) that the entropy
should be calculated in the region of phase space between the surface E

and E + A, Under these assumptions we have

}

Q = 2L(2me)? + 0(8) (4.4)
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In Fig. 2 the entropies given by Eqs. (4.3) are plotted as
functions of time for specific values of € and §. For equilibrium initial
conditions, which correspond to maximum disorder, the entropy, S, (N = 0)
has a maximm value (log Q) and the effect of applying a bias factor (e # 0)
is to increase the order in the system, decteasing the entropy in the
course of time toward a final value compatible with the applied field. As
for the second case where initially all the particles move toward the right,
and which corresponds to maximum order in the system and minimum entropy,
the collisions with the lattice are the mechanism by which the order is
reduced. Therefore, due to such collisions the entropy, S,, increases in
the course of time. If there were no bias factor, the system would evolve
toward a state of maximum disorder and maximum entropy (log Q). However,
the presence of the bias factor imposes an upper boundary to the disorder,
and so the system reaches a final equilibrium state compatible with the
value of the bias factor, which is the same as in the previous case.

For both cases the stationary state, defined by N + =, is given

by
lg (N+w®) = 1o 9-11+ 2 Tog 13 atal 7=
k "1.2 g b3 =3 °8 T-35
(4.5)

- e - )

Furthermore, if in addition the bias factor ¢ vanishes, the
system reaches equilibrium and the entropy evolves toward its microcanonical
value given by the logarithm of the number of microstates, that is,

lin £8,,(N+«) =logQ - (4.6)
£+0
This result gives the maximm value of the entropy of the system
and is evident, as indicated by Eq. (4.5), that the presence of any bias
factor 0 S e § 1 will decrease this value, yielding a stationary state of
lower entropy. Also note that for the case of maximum correlation,

§ =1 - ¢, the entropy is given by
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Fig. 2. Time evolution of entropy for equilibrium ( ) and far form
equilibrium initial conditions (=== ) as given by Egs. (4.3) and
(4.4), respectively.

x 1 - Q2
éiml-s £S,:(N+w = log 5 i (4.7)
which corresponds to a situation where the only microstates accesible to
the system are those with positive momentum, owing to the presence of the
bias. Thus, for maximm correlation the mmber of microstates is reduced
to a half of its value in equilibrium
Next consider the kinetic energy density defined as
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B(x,t) = L J%% £(x;p,t) dp F (4.8)

For our correlated walk model this expression reduces to
2
EN =L & ‘P+(N) + P_(N) (4.9)

and has a very clear interpretation. Indeed, the density of particles is

given by
Jf(x,p.t)dp =P, (N) + P.(N) (4.10)

and upon combination with Eq. (4.9) we find that the energy density is equal
to the kinetic energy of a single particle times the density of particles.
However, for any spatially homogeneous initial condition form Eq. (2.2a) it
follows that

P,(N) + P_(N) = (i (4.11)
and thus, Eq. (4.9) reduces to

E = p?/2m (4.12)
which is independent of time. This results is consistent with the features
of our model, where the magnitude of momentum is constant and so is the
kinetic energy. (This is so because the external field, € # 0 does not make
any work on the system). Clearly, this allows us to use the equipartition

theorem and relate the magnitude of momentum to the temperature in
equilibrium. Thus

(g;) -x (4.13)

where the angular brackets stand for an equilibrium average, and therefore
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IB| = (mkT)? i (4.14)

Finally, we now consider the Helmholtz free energy density A defined by
2
Atx,t) = L [% + KT log £(x,p,t) |£(x,p,t) dp . (4.15)

After using Eqs. (4.2) and (4.8) this equation becomes
AN) = (E(N) - TS(N)) . (4.16)

Thus, being the energy a constant, the time dependence of the free energy
occurs only through the entropy. This equation which is valid for all
times and arbitrarily far from equilibrium, expresses the validity of the
Local equilibrium assumption for our model. It should be emphasized that
this result appears naturally in our treatment and that it was not establi
shed by using methods valid only near equilibrium, such a Chapman

L
Enskog's*'-.

5. EQUILIBRIUM PROPERTIES

From the thermal equilibrium expression for the entropy given by
Eq. (4.5), which may be rewritten as

S(E,L) = klog (L(2mE)?) - 5, (c,8) (5.1)

with

28, (¢,8) = [1 + == ]103[1 +

e 5cd Do e
1-56 1-5 17§ 1 g

(5.2)

we can derive all the thermodynamic properties of our model. For instance,
the temperature, T, is given by

1_1{38) _k (5.3
T 3E]L ZE ° )
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Similary, the equation of state is defined through

3S XT
p=T [é-L-]E - X (5.4)
and form Egs. (5.3), (5.4) it follows that
2E
0 g (5.5)

as could have been expected, since our model has the termodynamical

properties of a one dimensional ideal gas.
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