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ABSI'RACI'

Far from equilibrium properties of a one dimensional lattice model
of the Lorentz gas are atudied by mean s of a correlated walk description.
The exact time evolution of the distr1bution function of the non-Markovian
stochastic process underlying the walk i8 obtained. The time re1axation of
the system, the Boltzmann entropy and other time dependent thermodynamic
potentials are glven in exact and closed formo It 18 also shown that the
local equl11brlum condltlon l. satisfled, even though the syatem 18 far
from equilibrium. Finally in the limit of long times. the ideal gas
thermodynamic properties are obtained.
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RESUMEN

Se estudian las propiedades lejos del equilibrio de un modelo de
red unidimensional del gas de Lorentz usando una descripción de camino co-
rrelacionado. Se obtiene la evolución temporal exacta de la función dis-
tribución del proceso estocástico no-Markoviano asociado al camino. La re
lajación temporal del sistema, la entropía de Boltzmann y otros potencia--
les termodinámicos dependientes del tiempo se dan en forma exacta y cerra-
da. Se demuestra además que se satisface la condición de equilibrio local,
a pesar de que el sistema está lejos del equilibrio. Finalmente en el 1tml
te de tiempos largos, se obtienen las propiedades del gas termodinámico
ideal.

1. lNfOOrucr ION

The study of nonequilibrium phenomena is beset with many dif-
ficulties oí physical and rnathematieal nature. These difficulties have
motivated theorists to devise and study the simplest models which exhibit
any resemblance with the systems occurring in the real worldJ with the hope
that the deeper insights offered by the exact treatmentJ or the mathematical
trasparency of the models, will compensate for the unrealistic simplifications
in the formulation.

One of these models is that of a system of independent partieles
moving among randomly distributed fixed scatteres. This system is cornmonly
known in statical mechanics, at Ieast when the scatteres are hard spheres,
as the Lorentz gas(l) or Sinai's billiards(2). Here we shall eonsider the
particular case oí a uniform distribution oí scatteres to model the scat-
tering of particles by the lattice points oí a solido

lt has been shoon by Pujita et al. (3) that the dynamies of a
Lorentz gas molecule may be simulated in terms of a eorrelated walk(4) on
a cubic lattice by assuming that when a particle hits a fixed scatterer,
the partiele will suffer forward or baekward seattering with different
probabilities. The fixed scatterer is not necesarily a hard sphere, it may
be an anisotropic scatterer, for instance an electric dipoleJ or even an
isotropic scatterer in the presence of an external fieId.

So far, the only analytie solution that has been found for this
Lorentz lattice gas, corresponds to the particular case oí initial conditions
where all the partieles are located at sornepoint in the lattiee(8,9.10).
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Unfortunately this solution is cumbersome and difficult to handle. We wil1
show in this paper that far spatially homogeneous initial conditions the
corresponding solution i5 elementary and so the dynamics oí the model can be
analyzed at the ligbt oí straighforward caleulations.

More specifically, we consider the ane dimensional version o£ this
model which corresponds to the X projection oí the three dimensional motion
of the partic1es. We will show that for periodic bonndary conditions and
far írem equilibrium initial conditions, the exact and analytic time
evolution oí this Lorentz lattice gas can be derived.

For this purpose we first analize the non.Markovian process
underlying a walker moving oí a ane dimensional periodic lattice with lat-
tice constant ao = 1 and lenght L. The probability of finding the walker
at the diserete position X = xao at the diserete time t = NTO' if the walker
is moving forrn left to right (positive velocity) , is described by P.(X,N).
Similarly, when the walker moves from right to left (negative velocity) ,
the corresponding probability is P_(X,N). Clearly, the knowledge of these
distribution functions provides a complete description oí the stochastic
process associated with the metían oí the walker, since the specification
oí P and P is equivalent to the knowledge oí a one particle distribution. -
function, f(x,v,t), oí the Lorentz type. In faet,

P.(X,N) "f(x = Xao, v> O, t = NTo)

P_(X,N) " f(x = Xao' v < O, t = NTO)

(1. la)

(1.lb)

where the magnitude oí the velocity, v, is a constant given by v = ao/lo .
Thus, P+ and P_ describe the time evolution oí a Lorentz lattice gas whose
phase-space consists of (O • 2L) points, as sho~n in Fig. l.

