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Abstract. We present in graphical form the effect of an external
electric field and of disorder on the transmission coefficient of
an electron wave in a one-dimensional chain of delta function
potentials. For certain values of the electric field, the resonances
forming the Stark ladders are 'pparent, even for small disorder.

Resumen. Se presentan en forma gráfica los erectos de un campo
eléctrico externo y del desorden sobre el coeficiente de transmisi6n
de una funci6n de onda electr6nica en una cadena unidimensio-
nal de potenciales delta. Para ciertos valores del campo eléctrico,
aun cuando haya un pequeño desorden, aparecen claramente las
resonancias que forman las escaleras de Stark.

PACS: 71.55.Jv; 71.10.+x; 71.50.+t

The properties of electrons in disordered potentials subjected to a
constant electric freid have received attention in a number of recent
papers [1-9]. This problem is, among other things, interesting since
such systems show a set of resonances, the Stark ladder resonan-
ces, (SLR's) lirst predicted for periodic systems by Wannier [101.
Although their existence was controversial for sorne time, there is
now theoretical evidence which shows that the SLR's indeed existo
The experimental conditions to see them are very stringent and, alt-
hough several experiments have claimed to see the SLR's [11]' ther~
is no convincing evidence supporting these claims. In what follows
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we shall present in graphical form sorne further theoretical evidence
regarding the SLR's.

The theoretical model we shall use for the one-dimensional sys-
tem is defined by the Schrodinger equation

ñ2 d2t/J(x)
-- d 2 + [V(x) - Fx]t/J(x) = Et/J(x),2m x (1)

where t/J(x) is the electron wave function, F > O is the electric field
intensity times the electronic charge, and V(x) is a random potential,
which in the following will always be a sum of N equally spaced delta
functions, i. e.

(2)

(3)
otherwise

P(f3j) = {:

N-l
V(x) = L f3jó(x - ia),

j=O
where f3j is a uniformly distributed random number, with distribu-
tion

Here (13) is the average value of f3j over the ensemble of one-dimen-
sional chains defined by distribution (3); we shall call the fixed
number Q, the disorder. In all our calculations we use units such
that ñ2/2m = 1 and the lattice spacing a = 1; the length L of the
system is then L = N-l. We assume that the electric field is present
only in the intervalO:":: x :"::L.

We approach the problem by calculating the transmission coef-
ficient T as a function of the electron energy E = k2. We assume
that aplane wave ékx is incident from the left, so a reflected wave
re-jk", and a transmitted one ték'", exist, as shown schematically in
Fig. 1; here k,2 = k2 + F L. The connection with the dimensionless
resistance p is provided by Landauer's formula [12]

(4)
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FIGURE l. Finite one-dimensional chain of N equally spaced delta function
potentials of intensity Pi under the effect of an extern&1 eledrie
6eld F.

where R and T are respectively the reflexion and transmission co-
efficients defined as R = Irl2 and T = It12. These coefficients are
computed using the Poincaré map as explained in Ref. [41.

For F = O, that is, when no external electric field is present,
and random V (x), it has been established rigorously that all states
are localized [13) with an envelope that decays exponentially with
distance. For F t Oand FL < E essentially the same remains true;
but for F L > E, that is when the electric field is strong, T has
a power-Iaw decay with L instead of an exponential one and there
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is a critical field Fe aboye which the states are extended [41. The
transmission coefficient T can then be large enough, and resonant
states could show up as maxima of T when plotted as function of
E; when the states are localized, on the other hand, T will decrease
and be even close to zero.

TI

FIGURE 2. The transmission coefficient T as a Cunction oC the incident electron
energy E Cordilferent values oCL. When L is large enough, Q = Oand
F = O the allowed and Corbidden bands are apparent, and coincide
with those oC the infinite Kronig-Penney mode\.

We shall start by analyzing T( E) for different values of L wit-
hout external electric field and no disorder. In Fig. 2 we show the
transmission coefficient for O< E < 40 and L = lO, 100 and 1000. In
this case, Eq. 1 describes a finite-length Kronig-Penney model; the
first two bands of conducting states, for which T f O, are apparent.
For L > 100 the energy limits oC these bands coincide with those
obtained in the text-book treatment of this model with L ....•oo.
Notice that for L = 10 one can still count the number of values of E
for which T(E) shows a local maximum; this number is equal to L
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FIGURE 3. Influenee on the tramÍssion eoefficient T(E) of the dÍsorder Q, with
L = 100 and F = O. As the disorder inereases, the allowed bands are
destroyed.

and the corresponding states are extended states even in the limit
of infinite L.

