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Abstract. Transient Network Models are used to simulate the
rheological behavior of concentrated solutions of polymeric ma.
terials. A fairly good agreement with the experimental situation
is obtained if a conformation dependent non-affine motion of the
segments forming the polymeric network is considered. The in-
troduction of non-affinity ioto the diffusion equation for the con-
figurational probability function in these models gives rise to the
prediction of important macroscopic transport properties. For ex-
ample, the prediction oC a finite second normal-stress difference
and alimited small deformation of the network segments in simple
shear, together with distinclive realures in transient flows.

Resumen. En este trabajo, el comportamiento reol6gico de solu-
ciones concentradas poliméricas es analizado con base en las
predicciones de los modelos de redes transitorias. La consideraci6n
de un movimiento no afín de los segmentos que forman la red
polimérica es factor indispensable para una adecuada predicci6n
de los resultados experimentales. A partir de los momentos de la
funci6n de distribuci6n configuracional de los segmentos, es posi-
ble predecir importantes propiedades de transporte. Por ejemplo,
la predicci6n de la segunda. diferencia de esfuerzos normales de la
soluci6n junto con una limitada deformaci6n de los segmentos en
flujo cortante simple, y la predicción de propiedades interesantes
en flujos transitorios.

PACS: S1.20sh; 47.50+d; 66.20+d; 61.25 Hq
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1. Introduction

It is understood that polymeric fiuids are viscous fiuids which con-
tain an elastic substructure or network of entangled macromolecular
chains. Configurational changes in the microstructure of these sys-
tems produced by fiow are the cause of the observed macroscopic be-
havior of fiowing polymeric liquids. To model this behavior, transient
network theories have been proposed. Originally developed by Green
and Tobolsky [1]' Lodge [21 and Yamamoto [3], they fundamentally
envisage a concentrated polymer solution composed of elastic seg-
ments or strands joined through temporary junctions constantly un-
dergoing creation and destruction processes. In Yamamoto's theory,
a segment is represented by and end-to-end vector joining two entan-
glement points. The distribution function for the segments follows
the equation

~~ + V . jo1/> = G -IN, (1)

where jo is the rate of change of the end-to-end vector r, G is the rate
of creation and fJ is the rate of destruction of the network junctions.
Given a macroscopic motion

jo = r. r, (2)

where r is the velocity gradient tensor, Eq. (1) can be solved for
various fiow situations and the macroscopic rheological functions are
evaluated by calculating the moments of the distribution function.
The creation function of segments G is generally assumed Gaussian
for the initial distribution of the end-to-end distance of the segments.
This assumption is based on the fact that the segments are created at
constant rate and they have at the instant of creation, the same dis-
tribution of free chains. The form of the rate of destruction function
fJ gives rise to a variety of predictions from the mode!. It is generally
assumed by most authors, that fJ may depend on the mean squared
extension of the segments (r2) 1/2. This idea relates the destruction
rate to the elastic content of the system. In fact, Helmholtz free
energy for transient network systems is given in terms of the excess
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free energy and it is a measure of the deformation of the network
with respect to its equilibrium value. If the destruction function
is related to the end-to-end distance between entanglements, then
this functíon is necessary dependent on the entangled state of the
network.

To further complement the model, Phan-Thien and Tanner [4)
and Johnson and Segalman [5) introduced the idea of "non-afline"
motion to account for differences in the deformation between the
network and the imposed flow. In this case, an "effective" velocity
gradient tensor is defined:

L = r - <D, (3)

where D is the rate of deformation tensor (D = (1/2)(r + rT)) and <
is a constant termed slip parameter.

2. The stress in the network

The stress in a network is obtained by determining the forces
related to the changes in free energy of the system undergoing a
virtual deformation. In a Gaussian network under isothermal con-
ditions, the decrease in the Helmholtz free energy of the system is
equal to the work performed by the system on the surroundings [6):

-dA = F .dr, (4)

where

and
A = -KTlnC (5)

C = LGNr/2e-3Nr'/2. (6)

N is the number of statistical sub-units making up the chain between
entanglement points, L is a constant, T the temperature and F the
force. If we assume C is Gaussian (Eq. 16), this leads to a linear
force in the segments given by

F = -3NkTr; (7)
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and in this case the stress tensor is expressed as

r = (Fr) = -3NkT(rr}, (8)

where the brackets mean the statistical average integrated over the
configurational space.

