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Abstract. We have calculated the electronic density around an
ion in metallic hydrogen using the density functional formalism
of Hohenberg, Kohn and Sham. We have a set of se1f-consistent
equations to be solved within this formalismo We have numer.
ically solved these equations using two different approaches. In
the first one we have approximate self consistency. This approach
had been used previously to calculate the interionic potential and
superconducting properties of metallic hydrogen. In the second
approach we have full se1f-consistency by following the method of
Manninen et al. The results for the density show small differences
from one approach to the other and for the effective potentials the
differences are even smaller. fiom the den sities we have recalcu-
lated the interionie potential for both approaches. The resulting
interionic potentials are practically identical.

Resumen. Hemos calculado la densidad electrónica alrededor de
un ion en hidr6geno metálico utilizando el formalismo de densi-
dad funcional de Hohenberg, Kohn y Sham. En este formalismo se
tiene que resolver un conjunto de ecuaciones autoconsistentes. Re-
solvimos numéricamente estas ecuaciones utilizando dos enfoques
distintos. En el primero, tenemos una autoconsistencia aproxi-
mada. Este enfoque ha sido utilizado previamente para calcular
el potencial interi6nico y las propiedades de superconductividad
del hidr6geno metálico. En el segundo enfoque tenemos auto con-
sistencia completa al seguir el método de Manninen et al. Los
resultados para la densidad presentan pequeñas diferencias entre
ambos enfoques y pua los potenciales efectivos las diferencias
son todavía más pequeñas. A partir de las densidades hemos re-
calculado el potencial interi6nico con ambos enfoques y resulta
prácticamente el mismo.

PACS: 70.10+x; 71.45-d
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1. Density Functional Theory

This formalism is due to Hohenberg, Kohn and Sham [1, 2] and
states that there exists a local, one body effective potential V.ff(r)
which can be used to obtain the exact ground state electron density
through solutions of the one particle Schrodinger equation,

[-t'~72+ v.ff(r)] 1/J.(r) = f.1/J.(r),

and (Jl is the Fermi energy)

n(r) == L 11/J;(r)12•
£¡<~

The effective potential is given by

V. (r) = -"'(r) + óExc[n(r)]
.ff '1' ón(r)'

where q,(r) is the total electrostatic potential of the system,
Exc[n(r)] is the exchange-correlation energy of the system.

When we omit gradient corrections, we can write

óExc[n(r)) d [ ]
ón(r) = dn n(r)fxc(n(r)) ,

(1)

(2)

(3)

and

(4)

where fxc(n(r)) is the exchange-correlation energy per particle in a
homogeneus electron gas of density n.

Using spherical symmetry, we write the equations to be solved
for our case

(5)

where Rlk(r) is a solution to the radial Schrodinger equation of energy
'k = (1/2)k2, for nonlocalized states.

The potential of the impurity in the electron gas is contained in
q,(r) and, in the absence of the impurity, R1k(r) is proportional to the
spherical Bessel function of the first kind, J¡(kr).
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Using Eq. (2) we can write the electron displaced density around
an ion in the electron gas: n(r) - no = f.n(r),

•

1 ~ [k, 2 [ 2 2]f.n(r) = ".2 ~(21 + 1) Jo dk k IR¡k(r)1 - IJ¡(kr)l

+ 2 LI1/Jb(r)12,
b

(6)

where 1/Jb refers to the bound state wave functions.
In order for the impurity to be completely screened, exactly

Z electrons must be displaced by it, where Z is the charge of the
impurity. For a potential V,If(r), the number of displaced electrons
is given by the Friedel Sum Rule (FSR):

2'mu
ZF = - L (21 + l)n¡(kF), (7)

". 1=0

where nl(kF) are the phase shifts of the potential evaluated at the
Fermi leve!. In this way, for a perfect screening Z = ZF'

For the exchange-correlation contribution to the effective poten-
tial, we use the expression given by Hedin and Lundquist 13] which
is based on the work of Singwi et al. [4) (in double Rydbergs):

_ 6Excln(r)] [ 21 (21 )]
Vxc(r) = 6n(r) = -0.02090 r.(r) + 0.773410 1+ r,(r) , (8)

where r,(r) is the local electron gas density parameter evaluated at
r, ¡.c., (4/3)7I"r~ = l/n(r).

