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Abstract. We present in graphical form the effect of an external
electric field and of disorder on the transmission coefficient of
an electron wave in a one-dimensional chain of delta function
potentials. For certain values of the electric field, the resonances
forming the Stark ladders are apparent, even for small disorder.

Resumen. Se presentan en forma gréfica los efectos de un campo
eléctrico externo y del desorden sobre el coeficiente de transmisién
de una funcién de onda electrénica en una cadena unidimensio-
nal de potenciales delta. Para ciertos valores del campo eléctrico,
aun cuando haya un pequefio desorden, aparecen claramente las
resonancias que forman las escaleras de Stark.

PACS: 71.55.Jv; 71.10.+x; 71.50.+t

The properties of electrons in disordered potentials subjected to a
constant electric field have received attention in a number of recent
papers [1-9]. This problem is, among other things, interesting since
such systems show a set of resonances, the Stark ladder resonan-
ces, (SLR’s) first predicted for periodic systems by Wannier [10].
Although their existence was controversial for some time, there is
now theoretical evidence which shows that the SLR’s indeed exist.
The experimental conditions to see them are very stringent and, alt-
hough several experiments have claimed to see the SLR’s [11], there
is no convincing evidence supporting these claims. In what follows
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we shall present in graphical form some further theoretical evidence
regarding the SLR’s.

The theoretical model we shall use for the one-dimensional sys-
tem is defined by the Schrodinger equation

_ 12 d()
2m dz?

+[V(2) = Fzly(z) = E¢(z), (1)
where t(z) is the electron wave function, F > 0 is the electric field
intensity times the electronic charge, and V (z) is a random potential,

which in the following will always be a sum of N equally spaced delta
functions, 1.e.

N-1
V(z) = > Bi6(z — ia), (2)
1=0
where f; is a uniformly distributed random number, with distribu-

tion
5 -3+ <s<$+®

0 otherwise

P(B;) = { (3)

Here (B) is the average value of 3; over the ensemble of one-dimen-
sional chains defined by distribution- (3); we shall call the fixed
number @, the disorder. In all our calculations we use units such
that K2 /2m =1 and the lattice spacing a = 1; the length L of the
system is then L = N —1. We assume that the electric field is present
only in the interval 0 < z < L.

We approach the problem by calculating the transmission coef-
ficient T as a function of the electron energy E = k%. We assume
that a plane wave e'k% is incident from the left, so a reflected wave
re~*¥% and a transmitted one te'F'2 exist, as shown schematically in
Fig. 1; here k2 = k2 + FL. The connection with the dimensionless
resistance p is provided by Landauer’s formula [12]

p=r, ()
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FIGURE 1. Finite one-dimensional chain of N equally spaced delta function
potentials of intensity f; under the effect of an external electric

field F.

where R and T are respectively the reflexion and transmission co-
efficients defined as R = |r|? and T = |t|2. These coefficients are
computed using the Poincaré map as explained in Ref. [4].

For F = 0, that is, when no external electric field is present,
and random V' (z), it has been established rigorously that all states
are localized [13] with an envelope that decays exponentially with
distance. For F # 0 and FL < E essentially the same remains true;
but for FL > E, that is when the electric field is strong, T has
a power-law decay with L instead of an exponential one and there
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is a critical field F. above which the states are extended [4]. The
transmission coefficient T can then be large enough, and resonant
states could show up as maxima of T when plotted as function of
E; when the states are localized, on the other hand, T will decrease
and be even close to zero.

FIGURE 2. The transmission coefficient T' as a function of the incident electron
energy FE for different values of L. When L is large enough, @ = 0 and
F = 0 the allowed and forbidden bands are apparent, and coincide
with those of the infinite Kronig—-Penney model.

We shall start by analyzing T'(E) for different values of L wit-
hout external electric field and no disorder. In Fig. 2 we show the
transmission coefficient for 0 < E < 40 and L = 10,100 and 1000. In
this case, Eq. 1 describes a finite-length Kronig-Penney model; the
first two bands of conducting states, for which T # 0, are apparent.
For L > 100 the energy limits of these bands coincide with those
obtained in the text-book treatment of this model with L — oo.
Notice that for L = 10 one can still count the number of values of E
for which T'(E) shows a local maximum; this number is equal to L
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FIGURE 3. Influence on the tramission coefficient T(E) of the disorder @, with
L = 100 and F = 0. As the disorder increases, the allowed bands are
destroyed.

and the corresponding states are extended states even in the limit
of infinite L.