We now analyze the effect of disorder on the bands of Fig. 2,
starting with the case F = O. The function T(E), for the same
range of E as in Fig. 2, is shown for one particular member of the
ensemble of one-dimensional chains and several values of the disorder
Q in Fig. 3 for L = 100. We see that the disorder destroys the
bands, which is consistent with the fact that the electronic states
become localized. Notice that for our model in which V is a set of
delta functions, T remains different from zero near values of E which
coincide with the upper bounds of each bando This has to do with
a spedal feature of our model, since the highest-lying stationary
states of each band have nodes at x = i [14), and therefore are not
affected by the random potential V (x) given in Eq. 2; there always
exists a set of states which remain extended, one for each band of
the corresponding periodic system, no matter what the disorder is.
When L -> 00, however, this set is of zero measure.
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FIGURE 4. Starting from the ordered ehain with Q = O, the transmission eoef-
ficient T(E) is shown for different values of the eleetrie field F. The
low energy bands are first destroyed.

Considering again the periodic system (i. e. Q = O)we show the
effect on the allowed bands of an external electric field. For L = 100,
it will be seen in Fig. 4 how the bands disappear as F increases.
The lowest-energy bands are destroyed first, since the states with
eigenvalues E - F L are seriously affected. If F is increased even
more, a set of sharp resonances appears, as shown in Fig. 5. These
resonances are equally spaced in energy, i. e.

En = Eo+nFa, (5)

as originally predicted by Wannier [lOJ, and constitute what is called
a Stark ladder. Here the electrons, which in a periodic system could
move freely within a conducting band across the whole sample, are
confined due to reflection by the tilted bands edges, giving rise to
quantized states with energies En' Strictly speaking these states are
resonant states because of the Zener tunneling. However, they only
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FIGURE 5. For the ordered chain (Q = O) if F is large enough the Stark l.dder
resonances, appearing as sharp peaks in .the curve T(EL are evident.

exist for values of F such that the probability of the Zener tunneling
can be neglected [15). For sorne ranges of the energy, more than one
ladder could be present, as can be seen in Fig. 6, in which the energy
range is enlarged¡ a fixed value of F = 0.8 was used and the SLR's
are seen as a function of L. For L = 350, for example, three different
ladders can be distinguished. Note also that for smaller values of
L and large energies, the ladder does not exist, since then the field
effect becomes negligible and T is different from zero for all values
of E.

We shall now analyze the effect of disorder on the SLR's. We
start in Fig. 7 with Q = O and a value of F (F = 0.8 in this
case) for which a Stark ladder exists. Then, as Q is increased, the
transmission coefficient decreases. However, for small enough values
of the disorder, the Stark ladder persists, as can also be seen in
Fig. 8, where we keep the disorder fixed and increase F until the
ladder appears, as it did for the ordered system.
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FIGURE 6. The transmission coefficient T(E) for dilTerent values of L with F i' O
fixed and Q = O. Note the appearence of more than one Stark ¡adder.
The range of E is he re larger than in previous figures.

Finally, we should mention that it is possible to understand the
aboye results from the following qualitative arguments, as discussed
in reference [161.When the periodic system is subjected to an exter-
nal electric field, the electron wave function becomes localized, the
localization length IF being of the order of E/ F [161.Gn the other
hand, disordered systems without external electric field also show
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FIGURE 7. The Stark ladder persists with a small amount of disorder, as shown
here for T(E).

T ,

FIGURE 8. Keeping the disorder Q fixed, as F increases the Stark ladder can be
recovered.
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localized electronic wave functions; we shal! cal! lQ the correspon-
ding localization length. When the disorder is smal! and an electrie
fieId is present lQ ~ 1F, so the effects of disorder are not felt and
the SLR 's are not affected. As the disorder is increased, lQ becomes
comparable to 1F and the resonances disappear.

In conclusion, we have shown, through a set of graphs in whieh
the transmission coefficient T is plotted as function of the electron
energy E, how an external electric field affects the resistance of
one-dimensional systems, both periodic and disordered. We believe
that these graphs provide us, in a very pietorial way, with a bet-
ter understanding of the behaviour of electrons in one-dimensional
chains.
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