
Invedigación Revista Mexicana de Física 33 No. U1988) 519-529

Calculation of A and B hyperfine structure factors
for 31 levels of Cs 11

Jorge Maheeha G.

Departamento de Fisica, Universidad de Antioquia. Apdo. Aireo 1226,
MedelUn, Colombia

(recibido el 8 de enero de 1987; aceptado el 24 de junio de 1987)

Abstract. Theoretical values of hyperfine structure constants of
Cs II for magnetic dipole moment interaction (A) and electric
quadrupole moment interaction (B) are calculated using the ef.
fective operator method proposed by Sandars and Beck and devel.
oped by Childs and Goodman. Reported A values are compared
with sorne known experimental results. Calculations were made
using a computer program applicable to any atom or ion whose
external electrons have configuration IN".

Resumen. Se calculan valores teóricos de las constantes de es-
tructura hiperfina de Cs II para la interacción dipolar magnéti-
ca (Al y la interacción cuadrupolar eléctrica (B) usando el método
de los operadores efectivos propuesto por Sandars y Beck y desa-
rrollado por Childs y Goodman. Los resultados obtenidos para A
se comparan con algunos valores experimentales disponibles. Los
cálculos fueron hechos con ayuda de un programa de computador
aplicable a cua~uier átomo o ion cuyos electrones externos posean
la configuración IN l'.

PACS: 31.20.-d; 31.30.-;; 31.30.G.

1. Introduction

The use of tunable lasers has given a very great advanee in the
studies of hyperfine structure (HFS) in free atoms and ions.

The first HFS quantum-mechanical studies were made on one-
electron atoms. In the early 40's, Raeah developed elegant meth-
ods to ealculate matrix elements of tensor operators between atomic
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states (multiplets), in the atomic shell model [IJ. It was only in 1953
that methods were applied to the HFS of many-electron atoms by
Trees, who obtained very good results for the 55Mn [2). In 1955
Schwartz combined the Racah methods with Dirac's equation to
study HSF in one-electron atoms [3]. In 1965, Sandars and Beck ob-
tained a theory of HFS of complex atoms using the effective operator
formalism [4). On the basis of that theory, Childs and Goodman
found a formula for the HFS constants A and B of the states of a
IN l' configuration is LS coupling, and obtained results well fitted
with the experiments [5,6].

The first observations of HFS were based on high resolution optic
spectroscopy in beam experiments [21), but the advances were faster
with the introduction of the radiofrequency spectroscopy in atomic
beams, following Rabi and others [21J. With those methods, accurate
values of the hyperfine factors of the ground state and first excited
states of atoms were obtained. In 1950 Kastler [33) discovered the op-
tical pumping techniques, which greatly facilitate the measurements
of HFS constants of excited states with laser spectroscopy techniques.

The theories of HFS provide sensitive tests of the effects of su-
perposition of configurations, as we will have opportunity to show
in this work.

The Cs Ir ion is a member of the isoelectronic sequence of Xe I
and its energy level structure is similar to that of a rare gas. The
ground state is 5p6 ISO and the configurations that give the first
eleven excited states are 5p55d and 5p56s. Five levels of those con-
figurations have J = 1; this is why they have transitions to the
ground state. The six levels with J > 1 are metastable and sorne
of them can be used to populate the upper levels 5p56p with laser
pumping.

In 1931 Kopferman made the first measurements of the HFS of
Cs Ir and deduced that the value of the nuclear spin of 133Cs is
7/2 [7J. Reader in 1976 analyzed the current information and made
a new classification of the levels of Cs Ir based on a different coupling
than LS [11J. Alvarez et al. measured the HFS intervals of Cs Ir with
the interaction of a ion beam with laser radiation, and obtained the
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constants of magnetie dipole interaction with good precision, and
with less precision the electric quadrupole interaction constants [8].