The electrostatic potential obeys Poisson's equation,

where
D(r) = Z6(r) - f.n(r).

(9)

(10)
In order to have V'If(r) vanishing at large r, the exchange corre-

lation part is rescaled to

Vxc(r) -+ Vx'[n(r)J - Vxc[(no)). (11)
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We had to solve Eqs. (5), (6), (8), (10) and (11) selfconsistently
in order to obtain the displaced density, and to check the Friedel
Sum Rule (Eq. (7)).

2. Methods of Calculation

We have used two approaches in obtaining the solutions for the
displaced density.
In the first one we don't have an automatic convergence in

successive iterations. We used the method given in Refs. 5 and 6
and we describe it here briefiy.
The initial step is choosing a trial potential Vtr(r) which satisfies

the Friedel Sum Rule, from which we obtain the wave function
solving Eq. (1) and we find C>n(r) using Eq. (6). This C>n(r) is
used to generate V.If(r) for which the Friedel Sum is calculated. In
general, V.If(r) will not satisfy the Friedel Sum Rule and will not
show consistency with Vtr(r). The following step was to change Vtr(r)
and to start the procedure again. The procedure was repeated until
we got satisfactory self consistency between Vtr(r) and V.If(r) and the
correct Friedel Sumo Plotting the trial and effective potentials was
very helpful to find out the changes to make in the tria! potentia1.
The trial potential we used was

1 [ e-'" ]
V'r(r) = -; 1+ {3r+ ({32+ (a + {3)2)r2/2 (12)

To begin, an initial value of {3was chosen, and then a determined
so that V'r(r) satisfied the FSR. From this, C>n(r) and then V.If(r) and
the Friedel Sum were calculated.
Then, a different value of f3 was chosen, producing a new V'r(r),

with an adequate value of a and hence a new V.If(r) with a new
Friedel Sumo
For the electronic density parameter we took r, = 1.0 [5, 6, 7].

The Schr6dinger equation was solved in steps of 0.05ao (where ao =
0.529 Á). It was found that going out to lOao was far enough. The
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phase shifts were calculated at Sao. The sums over I were terminated
at Imax = 7.

In the second approach to calculate the displaced density we
followed the method of Manninen el al. [8]' which we describe briefiy.

It is always found that by solving the electrostatic potential in
each iteration cycle from the equation (n+(r) is the jellium density)

~;(r) = f d
3r [n+(~~-=- :~~l(r)] (13)

the procedure diverges. The artifice proposed by Manninen el al [81
which was found to be successful in solving the Hohenberg-Kohn-
Sham equations is the following.

The Poisson equation is written in the form

V2~ _ k2~ = -411"(n+ _ n) - k2~, (14)

with a recursive solution given by [81
1 f -klr-r'l~(;)(r) = - ~r e [-411"(n+(r') _ n(;-l)(r')) _ k2~(;-i)(r/)] .
411" Ir -r'l

(lS)
This equation leads to a sufficient convergence after about 8 iter-

ations, starting with a Thomas-Fermi type potentia1. The constant k
is arbitrary with a convenient numerical value for convergence. The
final solution does not depend on the particular value of k.

In this approach we also used a step size of O.OSao to solve the
Schriidinger equation, with a maximum value of r of lOaD. The phase
shifts were also calculated at Sao and the sums over I were terminated
at Imax = 7. The value of k for the first seven iterations was l.7ao1.
After that, and in order to increase the speed of conver- gence, we
took k = l.Oao l. The degree of self-consistency between two succesive
iterations we could achieve was of one part in 105 for both, the
density and the effective potentia1.

3. Results and Discussion

The calculated displaced densities are shown in Figs. 1,2. We can
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scc thc same overall shape for both densities. \Ve can also see small
differences for the value of the density for a given r. In table I we
show the density parameter r" the Friedel Sum for each calculation
and the phase shifts, which were calculated at r = 5.0ao in both cases.
Table II shows the positions of maxima and minima and the values of
the densities at these points for both aproaches. In Fig. 3 we present
the degree of self-consistency between the input and output effective
potentials for the first approach.

