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Abstract. A two dimensional model for void sintering under hot
isostatic pressure controlled by grain boundary self diffusion is
presented. Equations for mass transport and traction distribu.
tions in the grain boundary are developed. A dilferential equation
for void elimination is established, and numerically solved, where
the driving forces are the isostatic pressure and the surface free
energy. The qualitative differences of the present approach for
densification with previous models based on "neck growth" cal-
culations, by Kuckzynski and others, are discussed. Results are
curves for material densificiation, void size and void elimination
rate as a function of time. Also the dependence of sintering time
with isostatic pressure and with capillarity angle are shown

Resumen. Se presenta un modelo bidimensional para la sinter-
izaci6n de cavidades bajo compresi6n isostática a alta temper-
atura controlada por autodifusi6n en fronteras de grano. Se de-
sarrollan ecuaciones para el transporte de masa y la distribuci6n
de tracciones en las fronteras de grano. Se establece, y resuelve
numéricamente, una ecuaci6n diferencial para la eliminaci6n de
cavidades impulsada por la compresi6n isostática y la energía Ji.
bre de superficie. Se discuten las diferencias cualitativas de este
enfoque para la densificaci6n con los modelos de "crecimiento de
cuello" de Kuczynski y otros. Los resultados son curvas de densi-
ficaci6n del material, tamaño de cavidad y raz6n de eliminaci6n
como funciones del tiempo. También se obtiene la. dependencia
del tiempo de sinterizado con la presi6n isostática y con el ángulo
de capilaridad.

PACS: 81.40; 62.20 Hg
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1. Introduction

Sintcring by hot isostatic pressing has been studied extensively dur-
ing the last decades and theories have been developed in different
dircctions. Technological applications of sintering of uranium pel-
lcts for nuclear reactors motivated the early work on the area on
the 50's and presently there is intercst in the powder metallurgy of
superalloys. The early work of Kuckzynski and others [1, 2, 3, 41
approachcd sintering as a coalescence of two material particles and
since then the concept of "neck growth" has concentrated atten-
tion. Later works [5, 6] have considered sintering as more collectivc
process where attention is focused on interparticle void elimination.
Six or more mechanisms of mass transport occur when a powder
aggregate is sintered [61. These mechanisms are connected mainly
with self diffusion along different paths in the material and only a
few of them contribute effectively to densification. Grain boundary
sclf diffusion has been considered an effective mechanism of mass
transport during sintering [6].

The present work is an approach to sintering controlled by grain
boundary self diffusion where the process is studied as interparticle
void elimination and includes the effects of hot isostatic pressure and
the capillarity angle formed at the points where voids are in contact
with the grain boundaries.Results show that the void elimination
approach has a differential equation with qualitative differences with
the two particle coalescence method.

2. Geometry

Consider a compact array of monocrystalline long wires of radius
T. In sintering conditions thcre is sorne definite time, which is not
calculated here, after which the voids in the compact assume the
shape shown in Fig. 1. In this configuration the curvature is constant
and surface tensions are in equilibrium at the points where contact
is made between void surfaces and grain boundaries. The angle
formed by the tangent of the void surface and the plane of the grain
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boundary, at the point of contaet, is given by (see Fig. 2)

-1 ( ""1b )Q=cos -,
2""1.

(1)

Where""1band""1.are the grain boundary and void surface free energies.
Let a be the distance from the center to the tip of the void. Then

the curvature of the void surface is

1
K=--,

u(Q)a

where
v'3

u(Q) = v'3 .3 sin Q - cos Ct

The area of a void cross section is

where
p(Q) = 9(Q-,,/6) _ 3v'3cOSQ

(v'3 sin Q - COSQ)2 v'3 sin Q - cas Q .

(2)

(3)

(4)

(5)

Ir the amount of densification prior to the initial formation of the
configuration of Fig. 1 is assumed to be negligible, simple trigonom-
etry can be used to obtain the initial value of a, ao, given by

00 = r
(v'3-"/2)

p(Q) (6)

The distance from center to center of neighboring voids is 2b,
where

b=r (1)

Notice thed during densification the void distance is gomg to be
reduced.
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FIGURE 1. Array of voíds after the first stage of densification. The amount of
densification during this stage is considered negligible.

