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Abstract. We have made a calculation of the Knight Shift of
metallic hydrogen using the formalism of Hohenberg, Kohn and
Sham. With this formalism we calculated self consistently the
electronic density in the metal. For the electron spin susceptibil-
ity we have used two expressions. One given by Shastry and the
other given by Von Barth and Uedin. We have considered the
proton in an interstitial position and in a substitutional position.
The maximum obtained value for the Knight Shift is 8.28 X 10-5
(which corresponds to an interstitial position) and the minimum
value we obtained is 7.97 X 10-5 (which corresponds to a substitu.
tional position) at atmospheric pressure. \Ve have performed the
calculation of the Knight Shift for six different volume changes,
with a maximum decrease in volume of 18%, for each one of the
proton positions.

Resumen. Hemos calculado el cambio Knight para hidrógeno
metálico usando el formalismo de Hohenberg, Kohn y Sham.
Con este formalismo calculamos autoconsistentemente la densidad
elctrónica en el metal. Para la susceptibilidad de espín electrónica
hemos usado dos expresiones, una dada por Shastry y la otra por
Von llarth y lIedin. Hemos considerado al protón en una posición
intersticial y en una sustitucional. El valor máximo que obtuvimos
para el cambio Knight es 8.28 X 10-5 (el cual corresponde a la
posición intersticial), el valor mínimo es 7.97 X 10-5 (que corres-
ponde a la posición sustitucional), ambas a presión atmosférica.
Los cálculos de cambio Knight los realizamos para seis cambios
de volumen, con una disminución máxima en el volumen de 18%,
para cada uno de los tipos posiciones del protón.

PACS: 76.60-k; 76.60 cq
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1. Introduction

Recently, there has been considerable interest on metallic hydro-
gen 11-111. The prediction and knowledge of its properties is becom-
ing important. In this work we are interested on the prediction of
the Knight Shift for this material.

The fractional shift, K, produced by the hyperfine Hamilto-
nian [12] in the nuclear magnetic resonance frequency in a metal,
with respect to the resonance frequency for the same nucleus in a
non metallic environment is known as the Knight Shift. If we have
the metal nucleus with magnetic moment JJ at the origin of coordi-
nates, the interaction of this nucleus with an effective magnetic field
produced by the surrounding electrons is usually described by the
hyperfine Hamiltonian [121:

81T
Ih = :1JJ . m(O)

_ 2I-'BJJ' f {_m_(r_)- _3r~[r_._m~(r~)]}dr + 21-'B "" JJ' _Lj ,
r3 r5 L.- r~

j 1

with

(l)

m(r) = 21-'BLSjé(r - rj),
j

where Sj and Lj are the operators of spin and angular momentum
in units of h for the electron at position r j'

Following Refs. 6-9 we take for metallic hydrogen an FCC struc-
ture, with a value of the electronic density parameter r. = 1.0 (in
atomic units and (4/3)1Tr~ = (l/no), where no is the average elec-
tron density in the metal). Bearing this in mind we examine the
contributions to Eq. (1).

The first term in Eq. (1) is by far the largest term in this Hamilto-
nian in most simple metals. It is the usual Fermi contact interaction
and comes from all electrons in the crystal with a wave function
different from zero at the site of the nucleus. The second term de-
scribes the magnetic interaction between the nuclear and electron
spin dipoles. If the origin is located at a site with cubic symmetry



(2)
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(as in our case) this terrn vanishes identically. The last terrn is the
magnetic eoupling between the nuc1ear spin and the electron orbital
rnagnetic rnornents. This terrn is expeeted to be irnportant rnainly
in transition rnetals with half filled d-bands, although there is sorne
evidence that can be irnportant for other sirnpler rnetals like Beril-
lium [13, 14]. This terrn is usually negligible for simple rnetals and it
is extrernely diflicult to ealculate aecurately in rnetals. In our case,
for rnetallie hydrogen, we will not take it into account.

For a uniforrn external rnagnetie field B in the z-direction, the
Ferrni contact eontribution to the Knight Shift is given by

K = 8". m(O)
• 3 B '

where m(O) is the value at the site of the nuc1eus of the eornponent
of the total electron rnagnetie rnornent density along the direetion
of the external rnagnetic fiel B. This express ion can be cornpared
with the original expression for the Knight Shift given by Townes
et al [15], whieh is

8".
Kd = 3"XPO,PF, (3)

where Xp is the electron spin susceptibility per unit volurne, 0, is the
volurne of the unit cell and PF is the average over the Ferrni Surface
of the square of the valence eleetron wave functions evaluated at the
nuc1eus. Equation (2) takes into account core and valence electrons
with wave functions different frorn zero at the site of the nuc1eus,
below the Ferrni Surfaee and on the Ferrni Surface. The contribution
to m(O) in Eq. (2) can be written as [13]

m(O) = mFS(O) + mFv(O), (4)

where mFs(O) corresponds to the valence electrons on the non-
perturbcd Ferrni Surface, and mFV (O) comes frorn eleetrons in the
volurne enclosed by this Fermi Surface.