In the next section 2 we give the finite difference equations
that the aboye distributions satisfy and we discuss the physical
interpretation oí the parameters involved. A solution oí these equations
is obtained for spatially homogeneous initial conditions in section 3 and
its evolution towards equilibrium is studied. Using this solution, in
section 4 we explicitly evaluate sornenon-equilibrium therrnodynamic
potentials of the system and show that the local equilibrium hypothesis
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holds for any degree oí departure frem equilibriUD. Finally. in section S
sane themal equilibrium properties. like the equation of state and the
internal energy. are obtained.
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Flg. 1. Phase space fer one dimensional periodic latt1ee of lattiee constant
&0 • 1 ana lenqth L.

2. PROPERTIES OF 1iiE MJDEL

!he probabilities fOr making succesive steps. P+ and p_' introduced
in the previous section are described through transition probabilities that
keep merory of the previous step and which are defined as

a: probabili ty of stepping right if the previous step was to the right
b: probability of stepping right if the previous step was to the left
e: probability of stepping left if the previous step was to the right
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d: probability of stepping left if the previous step was to the left
In terms of these quantities the equations of motion describing

the correlated walk on the lattice are found to be

P+(X, N+l) • aP+(X.l,N) + bP_(X.l,N)

P.(X, N+l) • cP+(X+l,N) + dP.(X+l,N)

Notice that the normalization condition (OONSERVATlON OF
PARTICLES)

~ {P+(X,N) + P.(X,N)} • 1

implies that

(2.la)

(2.2b)

(2.2a)

a + e • 1 b + d • 1 (2.2b)

and, therefore, there are only two independent transition probabilities.
Actually, in arder to describe more clearly the physical role of the
transition probabilities, it is convenient to introduce two independent
parameters, namely, the bias factor t (also called the external field
parameter), defined by

t • a - d • b - c

and the correlation factor, 6 defined as

6 • a • b • d • c

(2.3)

(2.4)

£ is a measure of any bias in ene direction. it may depend on an external
field (which does not perfonn any wark on the systero) or on anisotropies
of the lattice or any other perturbing effect. Its range is -1 S t S + l.
On the other hand, 6 measures the amount of correlation between two suco
cesive steps, in such a way that for maximum correlation the walker
eventually will keep full motion in the same direction of the external
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fieId. Clearly, fOT vanishing correlation two succesive steps will be
statistically independent and the whale problem is reduced to the usual
random walk. Far bias taward the right (E> O) the range af ó is

O ~ ó ~ 1 - E.

Hence the stochastic process may be described in terms oí either
oí the two sets (a,b,c,d,) ar (£,ó) with the following connection between
them

2a = 1 + e: + 6 ,

2b = 1 + E - Ó ,

2c""1-e:-6,

2d=1-E+ó.

3. ffiLlJTIONFORHQt.OGENEOU5INITIALCDNDITION5

(2.5)

In arder to solve the set of equations (2.1) we have to choose a

boundary condition at X = O and X = L-1. 5ince for a large vol""" we
expect that the effect of the boundary condition will not be so important
on the bulk properties oí the gas, we choosc periodic botmdary conditions
far mathematical stmplicity. This periodic character oí the solution, sug-
gcsts the use oí finitc Fourier series, so we define the transformation

p(r ,N)

L-1

L P(X,N)exp(i2urX/L)
x=o

(3.1)

Under this transformation the coupled set of equations (2.1) may

be written as

¡I(r ,N) =.t!.. P(r ,N-l)

+
where the probability vector P is defined as

[

+ (r,N)]
p(r ,N) "

P.Cr,N)

(3.2)

(3.3)
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and the transition matrix 1i is given by

t1 = [: :]

. ik ik -ik -ikwlth A = ae , B = be , e = ce , D = de and where

k ,,2TTTjL .