The results for the density in the first approach have been used
previously to calculate the interionic potential and superconducting
properties of metallic hydrogen [5, 7]. Thus, it seems necessary to
find out if the small differences in the calculated displaced electron
densities are enough to change the predictions made previously for
metallic hydrogen [5, 7].

\Ve have used the electron densities obtained from the two ap-
proaches to recalculate the interionic potential in metallic hydrogen,
following the method described in Refs. 5, 7 and 9. In this method
the interionic potential is given by [9]

Z2 11V (R) = - - 2Z d>. [F1(>', R) + F2(>', R)] ,R o

where
F (>' R) = rR 4"r

2
6n .•.(r) d

1 , - Jo R T,

F2(>', R) == LOO 4"r6n .•.(r) dr,

and >. is such that O::::>. :::: 1.
\Ve had to calculate 6n .•.(r) to get F1(>',R) and F2(>',R) and the

interionic potentia1. \Ve took >. = o, 0.2, 0.4, 0.6, 0.8 and 1.0. The
resulting interionic potentials for each approach are shown in Fig. 4,
where the interionic potential obtained from the displaced electron
densities using the first approach is exactly (one part in 105) the
one reported in Refs. 5 and 7. The results for the two approaches
are practically identica1. The phonon dispersion curves and the su-
perconducting properties were obtained i~ Refs. 5 and 7 from the
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FIGURE 1. Displaced electro" densities for metallie hydrogen in a.U. Result using
the first approach: _ ; result using the second approach: ...
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FIGURE 2. Displaced electro" densities for metallie hydrogen in a.u. (2nd. part).
Result using the first approach: _ ; result using the second ap-
proach: ...
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1st. Approach
FSR = 0.99477

no = 0.6273
n, = 0.1603
n2 = 0.4876
"3 = 0.01670
n4 = 0.0062
n5 = 0.0024
n6 = 0.00010
n7 = 0.0004

T, = 1.0 a.u.

Phase Shifts

2nd. Approach
FSR = 1.0027

no = 0.6300
ni = 0.1590
n2 = 0.0494
n3 = 0.01700
n4 = 0.0061
n5 = 0.0023
n6 = 0.0009
n7 = 0.0004

TABLE 1. Results ror the phase shifts and the FTiedel Surn Rule (FSR) ror rnetallie
hydrogen r, = 1.0 a.u. using both approaehes (4/3).-r~ = l/no.

1st. Approach r, = 1.0 a.u. 2nd. Approach
4".r2~n(r) (a.u.) r (a.u.) r (a.u.) 4".r2 ~n(r) (a.u.)

0.8411 0.65 M 0.63 0.8494
0.1869 1.65 m 1.62 0.1909
0.2184 2.05 M 2.07 0.2282

-0.1792x 10-1 3.10 m 3.06 -0.24IOx 10-1

0.6555x 10-1 3.80 M 3.84 0.6410x 10-1

-0.3727x 10-1 4.70 m 4.68 -0.3970x 10-1

0.3446x 10-1 5.50 M 5.46 0.3780x 10-1

-0.3107x 10-1 6.30 m 6.30 -0.3218x 10-1

0.2798x 10-1 7.10 M 7.14 0.2871x 10-1

-0.2522x 10-1 7.95 m 7.98 -0.2532x 10-1

0.2305x 10-1 8.75 M 8.7 0.2338x 10-1

-0.2110x 10-1 9.55 m 9.54 -0.2138x 10-1

TA BLE 11.' Positions of maxima and mínima and values of the electronic displaced
densities at these points, using both approllches. The positions of the
maxima are given by M and the positions of the mínima are given
by m.
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FIGURE 3. Input .nd output potenti.l, in the fir,t .ppro.eh. Notice the eh.nge
or seaIe in the second frame. This was the degree oC self-consistency
obt.ined in Rels. 5, 6 and 7. Input: _ ; Output: ...
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FIGURE 4. Interionic potential for metallie hydrogen. Potential from Refs. 5
and 7 (which was rccalculated here): _ j potcntial from the densitics
obtaincd froro the sccond approach oC this work: ...
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interionic potentia1. In this way, since the interionic potentials are
the same, we will obtain the same phonon dispersion curves and
the same superconducting properties for metallic hydrogen for the
second approach. Thus, the predictions will not be changed.
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