The contribution mFV (O) can be divided in the following
way [131:

(5)
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where mv.I(O) corresponds to the valence electrons (enclosed in the
Fermi Surface) contribution and m,(O) comes from the core electrons.

The contribution to the Knight Shift from the electrons on the
Fermi Surface, KFS, presents a very small difference [13] « 0.6%)
with respect to the value ofthe Knight Shift obtained using Eq. (3).

For metallic hydrogen we don't have core electrons, so the con-
tribution to the Knight Shift from the core electrons is zero, the
contribution to the Knight Shift, Kvah from the valence electrons in-
side the Fermi Surface is usually neglected (see Refs. from 16 to 20).
This contribution seems to be between 0.6% and 5% of the value
of KF s (or Kd)' Thus, we will neglect the contribution Kva1 for the
case of metallic hydrogen, following the usual approach, and the
only contribution to the Knight Shift to be considered for the case
of metallic hydrogen is KFS which is, as we have said, practically
identical to Kd [13].

In section 2 we present a summary of the Formalism of Hohen-
berg, Kohn and Sham [22, 231 which we have used to calculate Kd.
We have done the calculation considering two approaches. In the
first we consider the proton in an interstitial position [16]. In the
second we consider the proton in a substitutional position [17].

Section 3 is used to present results and discussion.

2. Electronic densities from non-linear screening

The central result of the Hohenberg-Kohn-Sham formalism [22,
231 states that there exists a one body local potential V.If(r) which
through the one body Schrodinger equation given by

(6)

generates the set of wave functions .pi(r) and the exact ground state
density of the system trough the independent particle density ex-
pression:

n(r) = L l.pi(r)l2,
(1<£1

(7)
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where the sum extends up to the Fermi energy.
The elfective potentia! is given by

v. ( ) = _""() éE.c(n(r)]
.ff r '1' r + én(r) ,

where t/>(r) is the total electrostatic potential of the system,
E.c[n(r)] is the exchange-correlation energy of the system.

When we omit gradient corrections, we can write

E•.[n(r)) _ d [ ]
ón(r) - dn n(r)<.c(n(r)) ,

(8)

and

(9)

where <.c(n(r)) is the exchange-correlation per particle in a homoge-
neous electron gas of density n.

Using spherical syrnmetry, we write down the equation to be
solved for our case:

(10)

where RlJ:(r) is a solution to the radial Schréidinger equation of
energy <. = k2/2.

Notice that the potentiat of the impurity in the electron gas is
contained in t/>(r) and that in the absence of the impurity, Rt.(r) is
proportional to the spherical Bessel function of the first kind, Jt(kr).

From Eq. (7) we can obtain the electron displaced density around
an ion in the electron gas:

or

L>n(r) = L 1t/J¡(r)12 - no
(¡<f./

1 00 [k.
L>n(r) = ,,2 ~(2l+ 1) Jo dkk2 [IRlJ:(r)l' -IJ¡(kr)I']

+ 2 LIt/J¡(r)12,
¡

(11)

(12)
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where ,pb(r) refers to the bound state wave functions.
For the exchange-corre!ation contribution to the effective poten-

tia!, Eq. (9), we use the expression given by Hedin and Lundqvist [24],
in atornic units:

E,,[n(r)] [21 (21)]Vzc(r) == 6n(r) = -0.02909 -;::;-+ 0.7734In 1+ -;::;- ,

where (4/3)1l"r.3 = l/no.
The e!ectrostatic potentia! obeys Poisson's equation:

V2if> = -4 •.D(r),

where
D(r) = Z6(r) + no - n(r)

and Z is the charge of the nuc1eus, or

D(r) = Z6(r) - 6n(r).

(13)

(14)

(15)

(16)

In order to have V.tr(r) vanishing at !arge r, the exchange corre-
!ation part is rescaled to

(17)

Notice that Eqs. (14) and (15) correspond to an ion within the
gas. If we consider that the ion is !ocated at the center of a vacancy in
the Jelliurn, the corresponding e!ectrostatic potential, if>, is generated
by a density given by [25]

D(r) = Z6(r) + noe(r - r.) - 6n(r), (18)

where e(x) is the step function.
We so!ved self consistently Eqs. (10), (12), (13), (16) and (17).

We carried out the calculation of the density following the rnethod
of Manninen el al. [261 to achieve autornatic se!f consistency.

For the case of the ion at the center of a vacancy in the jelliurn,
the set of equations to be solved is (10), (12), (13), (17) and (18).
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For the solution to the equations of the Formalism of Hohenberg,
Kohn and Sham we can obtain PF which is the value of the square
of the wave function of conduction electrons, at the origin, averaged
over the Fermi Surface.