Clearly the solution of Eg. (3.2) is given by

~ N ~P(r,N) = t1 • P(r,N= O)

with

MF = a(N)M - ea(N-l) 1- - -
¡ti

(3.4)

(3.5)

(3.6)

(3.7)

where a(N) depends on the eigenvalues A , A of the matrix M ,
+ - -

2~. = A + D. [(A+D)' - 40r

through the express ion

/
a(N) "....:

N
~

(3.8)
~ - ~+ -

Therefore, the final solution P(X,N) is given by the inverse
Fourier transform of (3.6), namely

L-l~ 1 ~P(X,N) = I r P(r,N)exp(-i2nrXjL)
~O

[ex,]The most important initial condition P(X,N = O) = O

(3.9)
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which generates the Green's function, has been discussed elsewhere(S,8,9,10).
Unforttmately this analytic solution is rather involved and will not be
considered here. However, there is ane initial condition which generates
the easiest analytic solution. namely, any homogeneous (position independent)
initial condition, P(X,N" O) ""P(N= O). For this case we have

~ ~
P(r,N= O) : peN° 0)L6r,mL ID:C O,:tl,i2, ... (3.10)

we have choosen this particular initial condition, hoping to show
how the irreversible behavior of the system develops, having at the same
time a very transparent and elementary mathematics.

Thus, using Eqs. (3.9), (3.10) and after sornee1ementary a1gebra
we find that

and

P.(X,N) [a(l' 6N) '6(1. 6N-1)] P.(N: O)
1 • 6

• b(l- 6N) P.(N=O)
1 . 6

(3.11)

N P.(N' O) ~ N N-1] P.(N- O)P.(X,N) • c(l- 6) ---. d(l. 6) • 6(1. 6 ) ---.(3.12)
1 . 6 1 . 6

It shou1d be stressed that these solutions are valid on1y for
arbitrary homogeneous initial conditions that satisfy the normalization
condition, Eq. (2.2a). We now consider two particular initia1 conditions.
First a far fram equi1ibrium case where initia11y a11 the walkers in the
lattice are moving to the right. Then

2P (N = O) = ¡¡• p.(N-O) - O (3.13)

where n is the numberof points in phase space (n • 2L).
Substituting Eq. (3.13) into Eqs. (3.11) and (3.12) we obtain

p. (N) : ~ [1 • 6 • < ~'.; ] (3.14)
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These solutions imply that as a result oí the collisions between
walkers and lattice scatteres the initial condition Eq. (3.13) can not
persist, instead it evolves in time according te Eq. (3.14) toward a
stationary state given by

PtCN ~ =) = fr [Itñ] (3.15)

Notice that for zera bias factor CE a O) the stationary
distribution is 0-1 for both directions oí motian, which is just the micr£
canonical distribution. Oí course, for non-vanishing bias factor the
stationary distribution is difíerent according to the direction oí the
ve10city with respect to the external field. As fur the dependence on the
correlatían factor 6, note that for vanishing correlatían ~here are twa dif
ferent stationary distributions

Jim p.cN ~ =) • fr (1 tE) (3.16).s-. O -

and for maxiJmJmcorrelatían, ó :z: 1 - £ ane oí the initial distributions
persists, namely

1im P (N + =) • ~ , (3.17a)
¡5.+.1-e; + n

I

1im P.(N+=)-O (3.17b)
6"'1 -e;

Hence for maximum correlatian the walkers move unconstrained in the direc-
tion of the bias factor and never have the chance of reversing its motion.

As a second initial condition let us now examine the case where
the system is in therma1 equi1ibrium,

P (N' O)= P CN' O) - .!.+ - O (3.18)

This equation corresponds to a microcanonical distribution without an
externa1 fie1d. Substitution of Eq. (3.18) into Eqs. (3.11) ond (3.12)
1eads to
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Pi(N)=fr[liE
N~~)--r:-n (3.19)

which describes how the thenmal equilibrium distribution evolves in time
after the bias factor is turned an. Notice that fer this case the stationary
distribution is precisely the same as the previous initial condition, Eq.
(3.15). That this i5 true for the general case oí arbitrary hamogeneous
initia1 eonditions can be proved frorn Eqs. (3.11) and (3.12). Taking the
long-time limit oí these equations we find

PiCN ~ ~) = fr [1 i nJ (3.20)

which proves that the stationary state is indeed independent oí the
particular fonn oí the homogeneous initial conditions and so, after sorne
time, the system forgets any initial distribution.