In this work, the main results ofthe theory ofhyperfine structure
of complex atoms are reviewed first. Then, a sketch of the procedure
to calculate A and B as sums of terms, each formed with a factor
coming from angular moment considerations and a radial factor, is
given. Then, the angular and' radial coefficients are calculated, and
with them the values of A and B are obtained. Regarding A, it
is in good agreement with experiments only in the levels without
strong configuration mixing, but as a result of this calculation we
can estimate the configuration mixing effects on the values of the HFS
constants A. Our results for Cs II are analogous to results reported
by Childs for 51V [32]. Values of B are also reported, but there
are not experimental results for comparison. Sorne improvement of
A values had been obtained with a least square fit to experimental
values.

2. The energy levels for es 11

Reader [11], found that Cs II energy levels are properly described
by using a coupling 'scheine 'of the kind J11. The riotation for that
coupling is ni, n't' JliKlJ, where nt are quantum numbers of exter-
nal core electrons, n/t' are quantum numbers of excited electron and
the quantum numbers of the core statcs in LS coupling are £1, 81,
JI [9, 10).

Figure 1shows the relative disposition of the first excited levels,
and sorne optieally allowed transitions among them. Because of
the hyperfine interaction, the levels 5d[7/2]4' 5d[3/2]2' 6p[5/2)3 and
6p[3J2Ji aresplit in 8, 5, 7 and 3 sublevels since nuclear spin of 133Cs
is 7/2. ' .

Reader also found the percentual composition o( the states of
the configurations 5p5(5d'+ 6s) and 5p56p, with' JI/ coupling. He
found significant superposition of configurations. Reader obtained
his results by diagonalizing the energy matrix in sta tes built with
Hartree-Fock wave functions and different types of coupling. The
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FIGURE 1. P.rti.l di.gr.m of the energy levels of Cs II 130].

states with the best fits to experimental results are shown In his
tables.

3. The hyperfine hamiltonian

This Hamiltonian describes the perturbation on the fine struc-
ture levels produced by the interaction among the atomic relativistic
electrons and charges and currents in the nucleus not included in the
unperturbed Harniltonian. That perturbation is

N [ze2 ]L -. - eV(r¡) + ea¡. A(r¡)
i=l T,

(1)
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where ri is the vector position of the i-th electron, A and V the
vector and scalar potentials due to the nucleus and a is a Dirac
matrix.

Now, the potentials V and A can be written as multipole ex-
pansions, that is, as products of tensor operators corresponding to
electrons and nucleus. The calculation was made by Schwartz [3]'
with the result,

H = ~ "'" {~dk) . F(k)
h.f. L..JL..J k+1'

i=1 k>O ri

+~ [k +1]1/2 ( .dk))(k). N(k)}
k+1 k a.. .
r .•

(2)

c~7)is proportional to the spherical harmonic Ykq(Oi, 4>i)of the

i-th electron. FJk) is the electrostatic nuclear operator composed of a
sum of terms, each proportional to a spherical harmonic of a nucleon.
NJk) is the magnetic nuclear operator composed of contributions of
orbital angular momentum and spin of each nucleon. Details can be
seen in Armstrong's book, Ch. IV [131.

Hh.f. contains only one-electron operators.

Hh.f. = f£ f: [Q(k)(r;). F~k) +M(k) (ri) . N~k)]. (3)
i=1k=1

The subscripts i and n denote electron and nuclear operators re-
spectively. k = 1 describes the elcctric dipole interaction and k = 2
the magnetic quadrupole intcraction; those values of k give the main
contributions in (3). For k = 1 only the M-term contributes and for
k = 2, the Q-term. F and N are tensor operators describing the
nuclear magnetic and electric moments. The second quantization
representation of this opcrator contains rnatrix elemcnts of the forrn
(nljmIT(k)(r)ln'I'j'm') multiplicd by crcation and annihilation op-
erators of one-elcctron states, ql(n/jm)q(n'j'/'m').
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Then, the electronic part of this operator can be written In
second quantization in the form [13]

Hh.f. = f: [Q(k) . F!.k) + M(k) . N!.k)].
k=l

(4)

This operator is adapted to caJculate the HFS energy if one knows
the fuJl atomic relativistic states. As is weJl known, the relativistic
caJculations must be carried in the jj coupling scheme. However,
one usuaJly knows the wave functions as expansions in functions
with LS coupling. It is desirable to use the relativistic operator (4)
in a nonrelativistic way. That goal was achieved by Sandars and
Beck [41.