In the next section we give the results for the Knight Shift for
metallic hydrogen considering a proton in an interstitial position and
a proton in a substitutional position. For the first case, the charge
neutrality of the metal is preserved by introducing one electron in
the gas after introducing the pro ton [6, 8]. The change in the density
is negligible (we have added one electron in a system with 1023
electrons). For the second case the charge neutrality is preserved by
removing a sphere of positive charge equal to the charge of a proton,
as indicated in Eq. (18) and then introducing the proton [25].

3. Results and Discussion

We have used Eq. (3) to calculate the Knight Shift for metallic
hydrogen. For the electro n spin susceptibility we have used the one
given by Shastry [27] and the one given by Von Barth and Hedin [28).
In table I we show the normalized Knight Shift for metallic hydrogen
as a function of volume using the express ion given by Shastry [271
for the magnetic susceptibility. In this table we show results for a
proton in an interstitial position. Table II shows the results for the
normalized Knight Shift considering a proton in a vacancy and using
the expression for the magnetic susceptibility given by Shastry [27].
In table III and IV we report the same variables but using the
expression given by Von Barth and Hedin [28] for the magnetic
susceptibility. The values for the Knight Shift of metallic hydrogen
are about four times smaller than the value for lithium which is the
smallest value reported previously. This is not surprising because it
is known that the Knight Shift is a decreasing function of the atomic
number [16].

At atmospheric pressure the largest value we found for the
Knight Shift corresponds to an interstitial position of the pro ton
and using the express ion of Shastry [271 for the magnetic suscep-
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VIVo, %
O
3
6
9
12
15
18

Kd(V)/ Kd(O)
1.0000
0.9985
0.9979
0.9970
0.9960
0.9952
0.9945

Xp (10-6 cgs vol. units)
3.000
3.026
3.052
3.079
3.107
3.135
3.164

TADLE l. Volume dependenee of the normalized Knight Shift for metallie hydro-
gen (interstitial position) using the magnetic susceptibility given by
Shastry [271.

VIVo, %
O
3
6
9
12
15
18

Kd(V)/ Kd(O)
1.0000
1.0009
1.0018
1.0026
1.0035
1.0044
1.0053

Xp (10-6 cgs vol. units)
3.000
3.026
3.052
3.079
3.107
3.135
3.164

TADLE n. Volume dependenee of the normalized Knight Shift for metallie hydro-
gen (substitutional position) using the magnetic susceptibility given
by Shastry 1271.

tibility, and is 8.28 X 10-3%. The smallest value we found for the
Knight of metallic hydrogen at atmospheric pressure corresponds to
a proton in jellium vacancy and using the express ion given by Von
Barth and Hedin [281 for the magnetic susceptibility and this value
is 7.97 x 10-3%.

The variation of the Knight 8hift for metallic hydrogen with
volume is shown in Fig. 1. It is praetically a linear behavior for the
cases we studied. However, for the case of the interstitial position, the
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VIVo, %
O
3
6
9

12
15
18

Kd(V)/ Kd(O)
1.0000
0.9984
0.9977
0.9966
0.9956
0.9947
0.9939

Xp (10-6 egs vol. units)
2.979
3.005
3.031
3.058
3.085
3.113
3.141

TABLE 1II. Volume dependence of the normalized Knight Shift for metallic hy-
drogen (interstitial position) using the magnetic susceptibility given
by Von Barth and Hedin [28].

VIVo, %
O
3
6
9

12
15
18

Kd(V)/ Kd(O)
1.0000
1.0008
1.0016
1.0024
1.0032
1.0040
1.0048

Xp (10-6 egs vol. units)
2.979
3.005
3.031
3.058
3.085
3.113
3.141

TABLE IV. Volume dependence of the normalized Knight Shift for metallic hydro-
gen (substitutional position) using the magnetic susceptibility given
by Von Barth and Hedin [281.

Knight Shift inereases when the volume deereases and this happens
using any of the two expressions for the magnetie suseeptibility
we have eonsidered. For the ease of the substitutional position of
the proton we have an inereasing Knight Shift when the volume
deereases, for any of the two magnetie suseeptibilities we used.

At present there is a tendeney to believe that the properties
of simple metals are better predieted using an ion in a vaeaney in
jellium [25, 29] (i.e. in a substitutional position), so that we believe
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that the eorrect volume dependenee of the Knight Shift for metallie
hydrogen is to inerease when the volume deereases, as shown in
Fig. 1.
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FIGURE 1, Volume dependen ce of the Knight Shift for metallic hydrogen, a) In-
terstitial position and usiog Shastry's magnetic susceptibility \27]i
b) Substitutional position and using Shastry's magnetic susceptibil-
ity [27]; e) Interstitial position and using Von Barth and Heding
result for the magnetic susceptibility 1281; d) Substitutional position
and usiog the result of Von Barth and Hedin for the magnetic SUS4

ceptibility [28].
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