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Abstract. The network model with conformation-dependent
non.affine motion discussed in Part 1, is generalized to cover flows
ranging from simple shear to elongational. A flow parameter .\ is
defined to specify the particular type of two-dimensional 1I0w.
The values of zero and one correspond to simple~shear and pure
extensional flow respectively. lt is shown that non~affine motion
is important in flows sufficiently close to simple sheu, where the
correlation of birefringence with the eigenvalue of the velocity
gradient tensor holds, if conformation-dependency is considered.
This is in agreement with experimental results performed in two
corrotating rollers using 2 concentrated polymer solutions.

Resumen. Los modelos de redes discutidos en la pute 1 son gen.
eralizados para discutir diferentes tipos de flujos, desde el cortante
simple hasta el elongacional. Para especificar el tipo de lIujo bidi-
mensional se define un parámetro de lIujo A tal que los valores de
cero y uno corresponden a flujos cortantes y elongacionales, res-
pectivamente. Se demuestra que el movimiento no afín es impor-
tante en flujos suficientemente cercanos al cortante simple, donde
prevalece la correlaci6n de la birrefringencia con el valor propio
del tensor gradiente de velocidades. Estas predicciones muestran
concordancia con resultados experimentales realizados en un siSe
tema de dos rodillos corrotatorios empleando dos soluciones con.
centradas de polímeros.

PACS: 81.20 sh; 47.50+d; 66.20+d; 61.25 Hq
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1. Introduction

As it was shown in Part 1, non-affine motion in network models is an
important idea if predictions for the flow of concentrated polymeric
systems of flexible macromolecules are sought. In addition, effects
due to non linear forces in the segments making up the network were
also shown. The evolution equation for the distribution function of
the segments end-to-end distance was expressed as

where

and

~~+ V'. rlIt = G - ¡31It,

r = L. r,
L =r-£D,

2 £0
£=£(r ))= N(r2)+3

(1)

(2)
(3)

(4)

(5)

In this work, a general two dimensional planar flow is considered.
It is generally accepted that flows with elongational components
can produce relatively larger deformations on the macromolecules
than those produced by simple shear flows. To demonstrate this
point, it is important to relate the measure of the deformation of
the network, i.e., the birefringence, with both the flow type and the
velocity gradient.

2. A general two-dimensional now

In this case, the velocity-gradient tensor r is given by

. ( (1 + A)
r =:2 -(1 - A)

2 O
(6)
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where "'t is the magnitude of the velocity gradient, A= 1 defines a
planar elongational f10w (hyperbolic f1ow), A= Orepresents simple-
shear f10w and values ranging from zero to one cover mixed-type
f10wswith a proportion of elongational components.

Fig. 1 depicts the planar f10wsobtained by varying the parame-
ter A.

A=1.0 A=0.5 A=O.O

g!~ ~-~ /._---+----

~i~ ~r¡p
FIGURE l. Various type. oC two-dimen.ionaI ftow•. A = 1 corre.pond. to planar

elongation and ..\= Ospeci6es simple shear flow.

To generalize the equations for the momenta of the distribution
function, it is necessary to include the f10wparameter A in Eq. (16)
of Part I. By considering (6), these are:

d(x
2
) [ 2 ] 2 L-d- + h - "'(A+ 1)(1 - l[(r }]} (x ) = -"'(1 - A)(XY) + --,
t 3N~

d~2) + [h + "'(A+ 1)(1 - l[(r2}]}] (y2) = ",(1 - A)(XY) + 3:{3o '

d(xy) '" 2 '" 2dt + h(xy) = "2(1 - A)(Y ) - "2(1 - A)(X ) (7)
and

d(z2) h( 2) = _L_
dt + z 3N{3o'
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a= do'
The expressions for the

andh=i!.-= 1
fJo 1 - (r2)

In steady-state, Eq. (7) are easily solved.
momenta are:

where

(x2) = L [h2 + ah(1 + AHl - <[(r2)]) + a2(1- A)2]
3NfJoh h2 - a2v '

(y2) = L [h2 - ah(1 + AHl - <[(r2)]) + a2(1 _ A)2]
3N fJoh h2 - a2v '

