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Abstract. We have made a calculation of the Knight Shift of
metallic hydrogen using the formalism of Hohenberg, Kohn and
Sham. With this formalism we calculated self consistently the
electronic density in the metal. For the electron spin susceptibil-
ity we have used two expressions. One given by Shastry and the
other given by Von Barth and Hedin. We have considered the
proton in an interstitial position and in a substitutional position.
The maximum obtained value for the Knight Shift is 8.28 x 105
(which corresponds to an interstitial position) and the minimum
value we obtained is 7.97 x 10™° (which corresponds to a substitu-
tional position) at atmospheric pressure. We have performed the
calculation of the Knight Shift for six different volume changes,
with a maximum decrease in volume of 18%, for each one of the
proton positions.

Resumen. Hemos calculado el cambio Knight para hidrégeno
metélico usando el formalismo de Hohenberg, Kohn y Sham.
Con este formalismo calculamos autoconsistentemente la densidad
elctrénica en el metal. Para la susceptibilidad de espin electrénica
hemos usado dos expresiones, una dada por Shastry y la otra por
Von Barth y Hedin. Hemos considerado al protén en una posicién
intersticial y en una sustitucional. El valor maximo que obtuvimos
para el cambio Knight es 8.28 x 1075 (el cual corresponde a la
posicién intersticial), el valor minimo es 7.97 x 10~% (que corres-
ponde a la posicién sustitucional), ambas a presién atmosférica.
Los célculos de cambio Knight los realizamos para seis cambios
de volumen, con una disminucién méxima en el volumen de 18%,
para cada uno de los tipos posiciones del protén.

PACS: 76.60-k; 76.60 cq
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1. Introduction

Recently, there has been considerable interest on metallic hydro-
gen [1-11]. The prediction and knowledge of its properties is becom-
ing important. In this work we are interested on the prediction of
the Knight Shift for this material.

The fractional shift, K, produced by the hyperfine Hamilto-
nian [12] in the nuclear magnetic resonance frequency in a metal,
with respect to the resonance frequency for the same nucleus in a
non metallic environment is known as the Knight Shift. If we have
the metal nucleus with magnetic moment p at the origin of coordi-
nates, the interaction of this nucleus with an effective magnetic field
produced by the surrounding electrons is usually described by the
hyperfine Hamiltonian [12]:

Hy, = 5 - m(0)
Hile 1
. f{m(r) 3r(r in()]}dr+2ﬂﬂz I;S, (1)
] J

r

with
m(r) = 2up »_ S;é(r —r;),
]
where S; and L, are the operators of spin and angular momentum
in units of h for the electron at position r;.

Following Refs. 6-9 we take for metallic hydrogen an FCC struc-
ture, with a value of the electronic density parameter r, = 1.0 (in
atomic units and (4/3)7r> = (1/no), where ng is the average elec-
tron density in the metal). Bearing this in mind we examine the
contributions to Eq. (1).

The first term in Eq. (1) is by far the largest term in this Hamilto-
nian in most simple metals. It is the usual Fermi contact interaction
and comes from all electrons in the crystal with a wave function
different from zero at the site of the nucleus. The second term de-
scribes the magnetic interaction between the nuclear and electron
spin dipoles. If the origin is located at a site with cubic symmetry
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(as in our case) this term vanishes identically. The last term is the
magnetic coupling between the nuclear spin and the electron orbital
magnetic moments. This term is expected to be important mainly
in transition metals with half filled d-bands, although there is some
evidence that can be important for other simpler metals like Beril-
lium [13, 14]. This term is usually negligible for simple metals and it
is extremely difficult to calculate accurately in metals. In our case,
for metallic hydrogen, we will not take it into account.

For a uniform external magnetic field B in the z-direction, the
Fermi contact contribution to the Knight Shift is given by

— 8z m(0)

B sty (2)

where m(0) is the value at the site of the nucleus of the component
of the total electron magnetic moment density along the direction
of the external magnetic fiel B. This expression can be compared
with the original expression for the Knight Shift given by Townes
et al [15], which is

8w

Ky = ?prcPF, (3)

where x, is the electron spin susceptibility per unit volume, Q2. is the
volume of the unit cell and Pr is the average over the Fermi Surface
of the square of the valence electron wave functions evaluated at the
nucleus. Equation (2) takes into account core and valence electrons
with wave functions different from zero at the site of the nucleus,
below the Fermi Surface and on the Fermi Surface. The contribution
to m(0) in Eq. (2) can be written as [13]

m(0) = mps(0) + mpy (0), (4)

where mpg(0) corresponds to the valence electrons on the non-
perturbed Fermi Surface, and mpy (0) comes from electrons in the
volume enclosed by this Fermi Surface.
The contribution mpy(0) can be divided in the following
way [13]:
mev (0) = mya(0) + me(0), (5)
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where my,1(0) corresponds to the valence electrons (enclosed in the
Fermi Surface) contribution and m.(0) comes from the core electrons.