We now analyze the effect of disorder on the bands of Fig. 2,
starting with the case F = 0. The function T'(E), for the same
range of E as in Fig. 2, is shown for one particular member of the
ensemble of one-dimensional chains and several values of the disorder
Q in Fig. 3 for L = 100. We see that the disorder destroys the
bands, which is consistent with the fact that the electronic states
become localized. Notice that for our model in which V is a set of
delta functions, T' remains different from zero near values of E which
coincide with the upper bounds of each band. This has to do with
a special feature of our model, since the highest-lying stationary
states of each band have nodes at z = ¢ [14], and therefore are not
affected by the random potential V(z) given in Eq. 2; there always
exists a set of states which remain extended, one for each band of
the corresponding periodic system, no matter what the disorder is.
When L — oo, however, this set is of zero measure.
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FIGURE 4. Starting from the ordered chain with Q@ = 0, the transmission coef-
ficient T'(E) is shown for different values of the electric field F. The
low energy bands are first destroyed.

Considering again the periodic system (i.e. Q = 0) we show the
effect on the allowed bands of an external electric field. For I, — 100,
it will be seen in Fig. 4 how the bands disappear as F increases.
The lowest-energy bands are destroyed first, since the states with
eigenvalues E ~ FL are seriously affected. If F is increased even
more, a set of sharp resonances appears, as shown in Fig. 5. These
resonances are equally spaced in energy, 1.e.

E, =Ey+nFa, (5)

as originally predicted by Wannier [10], and constitute what is called
a Stark ladder. Here the electrons, which in a periodic system could
move freely within a conducting band across the whole sample, are
confined due to reflection by the tilted bands edges, giving rise to
quantized states with energies E,. Strictly speaking these states are
resonant states because of the Zener tunneling. However, they only




418 J. Flores and G. Monsivdis

T4

Ol

1A
_,,,n 4 ] 7  \\

A %
A
il \ N

A

W

~
M
A

FIGURE 5. For the ordered chain (Q = 0) if F is large enough the Stark ladder
resonances, appearing as sharp peaks in the curve T'(E), are evident.

exist for values of F such that the probability of the Zener tunneling
can be neglected [15]|. For some ranges of the energy, more than one
ladder could be present, as can be seen in Fig. 6, in which the energy
range is enlarged; a fixed value of F' = 0.8 was used and the SLR’s
are seen as a function of L. For L = 350, for example, three different
ladders can be distinguished. Note also that for smaller values of
L and large energies, the ladder does not exist, since then the field
effect becomes negligible and T is different from zero for all values
of E.

We shall now analyze the effect of disorder on the SLR’s. We
start in Fig. 7 with @ = 0 and a value of F (F = 0.8 in this
case) for which a Stark ladder exists. Then, as Q is increased, the
transmission coefficient decreases. However, for small enough values
of the disorder, the Stark ladder persists, as can also be seen in
Fig. 8, where we keep the disorder fixed and increase F' until the
ladder appears, as it did for the ordered system.
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FIGURE 6. The transmission coefficient T'(E) for different values of L with F # 0
fixed and @ = 0. Note the appearence of more than one Stark ladder.
The range of E is here larger than in previous figures.

Finally, we should mention that it is possible to understand the
above results from the following qualitative arguments, as discussed
in reference [16]. When the periodic system is subjected to an exter-
nal electric field, the electron wave function becomes localized, the
localization length [ being of the order of E/F [16]. On the other
hand, disordered systems without external electric field also show
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FIGURE 7. The Stark ladder persists with a small amount of disorder, as shown
here for T'(E).
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FIGURE 8. Keeping the disorder @ fixed, as F increases the Stark ladder can be
recovered.
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localized electronic wave functions; we shall call lg the correspon-
ding localization length. When the disorder is small and an electric
field is present lg > I, so the effects of disorder are not felt and
the SLR’s are not affected. As the disorder is increased, lg becomes
comparable to [r and the resonances disappear.

In conclusion, we have shown, through a set of graphs in which
the transmission coefficient T is plotted as function of the electron
energy E, how an external electric field affects the resistance of
one-dimensional systems, both periodic and disordered. We believe
that these graphs provide us, in a very pictorial way, with a bet-
ter understanding of the behaviour of electrons in one-dimensional
chains.
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