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Abstract. We have calculated from first principies the interi-
onic potential of aluminum. The method we used is based on the
density functional formalism and is an extension of the usual per-
turbative approach. The procedure uses nonlinear se1f-consistent
caIculations of the displaced electron charge density distribu~
tion around an external charge immersed in an electron gas.
This method had been applied previousIy only to metallic hy-
drogen and lithium. From the calculated potential we obtained
the phonon dispersion curves using the self~consistent harmonic
approximation. The predictions of the phonons are far from ex-
perimental results showing that the method has to be refined in
order to be applied to metals heavier than metallic hydrogen and
lithium.

Resumen. Hemos calculado, de primeros principios, el poten-
cial interi6nico de aluminio. El método utilizado para calcularlo
se basa en el formalismo de funcionales de la densidad y es una
extensión del enfoque usual de teoría de perturbaciones. El pro-
cedimiento requiere de cálculos autoconsistentes y no-lineales de
la densidad electrónica alrededor de una carga externa en un gas
de electrones. Este método solamente había sido utilizado anteri~
ormente en hidr6geno metálico y en litio. A partir de los poten-
ciales calculados obtuvimos las curvas de dispersi6n de fonones
por medio de la aproximación arm6nica autoconsistente. Las cur-
vas de dispersi6n que resultan del cálculo quedan lejos de los
resultados experimentales, mostrando así que el método tiene
que refinarse para poder ser aplicado a metales más pesados que
hidrógeno o litio.

PACS: 63.20-.
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1. Introduction

A very important ingredient for the investigation of the properties of
solids is the knowledge of the interionic poten ti al. For the particular
case ofmetals, several methods have been proposed [1-101to find the
interionic potentials. Sorne of them are based on the use of empirical
potentials (Morse or Lennard-Jones type). These potentials show no
Friedel oscilations and decay very rapidly.

Another often used approach for finding the interionic potential
is by pseudopotentials and perturbation theory. In this approach
we have empirical pseudopotentials and first principIes pseudopo-
tentials. At present it is known that a pseudopotential determined
in an empirical way cannot always be considered as weak [11]' so
that its use in getting the interionic potential is not justified. The
first principies pseudopotentials show Friedel oscillations and may
be local, non-local or energy dependent.

In what is the usual approach to the calculation of the prop-
erties of simple metals, the starting point is a free electron gas
into which bare pseudopotentials are introduced¡ these are treated
self-consistentIy by perturbation theory. The resulting interionic po-
tential can then be interpreted as the electrostatic interaction of one
bare pseudopotential with a second screened one, with additional
corrections for exchange and correlation. The screening cloud turns
out to be the density distribution surrounding the ion when im-
mersed in an otherwise uniform electron gas, but with wavefunctions
calculated to first order in this pertubation.

The calculation of the interionic poten ti al can be made from
first principIes using pseudopotentials [7, 8, 9]. This has been done
using the density functional formalism [12, 13]' to calculate the
induced charge density around an ion in an electron gas. Then, a
pseudopotential is chosen to reproduce the induced charge density
in linear response, except in a region close to the ion, where the
density has to be modelled. This modelling is not unique. In this
way non-linear effects are partly included in the pseudopotential.
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In this work we followed a method based on the density fune-
tional formalism for ealculating the density around an ion in an
eleetron gas. The interionie potential is given in terrns of the density
and the direet interaetion between two ions. We don 't use pseu-
dopotentials. This method has been applied with sueeess to metallie
hydrogen [141 and with relative sueeess to lithium [151. From the
resulting potential we obtained the phonon dispersion eurves using
the self eonsistent harmonie approximation [161.

The seeond part of this work is to describe briefiy how to obtain
the interionie potentia1. The set of equations to be solved in the self
eonsistent harmonie approximation to ealculate the phonon disper-
sion eurves is presented in section 3. Finally, in seetion 4 we give the
results and diseussion.

2. The Interionic Potential

We explain the method briefiy, for more details the reader may
see Refs. 1, 14 and 15.