As a first consequence oí OUT dynamical description notice that
we can easily find the relaxation time oí the systern. For this purpose note
that in Eqs. (3.11) and (3.12) the time dependenee oecurs on1y through the
factor 6N• But since O S & S 1, this is a monotonically decreasing function,
so we may write thc identity

6N = exp(-N In 6-')

and clearly the relaxation time is given by

(3.21)

No (In 6-')-' (3.22)

Notice that for a vanishing correlation, 6+0, the relaxation
time is zero, This is to be expected since for a non-corre late waIk, the
homogeneous probability distribution dces not even change in time, it
remains in a stationary state. On the other hand, for max~, correlation
the re1axation time depends on the externa1 fie1d as No % 8-'. if IEI « 1.
So, the externa! field induces the particles to reach their stationary state
at a faster rateo Fina11y, for maximum corre1ation without externa1 fieId,
6 + 1, the relaxation time is infinite and the particles never reach
equilibrium.
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4. NON-EQUILIBRIUN roTEm'IAL5

Let us first consider the Bolt~LOn cntropy defincd by

5(t) = -kff(X,P,t) lag f(x,p,t) dxdp = -k H(t) (4.1)

where k is Boltzmann's constant. For the correlated walk with homogeneous
initial canditians Eq. (4.1) reduces ta

5(N) = -!¥ [P+(N) lag P+(N) + P_(N) lag P_(N)J (4.2)

From this equation we can study OUT two particular cases, namely, thermal
equilibrium initial conditions, Eq. (3.18), and far írom equilibrium initial
canditians, Eq. (3.13). Far the first case we have

1 _ ON
-r:o

I[ ION] [lag n - 2" 1 + e 1-_ 6 lag 11
lC 5, (N)

-i [1 - e ION] [~ 10g 1- £

+ e 1 - oN
--r:-6

(4.3a)

and fer the second ene

1_Ó
N
]

1 - 6 -
(4.3b)

_ óN _ e 1 - oN ]
1 - 6

J lag [1 + ó
N + e1 - oN

--r:-6+ elag n - } [1 + oN

1[ N 1_óN] [- 2" 1 - Ó - e 1 _ 6 lag 1

1lC 5, (N)

In these cquations n represcnt5 thc numbcroí accesible points in phase-
space far a system with constant energy. However,sincc in the next section
we shall describe the equilibritun propertics oí OUT model,_it is suggested
by the usual treatment af the microcananical enesemble(6) that the entrapy
should be calculated in the regian af phase space between the surface E
and E + ~. Under these assumptians we have

n = 2L(2me)1 + ()(~) (4.4)
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In Fig. 2 the entropies given by Eqs. (4.3) are plotted as
ftrnctions of time for specific values of E and <5. For equilibrium initial
conditions, which correspond to maximum disorder, the entropy, Sl(N = O)
has a maximum value (log n) and the eHect of afl'lyinga bias factor (E f O)

is to increase the arder in the system, d~eL.I4-i.ng the cntropy in the

course oí time towarda final value compatible with the applied field. As
for the second case where initially a11 the partieles move toward the right,
and which corresponds to maximumarder in the system and minimumentropy,
the collisions with tre lattice are the mechanism by which the arder is
reduced. rhcrcfore, due to such collisions the entropy, ~, increases in
the course oí time. If there were no bias factor, the system would evolve
toward a state oí maximum disorder and rnaxirnurn entropy (log n). However,
the presence oí the bias factor imposes an upper bOW1dary to the disorder,
and so the systern reaches a final equilibrium state compatible with the
value of the bias factor, which is the same as in the previous case.