The contribution to the Knight Shift from the electrons on the
Fermi Surface, Krg, presents a very small difference [13] (< 0.6%)
with respect to the value of the Knight Shift obtained using Eq. (3).

For metallic hydrogen we don’t have core electrons, so the con-
tribution to the Knight Shift from the core electrons is zero, the
contribution to the Knight Shift, K,,), from the valence electrons in-
side the Fermi Surface is usually neglected (see Refs. from 16 to 20).
This contribution seems to be between 0.6% and 5% of the value
of Kps (or K4). Thus, we will neglect the contribution K., for the
case of metallic hydrogen, following the usual approach, and the
only contribution to the Knight Shift to be considered for the case
of metallic hydrogen is Kps which is, as we have said, practically
identical to Ky [13].

In section 2 we present a summary of the Formalism of Hohen-
berg, Kohn and Sham [22, 23] which we have used to calculate K.
We have done the calculation considering two approaches. In the
first we consider the proton in an interstitial position [16]. In the
second we consider the proton in a substitutional position [17].

Section 3 is used to present results and discussion.

2. Electronic densities from non-linear screening

The central result of the Hohenberg-Kohn-Sham formalism [22,
23| states that there exists a one body local potential V,g(r) which
through the one body Schrédinger equation given by

[~397 + Vea ()] (x) = extix), (6)

generates the set of wave functions ¢;(r) and the exact ground state
density of the system trough the independent particle density ex-
pression:

n(r) = Y %), ()

€; <€y
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where the sum extends up to the Fermi energy.
The effective potential is given by

_ 6 Bxcln(r)
Ver(r) = —¢(r) + “on(r) (8)
where ¢(r) is the total electrostatic potential of the system, and
Ez¢[n(r)] is the exchange-correlation energy of the system.

When we omit gradient corrections, we can write

where €;c(n(r)) is the exchange-correlation per particle in a homoge-
neous electron gas of density n.

Using spherical symmetry, we write down the equation to be
solved for our case:

£(e+1)

72

dz
= g7zt Ver(r) + fk] rRey(r) =0, (10)

where Ry (r) is a solution to the radial Schrédinger equation of
energy €, = k?/2.

Notice that the potential of the impurity in the electron gas is
contained in ¢(r) and that in the absence of the impurity, Ry (r) is
proportional to the spherical Bessel function of the first kind, Jo(kr).

From Eq. (7) we can obtain the electron displaced density around
an ion in the electron gas:

An(r) = Y |i(r)]* —no (11)

€, <€y

or
00 k’
An(r) = w_lz > (2e+ 1)j‘; dk k* [| Rox(r)|* = |Te(kr) ]
=0

(12)
+2 Zl\bb(r)lz)
b
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where 1(r) refers to the bound state wave functions.

For the exchange-correlation contribution to the effective poten-
tial, Eq. (9), we use the expression given by Hedin and Lundgqvist [24],
in atomic units:

_ Exc[n(r)]

Vael(r) = =5 — —0.02909 [E +0.77341In (1 El ﬂ)] . (13)
n(r) Ts

Ts
where (4/3)7rs3 = 1/no.
The electrostatic potential obeys Poisson’s equation:

V¢ = —4xD(r), (14)
where
D(r) = Z§(x) + no — n(r) (15)

and Z is the charge of the nucleus, or
D(r) = Zé(x) — én(r). (16)

In order to have V.g(r) vanishing at large r, the exchange corre-
lation part is rescaled to

Vae(r) = Vaeln(r)] — Vae[no). (17)

Notice that Egs. (14) and (15) correspond to an ion within the
gas. If we consider that the ion is located at the center of a vacancy in
the Jellium, the corresponding electrostatic potential, ¢, is generated
by a density given by [25]

D(r) = Z§(r) 4+ no O(r — rs) — 6n(r), (18)

where ©(z) is the step function.

We solved self consistently Egs. (10), (12), (13), (16) and (17).
We carried out the calculation of the density following the method
of Manninen et al. [26] to achieve automatic self consistency.

For the case of the ion at the center of a vacancy in the jellium,
the set of equations to be solved is (10), (12), (13), (17) and (18).
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For the solution to the equations of the Formalism of Hohenberg,
Kohn and Sham we can obtain Pr which is the value of the square
of the wave function of conduction electrons, at the origin, averaged
over the Fermi Surface.