We start with an interaeting and electrieally neutral eleetron gas,
represented by a Hamiltonian H and an average eleetronic density no.
We now add two statie charges of magnitude Z to this system and,
to preserve eharge neutrality, 2Z electrons are also added. Qne of the
statie eharges is located at the origin and the other at R. The new
total hamiltonian for the eleetron gas is HT' Following a well known
proeedure (similar to that used in the proof of Hellmann-Feynman
theorem [17]) the total energy ehange including the direet interaetion
Z' / R between the two static charges and the differences between
the ground state energies of the eleetrons deseribed by HT and H,
respectively, ean be written as

Z' (l J [Z Z]~ET = R - Z Jo d>. ,rr p~(r) ¡r¡+ Ir _ RI ' (1)

where we are using atomic units (double Rydbergs), e = h = m = 1,
where e and m are the eleetron eharge and mass, h is Plank 's constant
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divided by 211", and

(2)

where l\]i(,\)) is the state vector for the ground state of the Hamilto-
nian H(.\) = H + .\H', i.e.,

(3)

with O .,; .\ .,; 1.
In order to obtain tJ.ET given by Eq. (1) we need to calculate the

electron density, p>.(r), for each value of.\ between O and 1. Because
of the difficulty of performing the two centres calculation for each
R, and guided by the usual method we assume that p>.(r) can be
reasonably approximated by

(4)

(5)

where tJ.n>.(r) is the displaced electron density around the charge
sitting at the origin and tJ.n>.(r- R) is the displaced electron density
around the charge at R, no is the unperturbed electron density.

Substituting Eq. (4) in Eq. (1), neglecting additive constants and
terms which are R independent and using spherical symmetry, we
get for the interionic potential, V(R):

Z2 11V(R) = - - 2Z d.\ [FI(.\, R) + F2(.\, R)J,
R o

where

(6)

(7)

and

F2(.\, R) ;: Loo 411"rtJ.n>.(r) dr.

The expression for V(R) given by Eq. (5) is the one we use for
the interionic potentia1.
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To calculate tl.n~(r), which is the displaced electron density in
an electron gas perturbed by a single charge )'Z at the origin we
use the formalism of Hohenberg-Kohn and Sham [12, 13]. We can
calculate tl.n~(r) in terms of the self consistent solutions ,pi(r) of a
Schrodinger equation,

by

or

- [_!V'2 + v.tr(r)] ,p.(r) = E.,p.(r),

tl.n~(r) = ¿ l,pi(r)21- no
E,<E,

(8)

(9)

1 ~ ("I 2 [ 2tl.n~(r) = 2" LJ2l+ 1)Jo dkk IRlk(r)l
1f l=O O (10)
- IJl(kr)12] + 2 ¿1,p¡(r)12,

¡

where ,p¡(r) refers to the bound state wave functions and E¡ and
kF are the Fermi energy and Fermi wave vector respectively. The
effective potential, V.tr(r) is given by

V. (r) = -A.(r) + óE'xcln(r)J.tr '1' ón(r) , (11)

where tJ¡(r) is the total electrostatic potential of the system and
E'xcln(r)] is the exchange correlation energy of the system. For
the exchange-correlation contribution to the effective potential in
Eq. (11) we use the expression given by Hedin and Lundqvist [181,
in atomic units (double Rydbergs):

óE'xen(r) [21 (21)]Vxe(r) == ón(r) = -0.02908 ~+0.77341n 1+ ~ '

where (4/3)1fr~ = l/n.
In order to have V.tr(r) vanishing at large r, the excbange corre-

lation part is rescaled to

Vx.(r) -+Vxcln(r)] -+ Vxcln(r)] - Vxclnol (12)
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We carried out the calculation of c,.n~(r)following the method
of Manninen et al. [19]. For more details the reader may see Refs. 15
and 19. Notice that the calculation has to be done for each value of
>. between zero and one.

3. Phonon Dispersion Curves
We followed the work of Boccara and Sarma [201 with the ex-

tensions given by Gillis et al. [211 and Cowley and Shukla [22].
We present here the resulting set of self-consistent equations to

solve within the self consistent harmonic approximation. For more
details the reader may see Ref. 20, 21 and 22.
The set of equations to be solved is

w¡(k)E~(k) = ¿Da~(k)E~(k), (13)
~

where E~(k) is the Q component of the polarization vector E~(k)
and the dynamical matrix is

1
Da~(k) = M ¿(1- cos(k. Rtl)(<t>a~(Rt)), (14)

t
with

1
(<t>a~(Rtl)= (871"3 det >'t)l/2

( )

(15)
x!~u exp -4 ~ U~(>'ll)~6"6 <t>a~(Rt+ Ut),

where M is the ion mass, Ut is the vector describing the displacement
of atom i from its equilibrium position Rt and <t>a~(Rt+ Ut) is the
tensor derivative of the interatomic potential evaluated at Rt + Ut.