For both cases the stationary state, defined by N ~ ~, is given
by

1K51,,(N~w) log n . } [1 + ~] log [1 + 1 ~ 6J

. } [1 . 1 ~ d log [l .n]
(4.5)

Furthermore, if in addition the bias factor £ vanishes, the
system reaches equilibrium and the entropy evolves toward its microcanonical
value given by the logarithm oí the number oí microstates, that is,

lim } 5",(N ~ w) • log n
~o

(4.6)

This result gives the maxi.nn.Jm value oí the entropy oí the system
and is evident, as indicated by Eq. (4.5), that the presence of any bias
factor O S £ S 1 will decrease this value, yielding a stationary state of
lower entropy. Also note that íor the case oí maxi.m..nn correlation,
6 = 1 - £, the entropy is given by
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Fig. 2. Time evolution of entropy for equilibrium ( ) and far form
equilibrium initial conditions (-----) as given bi Eqs. {4.3} and(4.4), respectively.

1im
6 ..•.1- E:

1 nr S",(N ~ 00) = 10g 2" (4.7)

which corresponds to a situation where the only micras tates accesible to
the system are those with positive momentun.owing to the presence oí too
bias. Thus. fer maxim..Dn correlation the numberoí microstates is reduced
to a half oí its value in equilibrium

Next consider the kinetic energy density defined as
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- fE:.E(x,t) - L 2m f(x,p,t) dp

For OUT correlated walk model this exprcss ion reduces to

E(N) = L fu¡ iP+(N) + P_(N) I

(4.8)

(4.9)

and has a very clear interprctation. Indeed, the density oí particles is
given by

ff(X'P,t)dP = P+(N) + P_(N) (4.10)

and upon combination with Eq. (4.9) we find that the energy density is equal
to the kinetic energy oí a single particle times the density oí particles.
However, far any spatial1y homogeneous initial condition form Eq. (2.2a) it

fo11ows that

P+(N) + P_(N) L-1 (4.11)

and thus, Eq. (4.9) reduces to

E = p' /2m (4.12)

which is independent oí time. This results is consistent with the features
oí OUT model) where the magnitude oí mClllentum is constant and so is the
kinetic energy. (This is 50 because the external field, £ f Odces not make
any work on the system). Clearly, this allows liS to use the equipartition
theorern and relate the magnitude of manentum to the temperature in
equilibrium. Thus

,
Oiii)=¥ (4.13)

where the angular brackets stand for an equilibrium average, and therefore
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(4.14)

Finally, we naw consider the Helmholtz free cnergy density A defined by

A(x,t) = LJr ~ + kT 10g f(x,p,t))f(X,P,t) dp •

After using Eqs. (4.2) and (4.8) this equation bccomes

A(N) = (E(N) - TS(N))

(4.15)

(4.16)

Thus, being the energy a constant, the time depcndenceof the free energy
occurs only through the entropy. This equation which is valid for a11
times and arbitrarily far frem equilibrium, expresses the validity of the
!Ceal. equil.ibJLÚ1m a.64ump.t<on for our mode1. It shou1d be emphasized that
this result appears naturally in OUT treatment and that it was not establ!
shed by using methods valid only near equilibrium, such a Chapman
Enskog's(7).

S. E<;UILIBRJUM PROPERrIES

From the thermal equilibrium expression far the entropy given by

Eq. (4.5), which may be rewritten as

with

5(E,L) = k10g (L(2mE) 1 ) - 5,(e,6) (5.1)

25,(e,6) [1 + _e )10g[1 + _e J + [1 - _e )10g[1 __ e J,
1 - 6 1 - 6 1 - 6 1 - 6 (5.2)

we can derive a11 the thennodynamic properties of OUT roodel. For instance,
the temperature, T, is gi ven by

i = [~~JL=-fu (5.3)
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Similary, the equation of state is defined through

[as] kTp:T -- eraL E

and form Eqs. (5.3), (5.4) it follows that

2E
P = r

as could have been expected, since our IOOdelhas the tenncxlynamical
properties oí a one dimensional ideal gas.
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