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Abstract. We have calculated the electronic density around an
ion in metallic hydrogen using the density functional formalism
of Hohenberg, Kohn and Sham. We have a set of self-consistent
equations to be solved within this formalism. We have numer-
ically solved these equations using two different approaches. In
the first one we have approximate self consistency. This approach
had been used previously to calculate the interionic potential and
superconducting properties of metallic hydrogen. In the second
approach we have full self-consistency by following the method of
Manninen et al. The results for the density show small differences
from one approach to the other and for the effective potentials the
differences are even smaller. From the densities we have recalcu-
lated the interionic potential for both approaches. The resulting
interionic potentials are practically identical.

Resumen. Hemos calculado la densidad electrénica alrededor de
un ion en hidrégeno metdlico utilizando el formalismo de densi-
dad funcional de Hohenberg, Kohn y Sham. En este formalismo se
tiene que resolver un conjunto de ecuaciones autoconsistentes. Re-
solvimos numéricamente estas ecuaciones utilizando dos enfoques
distintos. En el primero, tenemos una autoconsistencia aproxi-
mada. Este enfoque ha sido utilizado previamente para calcular
el potencial interiénico y las propiedades de superconductividad
del hidrégeno metélico. En el segundo enfoque tenemos autocon-
sistencia completa al seguir el método de Manninen et al. Los
resultados para la densidad presentan pequefias diferencias entre
ambos enfoques y para los potenciales efectivos las diferencias
son todavia més pequefias. A partir de las densidades hemos re-
calculado el potencial interiénico con ambos enfoques y resulta
practicamente el mismo.
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1. Density Functional Theory

This formalism is due to Hohenberg, Kohn and Sham [1, 2] and
states that there exists a local, one body effective potential Vg(r)
which can be used to obtain the exact ground state electron density
through solutions of the one particle Schrédinger equation,

(397 + Ver(0)] () = ecti(r), (1)
and (u is the Fermi energy)
n(r) = 3 Ioi(r)l @)

The effective potential is given by

6 Exc([n(r)]
én(r) °’
where ¢(r) is the total electrostatic potential of the system, and

Exc[n(r)] is the exchange-correlation energy of the system.
When we omit gradient corrections, we can write

Vesr(r) = —¢(r) + (3)

where exc(n(r)) is the exchange-correlation energy per particle in a
homogeneus electron gas of density n.

Using spherical symmetry, we write the equations to be solved
for our case

1at2 I

- fk] r R (r) = 0, (5)

where Ry (r) is a solution to the radial Schrédinger equation of energy
ex = (1/2)k%, for nonlocalized states.

The potential of the impurity in the electron gas is contained in
¢(r) and, in the absence of the impurity, R;;(r) is proportional to the
spherical Bessel function of the first kind, J;(kr).
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Using Eq. (2) we can write the electron displaced density around
an ion in the electron gas: n(r) — no = An(r),

An(r) = :__% i(z: +1) fu " dkk? [|Ru(r)]* - [Ti(kr) ?]
=0

2 ©)
+2) |(r)I’,
b
where ¢, refers to the bound state wave functions.
In order for the impurity to be completely screened, exactly
Z electrons must be displaced by it, where Z is the charge of the

impurity. For a potential Vg(r), the number of displaced electrons
is given by the Friedel Sum Rule (FSR):

Imax

Zp =23 (21+ Umke), ™
=0

where n;(kr) are the phase shifts of the potential evaluated at the
Fermi level. In this way, for a perfect screening Z = Z.

For the exchange-correlation contribution to the effective poten-
tial, we use the expression given by Hedin and Lundquist 3] which
is based on the work of Singwi et al. [4] (in double Rydbergs):

_ 8Ex[n(r)] _ 21 ( 21 )]
Vielr) = =55 @) = 002090 | T8N (14 ok (8)
where r,(r) is the local electron gas density parameter evaluated at
r, t.e., (4/3)7rd = 1/n(r).
The electrostatic potential obeys Poisson’s equation,

V26 = —4xD(r), (9)

where
D(r) = Z5(r) — An(r). (10)

In order to have V,g(r) vanishing at large r, the exchange corre-
lation part is rescaled to

Vae(r) = Vxe[n(r)] = Vae[(no)]. (11)
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We had to solve Egs. (5), (6), (8), (10) and (11) self consistently
in order to obtain the displaced density, and to check the Friedel
Sum Rule (Eq. (7)).