They introduced an effective HFS operator defined by the relation

(nljmIHeff.ln'l'/m') = (nljmlH In'l'/m'),h.f. h.f. (5)

.. (6)

where the states Inljm) are the nonrelativistic limits of the Dirac
states InlJm) , and Hh.f. is the operator [4]

00

Heff._ '" T(k)eff. T(k)
h.f. - L.. e . n.

k=l

The tensor operators T!k)eff. can be expanded in a basis U(k¡k,)k
for the k-order tensors obtained by coupling orbital and spin tensor
operators [4],

Tik)eff. = ¿ ¿ p(k¡k,)kU(k¡k,)k.

k¡ k,
(7)

Now, replacing (6) and (7) in (5), and after sorne Racah algebra
one can express the numbers p(k¡k,)k as cornbination of reduced
rnatrix elernents of T!k), in the relativistic states, (nljIIT!k)lln'llj').
That is the techniqlle of the effective operator developed by Sandars
and Beck.
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4. The efTective HFS hamiltonian for configurations ¡NI'

The effective HFS Hamiltonian has the form,

H - ~ [Q(k)eff.F(k)+ M(k)eff.N(k)]
h.f. - LJ e n en.

k=l
(8)

Q~k)eff.and M~k)eff.have an expansion as in (7). The result [4, 13]
shows that Q(2) and M(1) depend linearly on sorne radial param-
eters a~lk, and b7¡k, respectively. They are combinations of sorne
radial integrals, which depend on the relativistic radial functions,
in principie derivable by using relativistic Hartree-Fock methods.
Casimir [17] obtained approximate expressions for those integrals in
a many-electron atom expressed in terms of an effective charge and
sorne relativistic correction factors. With this approximation, the rel-
ativistic radial integrals are proportional to the nonrelativistic ones.
Kopferman [71 presents tables and formulas of the Casimir's rela-
tivistic factors. See details in the Armstrong's book, Ch. VIII [13].

The express ion for the magnetic dipole part of the effective HFS
Hamiltonian is

Hh.f. (MI) = tÉ [a?lli - lQl/2aF (s cl2))}1) + afOsi] (9)

+ [a?llN+l - lQl/2aF(s cl2))~~1 + afOsN+l] } .1,

and represents the interaetion between the magnetic moments of
eleetrons and nudeus.



620 J. Maheeha G.

The expression for the electric quadrupole part of the effective
HFS Hamiltonian is

(10)
where Q is the nuclear quadrupole moment, and a~S and bYS are
linear combinations of Casimir factors, and are proportional respec-
tively to anl and bn/, defined by Childs [51. This Hamiltonian rep-
resents the interaction between the electric quadrupole moments of
nucleus and electrons.

5. Matrix elements of H~~:
The non-relativistic atomic states of a configuration IN l' in

LS coupling are [IN c>¡L¡S¡,s'I'; SLJ IFM) where c>¡L¡S¡) are the
quantum numbers of the core, and s'l' are quantum numbers of
the externa! electron. Reader's tables [11) give the expansion coef-
ficients for the J¡I states in terros of the LS states. For example,
5p56pl/2[3/2J¡ = -46%3D¡ - 34%IDl + 20%3Pl' Reader found
that sorne energy levels can have contributions from several config-
urations.