3. Self diffusion equations

If surface self diffusion is fast enough to keep the void curvature,
1<, constant, then the sintering process is controlled by grain bound-
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FIGURE 2. Traction distribution in a grain boundary. At point a there is chemi-
ca! potential continuity and at the point b there is a zero flux condi-
tion by syrnmetry. Between points a and b the traction distribution
averages the hydrostatie pressure.

ary self diffusion [7].The chemical potential at any point on the void
surface is [8)

ÁJJ = -0...,,1<:, (8)

where O is the atomic volume. In the grain boundary the diffusion
equation is [9, 10]

DóO a2Tn •
kT ax2 + w = O, (9)

where D is the self diffusion coefficient in the grain boundary, ó the
effective grain boundary thickness, kT is the Boltzmann factor and
W is the rate of volume depletion per unit of grain boundary area.

Assuming that grain boundary self diffusion removes material
from the neighboring grains uniformly [9), the traction distribution



88 L. MaTtínez

will be parabolic as shown in Fig. 2. At the point a there is chemical
potential continuity and at the point b there is, by symmetry, a zero
flux condition. Also the traction distribution between points a and b
averages the isostatic or hydrostatic pressure, u, on the material and
is given by

( ) [ ( )2 ( )]
UI 1 x - a x - a

Tn(x) = /,1< + 3 b _ a + /,1< 2" b _ a - b - a '

where u is assumed to be positive in compression conditions.

4. Sintering

The rate of change of a void cross section is given by

dA
- = 3flóJ(a),
dt

(10)

(11)

where J(a), the atomic flux coming into the void from each of the
three adjacent grain boundaries can be obtained from Eq. (10) [71:

J(a) = 3D [uI /,]--+--
kT(b - a) b - a u(a)a'

(12)

The differential equation for the variable a can be obtained from (4),
(11) and (12):

da + 9Dófl [~ + ---.:l!-] - O
dt 2p(a)kTa(b - a) b - a u(a)a - . (13)

The differential equation can easily be integrated numerically.
Solutions a(t) for different values ofE = u'//" a proper adimensional
variable associated to the hydrostatic pressure, are shown in Fig. 3.
The time is given in units of

kTr'
tn = Dó/,fl ' (14)
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a variable which inc1udes most of the intrinsic physical quantities of
the material.

Figure 4 shows that the rate of void elimination increases to
infinity at the final stage and this is consistent with the fact that
no gaseous species in the voids are considered in this model. This
behaviour of the velocity shows a qualitative difference with the
results that may be expected in a model of sintering by coalescence of
two partic1es. The later necessarily ends with a neck growth velocity
approaching to zero [31.

Curves for the densification,

p= Pmat

[I+~] , (15)

where Pma' is the density of the material without voids, as shown in
Fig. 5. The dependence of the time of sintering with the hydrostatic
pressure is described in Fig. 6. At low hydrostatic pressures the
process is driven by capillarity forces. When the hydrostatic pressure
is higher the sintering time becomes inversely proportional. However,
since this model does not inc1ude plasticity, the results are limited
to values of the hydrostatic pressure not big enough to induce power
law creep.

The effect of the capillarity angle, that is, of the ratio of grain
boundary to twice the void surface free energies, on the sintering time
is shown in Fig. 7. The interesting interval for capillarity angles is
from 60 to 80 degrees where many metals are inc1uded [11].
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FIGURE 3. Solutions af the difFerential equation governing the sintering proces!
for different values af the hydrostatie pressure in &dimensional units.
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FIGURE 4. Velocity of void elimination. The faet of increasing to infinite at
the final stage of sintering shows a qua1itative differente with the
two particle coalescence method where the driving force ror sintering
approa.ches at the same stage to lero.
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FIGURE 6. Dependence of sintering time with applied hydrostatie pressure. At
low values of hydrostatie pressure the sintering process is driven
mainly by eapillarity forees. When the pres.ure is higher the sintering
time becomes inversely proportional.
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FIGURE 7. Elfect of the capillarity angle on sintering time. The interval of

interest is between 60 to 80 degrees where many metal! are included.
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