(xy)= -L [a2(1+A2)(I-<[(r2)])] (8)
3N fJoh h2 - a2v

and
2 L

(z ) = 3NfJoh '

where
v = (1 + A)2(1 - <[(r2)]) - (1 - A)2. (9)

Birefringenee measured in the (x, y) plane is given by

t.n = 2L [a(1 + AHl _<[(r
2
)])] . fh2 + a2(1 _ A)2. (10)

B 3N fJoh h(h2 - a2v) V

3. Results
Predietions from Eq. (10) are given in Figs. 2-5. In Fig. 2, the

birefringenee is plotted with the veloeity gradient for several values
of the flow parameter A(O.OOI :o; A :o; 1) eonsidering affine motion
« = O).

Higher deformations are obtained when the proportion of elon-
gational eomponents is larger for a given value of the velocity gra-
dient. It is observed an almost fully stretehed eonformation of the
segments for A= 1, eorresponding to elongational flow at relatively
small values of the velocity gradient.
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B1 RE FRINGENCE
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FIGURE 2. Normalized flow birefringence vs. velocity gradient for various fiow
types (A). Afline motion.

However, when these curves are plotted with the eigenvalue of
the velocity gradient tensor aY>:, correlation is obtained. This is
shown in Fig. 3 demonstrating that the birefringence (or any invari-
ant of the tensor rr) scales with aY>: for a wide range of A. This
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FIGURE 3. Normalized f10w birefringence va. the eigenvalue of the velocity-
gradient tenaor for the f10wtypea of Fig. 2. Afline motion.

also indicates that the slip mechanism is in effect dictated by the
eigenvalue of the effective velocity gradient tensor, and the quan-
tity Of.yV therefore controls the degree of deformation in the system.
When < = O (affine motion) the group Of.yV becomes 2Of.VX which
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FIGURE 4. Normalized f10w birefringence vs. the eigenvalue of the velocity-
gradient tensor for f10w types in the range 0.1 :5 >. :5 0.132 with
constant slip parameter (. = 0.2).

is exactly twice the eigenvalue of the velocity gradient tensor. For
this reason, the birefringence is well correlated against 0.,;).. Con-
sequently, the correlation with 0.,;). must break down when tJ = O,
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FIGURE 5. Normalized flow hirefringence v•. the eigenvalue of the velocity-
gradient tensor for flow types in the range 0.01 ~ ..\ ~ 1.0 with
conformation~dependent slip parameter (fO = 1.0).

which provides an estimate of the range of >. for a given value of.
over which the correlation will hold, when • is a nonzero constant.
Because of this, the relationship between • and the minimum value
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of A for the correlation to hold is obtained by setting v equal to zero
in Eq. (9):

A' = -<-o2-< (11)

Fig. 4 shows results for < = 0.2. In this case, the correlation
breaks down at A' = 0.111. It is observed that aboye this value the
curves will eventually correlate. Below this value, deformation is not
sufficient over the range of velocity gradients considered, so that the
curves are uncorrelated.

When a conformation-dependent slip parameter is used (Eq. (4))
correlation is obtained for A as low as 0.01 as it is depicted in Fig. 5,
where the birefringence correlates with the eigenvalue of the velocity
gradient tensor in the range 0.01 ::; A ::; 1. This demonstrates the
importance of conformation-dependent non-affine motion in f10ws
sufficiently close to simple shear. Also, these theoretical predictions
are in qualitative agreement with experimental data to be shown
in the last section. Next, the expressions for the stress tensor are
worked out to the case of planar elongational f10w(A = 1).

4. Steady planar elongation

In this case, we have

NI L 4,,(1 - <[(r2)])
kT = /30 h2 - 4,,2 (12)

where NI is the elongational stress and " the elongation rateo Par-
ticularly in this case, elongated segments and a major decrease in
junction concentration are produced at finite values of the slip pa-
rameter.

This result is in contrast with predictions in simple shear, where
the slip mechanism produces a limited degree of deformation. (See
Fig. 1, Part I).