In the calculation of ,he matrix element, for example of the
¿Ji-term in (9), one uses the Wigner-Eckart theorem; then a 3-j
coefficient appears and a reduced matrix element in the coupled
states IJ 1F). In expressing that reduced matrix element we get
a 6-j coefficient and other reduced matrix element in the coupled
states ILSJ). Now we solve for the reduced matrix element only
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between the core states and get a new 6-j coefficient; finally, we
express the reduced rnatrix elernent in the orbital states of the core
and get another 6-j coefficient. In those terrns of (9) containing
tensor products of spin and orbital operators, the reduced rnatrix
elernents in the core states break out in a product of orbital and
spin reduced rnatrix elernents, with 9-j coefficients; in the orbital
factor the reduced rnatrix elernent of a Racah's orbital unit tensor
operator appears [27].

Childs [6] applies the rnentioned procedure to calculate the non-
diagonal rnatrix elernents of Hh~:'The final result for the rnagnetic
dipole ter m have the forrn,

(IN a1L1S1, s'/'; LSJ 1FMIHh~:I/N a'1LiS¡, s'/'; L' S' J'1 F N)
= f1(JJ'IF)[P1(P2a?1 + P3a?1) + P4(Psa}2 + P6a}2)

+ P7(Psa}O + Pga}O)].
(11)

The factor f 1 comes frorn uncoupling the nuclear and electronic
parts, and is defined by,

f¡(JJ'IF) = (_l)J'+I+F¡I(I + 1)(21 + 1)(2J + 1)(2J' + 1)11/2

{ J J' 1}
XII F .

(12)
In Eq. (11), the factor in front of f1 represents the constant of

hyperfine coupling A,

(FMIHh~:(M1)IFM) = A(FMII. JIFM). (13)

A is a characteristic constant of the non splitted level, that is, de-
pendent only on L, S, J Mld 1 but not on the total angular rnornent
F of the coupled systern of electrons and nucleons. It characterizes
the HFS splitting.

The coefficients P1, .•. , Pg have long expressions in terrns of the
6-j and 9-j coefficients, and Ps depends also on the reduced rnatrix
elernents of the Racah's unit tensor V(12) between states of the coreo
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The nondiagonal matrix elements of the electric quadrupole in-
teraction term is analogous to (11), with another factor f2, with brS
in the place of af'S, and P1, ... , Pg replaced by 01, ... ,Og. Now 02,
Os and 08 depend on the reduced matrÍX elements of the Racah's
unit tensors U(2), y(13), y(l1) respectively [5,6].

f2(JJ'IF) is defined by an express ion something similar to (12)
containing in the 6J-coefficient a 2 in the place of 1 [6], and the con-
stant of hyperfine structure constant for electric quadrupole moment
interaction B is defined by

(FMIHh~:(E2)IFM) = Bf2(JJ'JF). (14)

Constant A is proportional to nuclear gyromagnetic ratio ¡.¡.¡/I and
Bis proportional to nuclear quadrupole moment O¡.

In the calculations using Child's formulas it is necessary to eval-
uate the 6-J and 9-J coefficients by using standard formulas given in
textbooks [271. The reduced matrix elements of the operators W (LS),
proportional to Racah's tensors U and Y, can be calculated with a
formula given by Judd [9, 151. That formula depends on the frac-
tional parentage coefficients, tabulated by Nielson and Koster [28]
for the states of the configurations pN, dN and f N, and on the states
of the parent configuration 1N-l.

6. Numerical results

To compute the reduced matrix elements ofthe operators y(k¡k.),
we notice that configuration pS has only one multiplet, with Sl = 1/2
and £1 = 1. Then the Judd's formula gives, V(12) = 1.2247448,
U(2) = -1, V(l1) = 1.2247448, V(13) = O, for the elements (pS, 2P
IIV(k¡k.) IIpS, 2P).