2. Methods of Calculation

We have used two approaches in obtaining the solutions for the
displaced density.

In the first one we don’t have an automatic convergence in
successive iterations. We used the method given in Refs. 5 and 6
and we describe it here briefly.

The initial step is choosing a trial potential Vi;(r) which satisfies
the Friedel Sum Rule, from which we obtain the wave function
solving Eq. (1) and we find An(r) using Eq. (6). This An(r) is
used to generate Vg(r) for which the Friedel Sum is calculated. In
general, V.g(r) will not satisfy the Friedel Sum Rule and will not
show consistency with Vi:(r). The following step was to change Vi.(r)
and to start the procedure again. The procedure was repeated until
we got satisfactory self consistency between Vi (r) and V.g(r) and the
correct Friedel Sum. Plotting the trial and effective potentials was
very helpful to find out the changes to make in the trial potential.
The trial potential we used was

__1 e—ar
Vel )= = [ TH ot B+ (et A2

(12)

To begin, an initial value of 3 was chosen, and then « determined
so that Vi.(r) satisfied the FSR. From this, An(r) and then V,g(r) and
the Friedel Sum were calculated.

Then, a different value of 8 was chosen, producing a new Vi.(r),
with an adequate value of « and hence a new V.g(r) with a new
Friedel Sum.

For the electronic density parameter we took r, = 1.0 [5, 6, 7].
The Schrodinger equation was solved in steps of 0.05a¢ (where ag =
0.529 A). It was found that going out to 10ap; was far enough. The
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phase shifts were calculated at 5a¢9. The sums over | were terminated
at lnae=17.
In the second approach to calculate the displaced density we
followed the method of Manninen et al. (8], which we describe briefly.
It is always found that by solving the electrostatic potential in
cach iteration cycle from the equation (n;(r) is the jellium density)

¢i(r) :[diir [n+(r) - nl‘_l(r)] (13)

r —x/|

the procedure diverges. The artifice proposed by Manninen et al [8]
which was found to be successful in solving the Hohenberg-Kohn-
Sham equations is the following.

The Poisson equation is written in the form

Vi — k¢ = —ar(ny — n) — k¢, (14)
with a recursive solution given by (8]

oW (r) = é/d%"

r— x|

—kjr—r'|

[~ar(ne () = nE D)) - k246D
(15)

This equation leads to a sufficient convergence after about 8 iter-
ations, starting with a Thomas-Fermi type potential. The constant k
is arbitrary with a convenient numerical value for convergence. The
final solution does not depend on the particular value of k.

In this approach we also used a step size of 0.05a¢ to solve the
Schrédinger equation, with a maximum value of r of 10a. The phase
shifts were also calculated at 5a9 and the sums over | were terminated
at Imax = 7. The value of k for the first seven iterations was 1.7a;®.
After that, and in order to increase the speed of conver- gence, we
took k = 1.0a;!. The degree of self-consistency between two succesive
iterations we could achieve was of one part in 10° for both, the
density and the effective potential.

3. Results and Discussion

The calculated displaced densities are shown in Figs. 1,2. We can
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see the same overall shape for both densities. We can also see small
differences for the value of the density for a given r. In table I we
show the density parameter r,, the Friedel Sum for each calculation
and the phase shifts, which were calculated at r = 5.0ap in both cases.
Table II shows the positions of maxima and minima and the values of
the densities at these points for both aproaches. In Fig. 3 we present
the degree of self-consistency between the input and output effective
potentials for the first approach.

The results for the density in the first approach have been used
previously to calculate the interionic potential and superconducting
properties of metallic hydrogen [5, 7]. Thus, it seems necessary to
find out if the small differences in the calculated displaced electron
densities are enough to change the predictions made previously for
metallic hydrogen (5, 7].