If e is non-Gaussian, this is

(9)

where a2 is a constant, the relationship Eq. (8) no longer holds. In
this case, up to first order, the force is given by

and the stress tensor by

r = (Fr) = -3NkT(1 + 2a2(r2})(rr}.

(10)

(11)

In obtaining Eq. (11), Peterlin's preaveraged approximation has
been used [7]. In this, the function at each instant is replaced by its
value at the mean square end-to-end distance (r2}1/2 which exists at
that momento Equation (10) assumes that the nonlinearity of the
force can be treated in a mean field fashion (in the spirit of the
preaveraging approximation for the Oseen interaction tensor [8]).
This approximation for the force is reasonable as long as the non-
linearities can be considered as small perturbation. It c1early break s
down when the applied force becomes strong.

Further departures from Gaussian statistics can be obtained by
considering more terms in the expansion Eq. (9). By extending the
series to higher order, the express ion for the stress tensor may be
given by

(12)

where 130 is constant.
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3. The rate of destruction function

As it was mentioned, f3 is related to the elastic content of the
system and depends on the degree of deformation of the network.
Therefore, it is proportional to the excess free energy and to the
existing force in the segments. The assumption that f3 is constant,
implies that the entanglement density of the network does not change
with the imposed flow, giving rise to a constant viscosity behavior
and constant normal stress coefficients in shear flow. This case corre-
sponds to a linear force between entanglements (Eq. (7)) equivalent
to Hookean springs. Predictions show agreement with results in the
linear viscoelastic range.

The first order departure from Gaussian statistics implies that f3
must be conformation-dependent. In agreement with the express ion
for the force (Eq. (10)), in this case f3 is given by

( 13)

where f30 and u are constants. This expression for the rate of de-
struction function has been discussed by Fuller and Leal [9) in their
quadratic destruction model. This model still uses linear springs in
the segments by restricting the range of values given to u allowing
the use of Eq. (8) for the stress. Predictions of this model in simple
shear show nonlinear behavior, sueh as a decrease in entanglement
densities with increasing rate of shear, consequently giving rise to a
shear-thinning viscosity and variable normal-stress coefficients.

Murayama [101 analyzed the macroscopic effects of the second
order departure from Gaussian statistics by adding the quadratic
term in the series expansion with variable coefficients. The force
may increase at first proportional to (r2), but at large deformations
it increases up to infinity because of the Iimited extensibility of the
network segments. Indeed, Phan-Thien and Tanner 141 assumed that
the chain-dissociation caefficient is a functian of the mean squarc
average of the end-to-end distance of the network segments and
increases exponentially with increasing strain. This assumption is
closely rclated with the spring force implied in the express ion for
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the stress Eq. (12) and accordingly, the destruction function may be
given by

13 - 130
- 1 - (r2) •

(14)

4. Non-affine Motion

Differences in deformation between the network and the imposed
flow give rise to what is called "slip mechanism" or non-affine mo-
tion. By introducing an effective velocity gradient tensor Eq. (3),
additional nonlinear characteristics are given to the mode!. For ex-
ample, in a mean-field approximation, non-affine motion is the cause
of macroscopic effect such as the second normal-stress difference in
shear flow with variable coefficients. As a first approximation, the
slip parameter f might be thought to be a constant. However, in
the non-Gaussian regime of nonlinear spring forces acting on the
segments, the relationship between the deformation of the network
and the linear relation of Eq. (2) of the imposed flow is not simple.
In fact, the motion of the network with respect to the imposed flow
depends strongly on the hydrodynamic interaction and the non-free
draining character of the segments forming the polymeric networ k.
Accordingly, we can analyze this dependency by distinguishing two
different flow regimes: the intermediate force regime and the strong
force regime. As it has been pointed out by Rabin and Dash [81, in
the intermediate force regime the hydrodynamic interaction tends
to increase with increasing force and the non-free draining character
of the segments is enhanced, as predicted by Peterlin in shear and
elongational flows [11]. This produces coupled forces among the seg-
ments, affecting the motion of the whole network with respect to the
imposed flow and given rise to the slip mechanism. However, in the
strong force regime, the external force penetrates most of the length
scales in the segments and the hydrodynamics interaction decreases.
In Rabin and Dash analysis the Rouse case (free draining case or
negligible hydrodynamic interaction) is approached asymptotically
with increasing force. This effectively reduces the non-affine motion,
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suggesting that the segments are gradually being aligned in the flow
direction reducing their hydrodynamic interaction that prevents the
slip mechanism. To model this behavior, the following express ion for
the non-afline motion is proposed:

(15)

where lO is of order unity. In this equation, the slip mechanism
is reduce with increasing deformation of the segments end-to-end
distance. It also implies that the segments are deformed from a coiled
configuration corresponding to free chains into an ellipsoidal-like
shape due to the imposed flow [12). Consequent1y, by Eq. (15), non
afline motion is confined to an initial degree of deformation and
initial transients in unsteady flow.

The following results in simple shear flow analyze the macro-
scopie effects of a conformation-dependent slip coeflicient. Of course,
the validity of the model will depend upon agreement with available
experimental data.

5. Resulta

The macroscopic rheologieal functions are obtained from the mo-
ments of the distribution function. The expression for the momenta
in simple shear are worked out by multiplying Eq. (1) by rr and av-
eraging the resulting equation in the configurational space. In simple

[
O 1 O]shear, for the velocity gradient tensor given by r = ~ O O O we
O O O
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have

d 2 { ( 2 )} 2 Ldt(X)+ h-o l-«(T)) (x)=0(XY)+3N(30

d 2 { ( 2 )} 2 Ldt (y ) + h + o 1- «(T )) (y) = -o(xy) + 3N(30

d o 2 o 2
dt (xy) + h(xy) = "2(y ) - "2 (x )

d 2 2 L
dt (z ) + h(z ) = 3N(30

(16)

where
h _!!.... _ 1
- (30 - 1 - (T2)

Tmand

Another quantity of interest is the birefringence, defined as

(17)

Birefringence is a measure of the degree of anisotropy of the
flowing solution. When is measured in a flowing system, it provides
insight into the actual degree of deformation of the network. In
Eq. (16) we are considering the Warner expression for the force
and the destruction function (3, corresponding to the non-Gaussian
regime.

In simple shear, the rheological functions are

and

S L o {1- « (T2)) }
KT = (30 • h2 - 4",2

NI L 202{ 1- «(T2))}

KT = (30 • h2 - 402

(18)

(19)

(20)
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where S, NI and N2 are the shear-stress and first and second normal-
stress differences.

6. Steady &imple &hear

At relatively high values of the shear rate, a major decrease in
junction concentration only is possible when (= o. Non-affine motion
in simple shear produces a small degree of deformation of the seg-
ments, effectively preventing the breakage of the junctions. In Fig. 1,
a constant slip parameter is used to show this. The normalized bire-
fringence is plotted with the velocity gradient for ( = 0.2, becoming
asymptotic over a range of shear rates, effectively approaching a
small value at high velocity gradients. Consequently, we have on
this asymptote

and from Eq. (12)
T == f3o(rr).

This expression is similar to Eq. (8) to order (l/N) for linear
springs. Therefore, by setting ( to a constant value, it gives results
similar to those obtained from the quadratic destruction model.

Gn the other hand, for ( = O, a major deformation can be
expected at high shear rates, and the correct express ion for the
stress in this case is given in Eq. (12), corresponding to non-linear
spring in the non-Gaussian regime of deformations. In Fig. (2), a
conformation-dependent slip parameter Eq. (15) is used, producing
a shear-thinning viscosity. Similar results are obtained for the first
and second normal stress coefficients, in agreement with available
experimental results for concentrated polymer solutions.

7. Un&teady &imple &hear

Solution to the coupled differential equations (16) was obtained
by using a 4th. order Runge-Kutta routine. Results are given in
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FIGURE 1. Normalized birefringence va. velocity gradient in simple shear 8ow,
Cor consLanL slip coeffieienL (. = 0.2).