Finally,

(>.tla~= ~N ¿(1 - cos(k. Rtl)
H

E~a(k)E~(k) coth [(1/2~~~~(k)],
(16)



Ab-Initio calculation o/ thc intcrionic. .. 7

where N is the number of ions. The sum is over the first Brilloin
zone, f3 is 1/ kBT, with kB being the Boltzmann constant.

To solve the set of self consistent Eqs. (13), (14), (15) and (16)
and obtain the phonons we start with the frequencies generated by
the Harmonic Approximation as the first guess. Then, the conver-
gence procedure is followed.

4. Results and Discussion

As the first step we obtained the densities fully self consistently
by numerically solving the Schrodinger equation. To solve this equa-
tion we used four blocks with different step size in each of them. In
the first block we used a step size of O.Olao, where ao is the Bohr
radius (ao = 0.529 A) up to R = 1.7ao. The second block goes from
R = 1.7ao to R = 5.1ao with a step size of 0.02ao. The third block
goes from R = 5.1ao to R = 11.9ao in steps of 0.0400 and finally the
fourth block goes from R = 11.900 to R = 25.5ao in steps of 0.08ao.
The phase shifts were evaluated at R = 25.500. The sums over i in
Eq. (10) were ended at imu = 9. The values of the phase shifts are
shown in table 1. Notice how the last four phase shifts are practically
zero. The corresponding Friedel Sum Rule is also shown in table 1.
The discrepancy between the obtained value and correct value of the
Friedel Sum Rule was of only 0.016%. The convergence in the value
of the effective potential and in the value of the electronic density
was of one part in 106 between consecutive iterations. Figure 1 shows
the resulting density for >. = 1. We made the numerical calculation
for 13 different values of >.. The step size in >. was 1.0/13.0

With the calculated densities for the set of values of >., we calcu-
lated the interionic potential using Eq. (5). The resulting potentiaI
is shown in Fig. 2.

From the calculated potential we obtained the phonons using
the self consistent harmonic approximation. The phonon dispersion
curve we obtained is shown in Fig. 3. We can see that the predicted
phonons are very far from the experimental ones, which are shown
in Fig. 4. However, they have the same overall shape as experimental
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r, = 2.06406ao;

FSR = 13.002141

no = 6.616076;
n2 = 0.322911;
n4 = 0.006463;
n6 = 0.000290;
n8 = 0.000055;

ao = 0.529 Á

ni = 3.950931
n3 = 0.037282
"5 = 0.001296
n7 = 0.000083
n9 = 0.000050

TABLE 1. Value, of the phase ,hift" nt, for aluminum. The value, of r, (metal
den,ity parameter) and of the Friedel Sum Rule (FSR) are also given.
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FIGURE 1. Electronic density around an aluminum ion in aluminum metal.
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FIGURE 2. Interionic potential in aluminum. From this work: _ ; from Ref. 9:
.. ; from Ref. 7: _ . _ .

rcsults. Thc maximum frequency predicted is about a factor of seven
largcr than the corresponding experimental one.

The calculation of the phonon dispcrsion curve included 22
neighbouring shells. The frequencics were converged to within one
percent. The temperature was taken with the values of OOK, IOoK,
and 300° K without any significative changes in the resulto

In the case of lithium for which this same approach was taken in
order to calculate thc interionic potcntial and the pohonon disper-
sion curve [15), the difference betwcen the predicted phonons and the
corresponding experimental results is about 40%. It is clear that for
aluminum which is a hcavier metal the prcdictions get worse. So, for
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FIGURE 3. Calculated phonon dispersion curve for aluminum.
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FIGURE 4. Experimental phonon dispersion curve for aluminum.
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aluminum this approach to find the interionic potential is no longer
useful. However, the validity of this method had to be explored for
metals heavier than hydrogen and lithium.

Superposing the two displaced charge densities, at the origin and
at R (see Eq. (4)) is a mejor approximation (which is common to
the usual perturbation theory approach) and is the part that we feel
has to be improved to take a more realistic interionic charge density.
There are exchange-correlation effects between the two clouds of
elcctrons around each ion which were not taken into account when
using Eq. (4)_Thesc effects become more important for metals with
heavier nuclci. Finding the electronic charge densities for two centres
of force would be the best way of gctting a more realistic interionic
charge density and this is a difficult problem to solve. But if this
problem could be solved the method, which does not have any ad-
justable parameter and is a very pure ab initio calculation, should
give a potential very close to the real one.
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