This behaviour brings important consequences to the predictions
of the macroscopic quantities. For instance, the slip mechanism is
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not important in the region of high deformations. Eq. (4) shows that
when (r2) -+ 1,( - (o. Similarly, the stress given by

r = 1!(r2) (rr)

deviates considerably from the linear spring (Hookean) behaviour
at high deformations. Fig. 6 show the variation of the elongational
viscosity with the elongation rate, for constant values of the slip
parameter. Comparison is made with Fig. 7, where conformation
dependent non-affine motion of Eq. (4) is included. It shows that
same features of the case ( = Oin Fig. 6.

Results shown in Figs. 6 and 7 do not agree with predictions
from the quadratic destruction model {l} with linear springs. In the
Gaussian regime the junctions break at relatively small deformation
of the segments. Therefore, it is expected that the elongational
viscosity will decrease after attaining a maximum value. However, in
the nonlinear regime of deformations, the network can still support
higher stresses and the viscosity levels off as it is depicted in these
figures. Experimental data agrees with predictions in the nonlinear
regime of deformations.

5. Experimental results

Experiments suggested that birefringence measurements can be
used to test the predictions for the slip mechanism or non-affine
motion. The general idea is to determine the smallest value of the
flow parameter A where data correlate with the eigenvalue of the
velocity gradient tensor (see Eq. (11)), and to place an upper bound
on the magnitude of (. In order to determine this value, it would be
necessary to achieve very small values of the flow parameter, close
to the region of simple-shear flow.

Frank and Mackley [21 have studied flow birefringence in flows
generated by two corrotating rollers. Their experimental results show
that the flow type produced between the two rollers can be placed
between the two cases of simple shear flow and pure extensional
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FIGURE 6. Etongational viscosity vs. elongation rate with various values of the
slip parameter.

llow. The magnitude of the velocity gradient and the llow type are
dependent on the separation and size of the two rollers, and they
can be arranged in such a way to produce llows very near simple
shear, attaining a very low value of >. (O < ). :50.01).
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FIGURE 7. Elongational viscosity vs. elongation rate with conformation.depend.
ent slip parameter «o = 1.0).

Figs, 8 and 9 show the experimental birefringence plotted against
eigenvalue ",VI, for two concentrated polymeric solutions of flexible
macromolecules: 1.5% Polyethylene oxide in water and 1000 PPM,
18 x 106 M.W. monodisperse Polystyrene dissolved in Tricresylphos-
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FIGURE 8. Experimental birefringence vs. the eigenvalue of the velocity.gradient
tensor. 1.5% Aqueous solution of polyethylene oxide in water.
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FIGURE 9. Experimental birefringence vs. the eigenvalue ofthe velocity.gradient
tensor. 1000 PPM (18 x 106 MW) of polystyrene in tricresylphos-
phate.
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phate. In both solutions, the f10w parameter varied in the range
0.0187 :'Ó ,\ :'Ó O.l.

These experimental results show no bound for the magnitude of
the slip parameter, since there is no breaking point for the correla-
tion. The results can be described by taking l = O (affine motion).
However, experimental results in these solutions in simple shear sug-
gested the existence of non-affine motion. Therefore, the results are
predicted qualitatively by recourse to a conformation-dependent slip
parameter whose results for the birefringence also show correlation
over this range of values of the f10wparameter (Fig. 5).

As it has been pointed out in Part 1, f10wssufficiently close to
simple shear cover the region of intermediate force regime. In this
region, the hydrodynamic interaction tends to increase and the non-
free draining character of the segments is enhanced. The underlying
idea is that the structural elements of the polymer network are not
stressed by the average motion of the continuum, but by a velocity
field modified owing to hydrodynamic interaction. It is supposed
that this effect reduces only the deformational component of the
f10wfield, the reduction being represented by the slip parameter.

6. Conclusions

It has been already shown that extensional f10w is able to de-
form the network segments by a large extent due to the imposed
f10w~ Theoretical results were presented using a non linear expres-
sion for the destruction function which agrees with the spring force
on the segments and with the assumed statistics. By considering
a conformation-dependent slip parameter, it is shown that birefrin-
gence correlates with the eigenvalue of the velocity gradient tensor
down to very small values of the f10wparameter. This is in qualitative
agreement with experiments performed in a two roll-mill apparatus
on two concentrated polymeric solutions.
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