The parameters anl and bnl> when 1 of O,can be calculated from
the fine structure constants Enl for Cs n, found by Reader [111 using
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a fitting to experimental results, with the formulas [2]

0.545Enlg(l) x 10-3
anl = ( ) ,

H r 1, Zeff. Zeff.

b _ . 0.253En1Q x 1021
ni - )Hr(l, Zeff. Zeff.I(2I - 1)

(15)

where Enl, anl, bnl are in Kaisers (cm-1). Hr is a Casimir factor, and
g(l) = ¡.tI! lis the nuclear gyromagnetic ratio. ¡.tI = 2.574 nuclear
magnetons and I = 7/2, for l33Cs [29]' so that, g(l) = 0.735¡.tN. Q is
the nuclear quadrupole moment, with value Q = -0.0033 barn [29].
The results for anl and brú calculated with formulas (15) are shown
in Table 1.

ni 5p

2011.42

-0.1752

5d

84.7145

-0.00763

6p

233.4

-0.021

6d

19.226

-0.001653

TABLE I. Values of the parameters anll bnl, in Mhz obtained froID a fit to spec-
troscopic results.

We have calculated the coefficients a~~by using the following
formula 19], coming from the contact terms of the HFS interaction
[18, 19, 20]:

(16)

Hr(l' Zeff.l and Fr(j, Zeff.l are Casimir relativistic factors [9]and
<I>ns is a one-electron nonrelativistic wave function.

We also notice that a~l = a~2= O.To use (16) it is first necessary
to know the value of the non-relativistic wave function at the posi-
tion of the nucleus. We have numerically integrated the Schr6dinger
equation [23, 24, 25) with an analytical local selfconsistent poten-
tia! [22), using the appropriate parameters for es n. Sorne error is
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n'. 58 68 78

21.44
29864.6

7.39

3548.3

4.40
1258.3

TABLE II. Values of the radial wave function at r = O in atomic units obtained
by integrating numerically the Schrodinger equation, and theoretical
values of a~~in Mhz.

expected due to core relaxation effects on the potentia1. Table II
shows the resul ts.

The computer code to evaluate A and B, from the formulas
described in the preceding section, has as input the quantum num-
bers of each L5 state in the multiplet with the corresponding weight
factors and the parameters anl, an, 1', bnl, bn, 1', theoretically calcu-, ,
lated. The composition of the states has been taken from Reader's
work [11j. The composition ofthe states 3/2[3/2J¡ and 1/2[1/2J¡ was
directly calculated by using the formulas of the orthogonal transfor-
mation connecting the states J1¡ and LB [9].

Table III shows the results for the values of A and B for 31 states,
and sorne experimental results. There is no good agreement for A
values in states with n'¡' = 68, 5d and 78. The biggest discrepancies
are in the states 68 3/2[3/211,68 1/2[1/2J¡, 5d 3P1, 5d 3P2, 5d 3D1,
6p 1/2[1/2J¡ and 78 1/2[1/2J¡. In Reader's numerical results we
can see strong configuration mixing between the states 68 3/2[3/2J¡
and 5d 3P1, between 68 1/2[1/2J¡ and 5d 3D1, and between 5d 3P2,
68 3/2[3/212 and 5d 3D2; we then attribute the discrepancies to
configuration mixing effects.

Sandars and Beck [4] showed that configuration superposition
effects on the constants A can be taken into account by a fitting of
the parameters a7lk, and a~lk, . In our case, each value of A depends
on six such parameters when ¡' 1- O, and on four when ¡' = O.
The number of experimental values of A is not enough to make the
fit. We attempted a simpler fit, with two parameters, in the form,
A = A¡anl +A1,an'I', that is, without calcul~ting anl of fine structure
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Sp5n'l' TERM A(Theor.) A(Exp.) B(Theor.)