Figs. 3-7, showing the response ofthe shear stress and normal stress
differences to a start-up fiow in simple shear. Three different cases
were considered: • = o, • = 0.1 and '0 = 0.5 in Eq. (15). Figs. 3-5
show the shear-stress grow function S / cr.depicting a steady-state
level which decreases with increasing rate of shear (shear-thinning).
With affine motion, a monotonic increase is observed for all values
of cr.considered. A constant slip parameter gives different results:
overshoots are shown with damped oscillations at high shear rates.
The inc1usion of a conformation-dependent slip parameter shows the
same features as the previous case, but the oscillations are quickly
damped out. This latter case is in better agreement with experimen-
tal data. Finally, Figs. 6 and 7 show results for the normal stress
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FIGURE 2. Shear visco.ity v•. velocity gradient with conformation dependent
slip parameter.

differences, depicting a similar qualitative behavior exhibited by the
stress, also in agreement with the experiments made on a flowing
polymeric solution of high concentration.
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FIGURE 3. Stress growth function V8. non~dimensiona.l time for varíaus values
of the velocity gradient. Affine motion (E = O).

It is important to observe that the inc1usion of non-affine motion
gives rise to the prediction of a second normal stress coefficient (see
Eq. (20)). In simple shear, concentrated polymeric solutions or melts
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FIGURE 4. Same as in Fig. 3, with constant slip parameter (e = 0.1).

show a finite value of this coefficient which is much lower than the
first normal stress coefficient and has opposite signo Experimental
data for the second normal stress difference is very scarce, although
there is sorne evidence that N2 is about -O.IN¡.
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FIGURE 5. Same as in Fig. S, with conformation.dependent slip pllXameter «o =
0.5).

A conformational dependence of l will allow for an independent
variation of N2, as it is shown in Fig. 7.



Ana/y.;. o/ the jlOlJJ ••• Part l... 63

€ 0= 0.5

4.0

3.2

a-8

2.4 a- 4

1.6

a- 2
0.8

a- I

0.00 t//3o
0.00 0.2 0.4 0.6 0.8 1.0

FIGURE 6. First normal-stress difference va. non-dimensional time, for varioulI
values oC the velocity gradient. Non-affine motion with conformation-
dependent slip parameter «o = 0.5).

8. Conclusions

In this work, attention was given to the rheological predictions
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FIGURE 7. Second normal.stress difference V8. non-dimensional time. Same sit-
uation as in Fig. 6.

obtained from transient network models. The macroscopic effect of a
conformation-dependent slip parameter corresponding to non-linear
forces on the segments joining the network junctions is analyzed. In
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addition, a conformation-dependent destruction function give rise to
predictions of these models in the non-Gaussian regime of deforma-
tions. Results were presented in simple shear f10w for both steady
and unsteady state regimes that agree with experimental data ex-
hibited by concentrated polymeric solutions in f1ow.

References

1. Creen and Tobolsky, J. Chem. Phy •. 14 (1946) 80.
2. A.S. Lodge, Tran •. Faraday Soe. 52 (1956) 120.
8. M. Yamamoto, J. Phy •. Soco Jpn. 11 (1956) 413; 12 (1957) 1148; 18

(1958) 1200.
4. N. Phan-Thien and R. Tanner, J. Non.Newt. Fluid Meheh. 2 (1977)

353.
5. M.W. Johnson and O. Segalman, J. Non.Newt. Fluid Mech. 2 (1977)

255.
6. R.B. Bird, R.e. Armstrong and O. Hassager, Dynamie. o/ Polymerie

Liquid., Vols. 1 and 2, Wiley, N.Y. (1977).
7. A. Peterlin, Polymer 2 (1961) 257.
8. Y. Rabin and J. W. Dash, Maeromoleeule. 18 (1985) 442.
9. C.C. Puller and L.C. Leal, J. o/ Poi. Sei. Poi. Phy •. 19 (1981) 531.
10. N. Murayama, Col. and Poi. Sei. 259 (1981) 724.
11. A. Peterlin, Pure and Appl. Chem. 12 (1966) 563.
12. N. Phan-Thien, O. Manero and L. C. Leal, Rheolg. Acta 28 (1984)

151.