In the next section we give the results for the Knight Shift for
metallic hydrogen considering a proton in an interstitial position and
a proton in a substitutional position. For the first case, the charge
neutrality of the metal is preserved by introducing one electron in
the gas after introducing the proton [6, 8]. The change in the density
is negligible (we have added one electron in a system with 10%
electrons). For the second case the charge neutrality is preserved by
removing a sphere of positive charge equal to the charge of a proton,
as indicated in Eq. (18) and then introducing the proton [25].

3. Results and Discussion

We have used Eq. (3) to calculate the Knight Shift for metallic
hydrogen. For the electron spin susceptibility we have used the one
given by Shastry [27] and the one given by Von Barth and Hedin [28].
In table I we show the normalized Knight Shift for metallic hydrogen
as a function of volume using the expression given by Shastry [27]
for the magnetic susceptibility. In this table we show results for a
proton in an interstitial position. Table II shows the results for the
normalized Knight Shift considering a proton in a vacancy and using
the expression for the magnetic susceptibility given by Shastry [27].
In table III and IV we report the same variables but using the
expression given by Von Barth and Hedin [28] for the magnetic
susceptibility. The values for the Knight Shift of metallic hydrogen
are about four times smaller than the value for lithium which is the
smallest value reported previously. This is not surprising because it
is known that the Knight Shift is a decreasing function of the atomic
number [16].

At atmospheric pressure the largest value we found for the
Knight Shift corresponds to an interstitial position of the proton
and using the expression of Shastry [27] for the magnetic suscep-
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V/Vo, % K4(V)/K4(0) xp (107° cgs vol. units)
0 1.0000 3.000
3 0.9985 3.026
6 0.9979 3.052
9 0.9970 3.079

12 0.9960 3.107

15 0.9952 3.135

18 0.9945 3.164

TABLE 1. Volume dependence of the normalized Knight Shift for metallic hydro-
gen (interstitial position) using the magnetic susceptibility given by

Shastry [27].

V/Vo, % Kq4(V)/K4(0) xp» (107% cgs vol. units)
0 1.0000 3.000
3 1.0009 3.026
6 1.0018 3.052
9 1.0026 3.079

12 1.0035 3.107

15 1.0044 3.135

18 1.0053 3.164

TABLE II. Volume dependence of the normalized Knight Shift for metallic hydro-
gen (substitutional position) using the magnetic susceptibility given
by Shastry [27].

tibility, and is 8.28 x 1072%. The smallest value we found for the
Knight of metallic hydrogen at atmospheric pressure corresponds to
a proton in jellium vacancy and using the expression given by Von
Barth and Hedin [28] for the magnetic susceptibility and this value
is 7.97 x 1073%.

The variation of the Knight Shift for metallic hydrogen with
volume is shown in Fig. 1. It is practically a linear behavior for the
cases we studied. However, for the case of the interstitial position, the
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V/Vo, % K4(V)/K4(0) xp (107° cgs vol. units)
0 1.0000 2.979
3 0.9984 3.005
6 0.9977 3.031
9 0.9966 3.058

12 0.9956 3.085

15 0.9947 3.113

18 0.9939 3.141

TABLE 1II. Volume dependence of the normalized Knight Shift for metallic hy-
drogen (interstitial position) using the magnetic susceptibility given
by Von Barth and Hedin [28].

V/Vo, % K4(V)/K4(0) Xp (107% cgs vol. units)
0 1.0000 2.979
.3 1.0008 3.005
6 1.0016 3.031
9 1.0024 3.058
12 1.0032 3.085
15 1.0040 3.113
18 1.0048 3.141

TABLE IV. Volume dependence of the normalized Knight Shift for metallic hydro-
gen (substitutional position) using the magnetic susceptibility given
by Von Barth and Hedin [28].

Knight Shift increases when the volume decreases and this happens
using any of the two expressions for the magnetic susceptibility
we have considered. For the case of the substitutional position of
the proton we have an increasing Knight Shift when the volume
decreases, for any of the two magnetic susceptibilities we used.

At present there is a tendency to believe that the properties
of simple metals are better predicted using an ion in a vacancy in
jellium [25, 29| (s.e. in a substitutional position), so that we believe
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that the co
hydrogen i
Fig. 1.

rrect volume dependence of the Knight Shift for metallic
s to increase when the volume decreases, as shown in
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FIGURE 1. Volume dependence of the Knight Shift for metallic hydrogen. a) In-

terstitial position and using Shastry’s magnetic susceptibility [27];
b) Substitutional position and using Shastry’s magnetic susceptibil-
ity [27); ¢) Interstitial position and using Von Barth and Heding
result for the magnetic susceptibility [28]; d) Substitutional position
and using the result of Von Barth and Hedin for the magnetic sus-
ceptibility [28].
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