5p56. 3/213/2]2 1524.798 1630.8709' 0.0780
3/213/2iJ 1263.793 284.8028' 0.0389
1/211/2iJ 3047.491 5036.5131' O

5p55d 3p¡ -317.5979 O' -0.0023
3P2 -593.6132 147' 0.0084
3F. 460.9957 376' 0.0735
3F3 926.2574 0.0563
3D¡ -325.0052 350.7571' -0.0291
¡PI -1043.7520 0.0066

5p56p 3/2[1/2iJ 891.8714 854.4084' 0.0029
3/2[5/212 1087.3760 962.3337' 0.0732
3/2[5/213 630.7050 584.59'; 593' 0.0688
3/2[3/2iJ 1011.9920 794.44'; 793' 0.0084
3/213/212 699.5257 0.0073
1/213/2iJ 3836.9340 4107.1665 0.0034
1/211/2iJ -997.9525 -1468.983 0.0051
1/213/212 1842.3850 1918.3850' -0.0137

5p5¡. 3/213/212 1079.9070 0.0756
3/21S/2iJ 3267.360 0.0377
1/211/2iJ 1401.921 4317.0112' -0.0003

5p56d 3/211/2iJ -1087.5090 0.0074
3/2[7/2]. 432.2936 0.0770
3/213/2]2 175.3072 -0.0427
3/*/2)3 1182.3360 0.0216
3/2[5/212 -125.4010 -0.0636
3/2[5/213 370.6167 -0.0243
3/213/2iJ 44.7940 -0.0167
1/215/212 1596.8180 0.0434
1/213/212 482.9176 -0.0529
1/215/213 610.0108 0.0662
lj213/2iJ -842.3018 -0.0145

TABLE 1Il . Experimental &nd theoretical values of the hyperfine structure COl

• tant. A, B of C. 11 in Mhz. a: from Boyd and Sawyer (1942) ar
Kopferman (1931), cited by Reader 1111.b: from Alvaro< .1 al. (197'
18, 30, 311.
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JilKIJ Ap A, a,p alO A6,

3/213/212 0.4218017 0.25 2685.46 2109.64 1660.14
3/213/2J¡ 0.7402624 -0.0832322 1812.35
1/211/2J¡ 1.739001 -0.1664640 4318.83

28+1LJ Ap Ad a,p a,d A

3P2 -0.3250626 0.7109072 2685.46 533.02 -494.01
3p¡ -0.2013608 1.032186 9.42
3F~ 0.2109008 0.4342301 797.81
3F3 0.4310180 0.6999884 21530.58
3D¡ -0.2263469 0.1537794 211.82
¡p¡ -0.5834510 0.2051425 -750m

TABLE IV. Values of aSp1 aSd, aA~I in Mhz, obtained with a two-parameter least
squares fitting to seven experimental resulta, belonging to configura-
tion. 5p56. and 5p55d. Ap, A, and Ad are coefficient. generated from
the computer programo

intervals and a~~of the wave function at the origino Table IV shows
the results obtained by using a least squares fitting 126].There is still
a difference 'in the states Sp56s 3/2[3/2J¡ and Sp5Sd 3P2, attributable
to interaction mixing with the states Sp56s 3Pl and Sp5Sd 3/2[3/212
respectively.

7. Conclusions

We obtained values of A well fitted to experiments in those
states without configuration mixing, and values of B for Cs n.
Unfortunately there are not experimental values for B to compare
with our results. We obtained the values of .radial parameters for
Cs n, and of universal coeflicientes coming from angular momentum
considerations.
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Our computer code allows the calculation of the HFS constants
A, B for any atom or ion with energetic levels resulting from con-
figurations IN 1'. When an atom has LS coupling, we only need the
values of fine structure parameters and values of nuclear spin and
dipole and quadrupole moments. If the atom has an intermediate
coupling, is also required to know the composition of the states.

Our calculations show that the effective operator theory can give
results well fitted to experiments in the study of HFS of Cs n. How-
ever it was not possible to test the effects of configuration mixing
on the values of radial parameters because the linear equations sys-
tem resulting was very unstable with the few existing experimental
results, and only a two-parameter fitting was possible, but we have
calculated the values neglecting configuration mixing effects.

This work shows also the lack of a theory of HFS which take into
account the configuration mixing effects, as of accurate experimental
determinations of factor B in Cs n.