We have used the electron densities obtained from the two ap-
proaches to recalculate the interionic potential in metallic hydrogen,
following the method described in Refs. 5, 7 and 9. In this method
the interionic potential is given by [9]

2 1
V(R) = % - zz[ dA[Fi(M\ R) + F2(\ R)] (16)
0
where _—
FI(A, R) — f w dr,
0 R
F(M\ R) E/ 4mrAny(r)dr,
R

and A is such that 0 < A < 1.

We had to calculate An,(r) to get Fi(X, R) and Fz(), R) and the
interionic potential. We took A = 0, 0.2, 0.4, 0.6, 0.8 and 1.0. The
resulting interionic potentials for each approach are shown in Fig. 4,
where the interionic potential obtained from the displaced electron
densities using the first approach is exactly (one part in 10°) the
one reported in Refs. 5 and 7. The results for the two approaches
are practically identical. The phonon dispersion curves and the su-
perconducting properties were obtained in Refs. 5 and 7 from the
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FIGURE 1. Displaced electron densities for metallic hydrogen in a.u. Result using
the first approach: __ ; result using the second approach: ...
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FIGURE 2. Displaced electron densities for metallic hydrogen in a.u. (2nd. part).
Result using the first approach: __ ; result using the second ap-
proach: ...
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1st. Approach ¥, =.1.0 8.0, 2nd. Approach
FSR = 0.99477 FSR = 1.0027
Phase Shifts

ng = 0.6273 no = 0.6300
ny = 0.1603 n; = 0.1590
ny = 0.4876 ng = 0.0494
rn3 = 0.01670 n3z = 0.01700
ng = 0.0062 ng = 0.0061
ns = 0.0024 ns = 0.0023
ng = 0.00010 ng = 0.0009
n7 = 0.0004 n7 = 0.0004

TABLE 1. Results for the phase shifts and the Friedel Sum Rule (FSR) for metallic
hydrogen ry = 1.0 a.u. using both approaches (4/3)rr3 = 1/ng.

1st. Approach s = 1.0 aa, 2nd. Approach
arr’An(r) (a.u.) r (a.u) r (a.u.)  4rr’An(r) (a.u.)
0.8411 0.65 M 0.63 0.8494
0.1869 1.65 m 1.62 0.1909
0.2184 2.05 M 2.07 0.2282
—0.1792x 107! 3.10 m 3.06 —-0.2410x 1071
0.6555% 107! 3.80 M 3.84 0.6410x 107!
—0.3727% 10T 4.70 m 4.68 ~0.3970x 107!
0.3446x 107! 5.50 M 5.46 0.3780x 107!
-0.3107x 1071 6.30 m 6.30 —0.3218x 107!
0.2798x 107! 7.10 M 7.14 0.2871x 107!
—~0.2522% 107} 7.95 m 7.98 —-0.2532x 107}
0.2305x 107! 8.75 M 8.7 0.2338x 107!
-0.2110x 1071 9.55 m 9.54 —0.2138x 107}
TABLE II. Positions of maxima and minima and values of the electronic displaced

densities at these points, using both approaches. The positions of the
maxima are given by M and the positions of the minima are given

by m.
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I'IGURE 3. Input and output potentials in the first approach. Notice the change
of scale in the second frame. This was the degree of self-consistency
obtained in Refs. 5, 6 and 7. Input: __ ; Output: ...

80 I

4

rv (A.U,)x10

6.0 f

40 H

i /\\//\\/AU%AV,

.40 +
4

100 12.0

rea,)

FIGURE 4. Interionic potential for metallic hydrogen. Potential from Refs. 5
and 7 (which was recalculated here): __ ; potential from the densities
obtained from the second approach of this work: ...
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interionic potential. In this way, since the interionic potentials are
the same, we will obtain the same phonon dispersion curves and
the same superconducting properties for metallic hydrogen for the
second approach. Thus, the predictions will not be changed.
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