Acknowledgements

This work was financed by the Centro de Investigaciones en
Ciencias Exactas y Naturales of the Universidad de Antioquia. 1
am indebted to professor Eddien Alvarez O. for helpful comments
and suggestions. Also 1 am grateful to professors Manuel Páez M.
and Lorenzo de la Torre G. for critical reading of manuscript.

References

1. G. Racah, Phys. Rev. 61 (1942) 186; Phys. Rev. 62 (1942) 438; Phys.
Rev. 62 (1942) 523; Phys. Rev. 16 (1949) 1352.

2. R.E. Trees,Phys. Rev. 92 (1953) 308.
3. C. Schwartz Phys. Rev. 91 (1953) 380.
4. P.G.H. Sandars and J. Beck,PToC.Roy. Soco A289 (1965) 97.
5. W.J. Childs, Phys. Rev. A2 (1970) 316.
6. W.J. Childs and L.S. Goodman, Phys. Rev. 110 (1968) 50.



528 J. Maheeha G.

7. H. Kopferman, Nuclear Moments in Quantum Mechanics Ac. Press,
N.Y. (1965).

8. E. Alvarez et al., Opto Let!. 4 (1979) 268.
9. B.G. Wybourne, Spectroscopic Properties of Rare Earths, Interscience,

N.Y. (1965).
10. G. Racah, Phys. Rev. 61 (1942) 537.
11. J. Reader, Phys. Rev. A13 (1976) 507.
12. H.A. Bethe and E.E. Salpeter, Quantum Mechanics of one and two

Electron Atoms, Ac. Press, N.Y. (1957).
13. L. Armstrong, Theory of the Hyperfine Structtlre of free Atoms, Wiley,

N.Y. (1971).
14. B.R. Judd, Operator Techniques in Atomic Spectroscopy, McGraw-Hill,

N.Y. (1963).
15. B.R. Judd, Second Quantization and Atomic Spectroscopy, John Hop-

kins Press, Baltimore (1967).
16. B.R. Judd. "Group Theory in Atomic Spectroscopy". In Group Theory

and its Applications (M. Loebl, ed.), Academic Press, New York
(1968).

17. H.B.G. Casimir, On the Interaction between Nuclei and Eleclrons,
Freeman, San Francisco (1963).

18. E. Fermi, in Collected Works of Enrico Fermi, Univ. of Chicago Press,
Chicago (1965).

19. R.A. Sorensen, Am. J. Phys. 35 (1967) 1078.
20. J.D. Jackson, Classical Electrodynamics, J. Wiley, N.Y. (1969).
21. N.F. Ramsey, Molecular Beams, Oxford Univ. Press, Oxford (1969).
22. C. Sánchez del Río, Introducci6n a la Teoría de/ Atomo, Alhambra,

Madrid (1977).
23. J.S. Bolemon, Am. J. Phys. 40 (1972) 1511.
24. V.A. Brattsev, Tables of Atomic Wave Functions, Science Publishing

House, Moscow (1966).
25. D. Hartree, Calculation of Atomic Structures, J. Wiley, N.Y. (1957).
26. F. Scheid, Análisis Numérico, McGraw-Hill, México (1972).
27. A.R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton

Univ. Press, Princeton (1957).
28. C.W. Nielson and G.F. Koster, Spectroscopic CoeJjicients for the pn,

dn and fn configurations, MIT Press, Cambridge (1963).
29. C.E. Moore, Atomic Energy Leve/s, Nat. B of Sto Circo 467, vol. IIl,

Washington D.C. (1958).



Hyperfine strue/ure factors for 91 leveIs of Cs II 529

30. A. Bengtson et al., Phys. Lett. T6A (1980) 45.
31. E. Alvarez et al., Phys. Rev. A 21 (1980) 710.
32. W.J. Childs, Phys. Rev. 156 (1967) 71.
33. A. Kastler, J. Phys. 11 (1950) 255.




